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ABSTRACT

While meta-learning approaches that utilize neural network representations have
made progress in few-shot image classification, reinforcement learning, and, more
recently, image semantic segmentation, the training algorithms and model archi-
tectures have become increasingly specialized to the few-shot domain. A natural
question that arises is how to develop learning systems that scale from few-shot to
many-shot settings while yielding human level performance in both. One scalable
potential approach that does not require ensembling many models nor the compu-
tational costs of relation networks, is to meta-learn an initialization. In this work,
we study first-order meta-learning of initializations for deep neural networks that
must produce dense, structured predictions given an arbitrary amount of train-
ing data for a new task. Our primary contributions include (1), an extension and
experimental analysis of first-order model agnostic meta-learning algorithms (in-
cluding FOMAML and Reptile) to image segmentation, (2) a formalization of the
generalization error of episodic meta-learning algorithms, which we leverage to
decrease error on unseen tasks, (3) a novel neural network architecture built for
parameter efficiency which we call EfficientLab, and (4) an empirical study of how
meta-learned initializations compare to ImageNet initializations as the training set
size increases. We show that meta-learned initializations for image segmentation
smoothly transition from canonical few-shot learning problems to larger datasets,
outperforming random and ImageNet-trained initializations. Finally, we show
both theoretically and empirically that a key limitation of MAML-type algorithms
is that when adapting to new tasks, a single update procedure is used that is not
conditioned on the data. We find that our network, with an empirically estimated
optimal update procedure yields state of the art results on the FSS-1000 dataset,
while only requiring one forward pass through a single model at evaluation time.

1 INTRODUCTION

Humans have a remarkable capability to not only learn new concepts from a small number of labeled
examples but also to gain expertise as more data becomes available. In recent years, there has
been substantial progress towards human-level image segmentation in the high data regime (see
Liu et al. (2019) and their references). While meta-learning approaches that utilize neural network
representations have made progress in few-shot image classification, reinforcement learning, and,
more recently, image semantic segmentation, the training algorithms and model architectures have
become increasingly specialized to the low data regime. A desirable property of a learning system
is one that effectively applies knowledge gained from a few or many examples, while reducing the
generalization gap when trained on little data and not being encumbered by its own learning routines
when there are many examples. A natural question that arises is how to develop learning systems
that scale from few-shot to many-shot settings while yielding human level performance in both. One
scalable potential approach that does not require ensembling many models nor the computational
costs of relation networks, is to meta-learn an initialization.

In this work, we specifically address the problem of meta learning initializations for deep neural net-
works that must produce dense, structured output, such as for the semantic segmentation of images.
We ask the following questions:
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1. Do first-order MAML-type algorithms extend to the higher dimensional parameter spaces,
dense prediction, and skewed distributions required of semantic segmentation?

2. How robust are the representations that the model has meta-learned to perturbations in the
hyperparameters of the update routine?

3. Are MAML-type algorithms hindered by having a fixed update policy for training and
testing tasks that is not conditioned on the data?

Through a series of theoretical and empirical analyses, we shed new light on the representations
that model agnostic meta-learning algorithms learn and how they adapt to unseen tasks. We show
that they extend to few shot image segmentation, yielding state of the art results when their update
routine is optimized after meta-training. We will open-source our code.

2 RELATED WORK

Learning useful models from a small number of labeled examples of a new concept has been studied
for decades (Thrun, 1996) yet remains a challenging problem with no semblance of a unified solu-
tion. The advent of larger labeled datasets containing examples from many distinct concepts (Vinyals
et al., 2016) has enabled progress in the field in particular by enabling approaches that leverage the
representations of nonlinear neural networks. Image segmentation is a well-suited domain for ad-
vances in few-shot learning given that the labels are particularly costly to generate (Wei et al., 2019).

Recent work in few-shot learning for image segmentation has utilized three key components: (1)
model ensembling (Shaban et al., 2017), (2) relation networks (Santoro et al., 2017), and (3) late
fusion of representations (Rakelly et al., 2018; Wei et al., 2019). The inference procedure of ensem-
bling models with a separately trained model for each example has been shown to produce better
predictions than single shot approaches but will scale linearly in time and/or space complexity (de-
pending on the implementation) in the number of training examples, as implemented in Shaban et al.
(2017). An exciting recent approach is that of using relation networks to learn modules that can rea-
son about the relationships of examples in a domain (Santoro et al., 2017). Relation networks have
seen increased adoption in meta-learning systems (Rusu et al., 2018) and were recently employed in
few-shot segmentation in Zhang et al. (2019) and Wei et al. (2019). While relation networks yield
impressive results in the few-shot domain, they typically come with O(n2) training costs where
n is the number of support and query examples. The use of multiple passes through subnetworks
via iterative optimization modules used by Zhang et al. (2019) further exacerbate these costs. The
authors in Wei et al. (2019) take an elegant approach to reducing the computational complexity by
element-wise summing all feature maps of the support examples over the channel dimension, such
that the encoded feature map tensors have the same depth regardless of the size of the support set,
forming a type of embedded memory of the class and then relating that to the query examples. While
this approach reduces computational complexity of traditional applications of relation networks, its
efficacy in scaling as more training data becomes available remains unclear.

Model Agnositc Meta-Learning (MAML) is a gradient-based meta-learning approach introduced in
Finn et al. (2017). First Order MAML (FOMAML) reduces the computational cost by not requiring
the backpropogating the meta-gradient through inner-loop gradient and has been shown to work sim-
ilarly well on classification tasks (Finn et al., 2017; Nichol & Schulman, 2018). Though learning
an initialization has the potential to unify few-shot and many-shot domains, initializations learned
from MAML-type algorithms have been seen to overfit in the low-shot domain when adapting suffi-
ciently expressive models such as deep residual networks that may be more than a small number of
convolutional layers 1 (Mishra et al., 2017; Rusu et al., 2018). In addition to possessing potential
to unify few- and many-shot domains, MAML-type algorithms are intriguing in that they impose
no constraints on model architecture, given that the output of the meta-learning process is simply
an initialization. Futhermore, the meta-learning dynamics, which learn a temporary memory of a
sampled task, are related to the older idea of fast weights (Hinton & Plaut, 1987; Ba et al., 2016).
Despite being dataset size and model architecture agnostic, MAML-type algorithms are unproven
for high dimensionality of the hypothesis spaces and the skewed distributions of image segmentation
problems data (Rakelly et al., 2018). In this work, we show, for the first time, that model agnostic

1The original MAML and Reptile convolutional neural networks (CNNs) use four convolutional layers with
32 filters each for MiniImagenet (Finn et al., 2017; Nichol & Schulman, 2018)
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meta-learning algorithms do in fact naturally extend to image segmentation, yielding state of the art
results when their update procedure is optimized.

3 PRELIMINARIES

In this section, we describe the FOMAML and Reptile meta-learning algorithms and introduce no-
tation used throughout this paper. We assume access to a distribution over tasks p(τ) that is sampled
from a generating distribution P and contains example tasks τi. Let τs denote a finite sample of
examples from τi. The meta-learning algorithms introduced in Finn et al. (2017) and Nichol &
Schulman (2018), work by sampling a task, τs, adapting a model’s internal representations, θ, for a
small number of gradient updates, j, to produce θ′i after j steps of gradient descent. In first-order
renditions, a finite difference is then taken to approximate the derivative of the meta-learning proce-
dure between θ′i and θ and a step of size α is taken in that direction. FOMAML differs from Reptile
in that τi is split into mini-training, Dtr, and validation, Dval, sets. The last batch of the inner-loop
is used to “correct” for overfitting toDtr by taking a gradient step in the direction of descent pointed
to by the loss, L, on Dval. Now that we are equipped with an understanding of the of the dynamics
of the FOMAML and Reptile algorithms we can turn to analyzing their generalization performance.

4 FORMALIZING THE GENERALIZATION ERROR OF META-LEARNING
ALGORITHMS

We now formalize the generalization error of arbitrary meta-learning algorithms. We do this by
defining the common components that meta-learning systems utilize at test-time when adapting to
a new task and how those relate to the expected risk of a learned function. Meta-learning systems
have the following common components, among others:

1. A representation to store pre-existing knowledge, θ,
2. A sampled dataset to learn from, τs, that is typically small,
3. A loss function L(fθ(X),Y) that returns a cost of the difference between predctions and

labels, fθ(X) and Y respectively, and
4. An update procedure, U , that is parameterized by both an initialization θ and hyperparam-

eters that define its dynamics H. U then uses τs to generate a new representation θ′:

fθ′ ← U(τs; θ,H) (1)

Without loss of generality, the adaptation hyperparameters, H, can be meta-learned by a meta-
learning algorithm, A, or defined upfront as is done in the original formulations of MAML, FO-
MAML, and Reptile.

Maintaining this nomenclature, we now turn to the generalization error of a meta-learning system.
Let R[fθ] be the expected risk of the function f parameterized by θ. For non-convex, non-smooth
loss functions for which R[fθ] is non-computable, the empirical risk, Rs[fθ], is minimized, often
with stochastic gradient descent (SGD), on the sample, τs:

f∗τsθ = minimize
θ

(Eτs [L(fθ)]) = minimizeθRs[fθ] (2)

where f∗τsθ is the function 2 that minimizes the expectation of the loss of the examples in τs. The
generalization gap of a meta-learning system is then the difference between the expected risk of the
non-computable functions, f∗τiθ , that would minimize the risk on the generating distribution of the
task p(τi) and the expectation of the risk of the functions f∗τsθ learned on samples τs in p(τ):

Eτ∼P[R[f∗τiθ ]− R[f∗τsθ ]] (3)

We now specialize these analyses to meta-learning algorithms that use a fixed update procedure such
as a predefined learning rate, α and number of gradient steps j. This class of algorithms includes

2It is important to note that this function, and it’s definition as the term f∗τs
θ , is different from fθ′ , which

is the function returned by the fixed update routine U and not necessarily the minimizer of the empirical loss
L(fθ(X),Y).
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the implementations of MAML, FOMAML, and Reptile. These algorithms are aimed at minimizing
the expectation of the loss over tasks in τ :

minimize
θ

Eτ∼P [Lτ (U(τi; θH))] (4)

Because the risk is defined in terms of the parameters θ′ that are learned by U(τs; θ,H), there will
also be an optimal set of hyperparameters, H∗ for every θ, which may or may not be equal to H.
Thus, the expectation of the loss with respect to H given a fixed θ can also be minimized:

minimize
H

Eτ∼P[L(U(τs; θ,H))] (5)

Furthermore, for a fixed update routine that is not conditioned on the data, each parameter, wi, can
travel a maximum distance from its initialization d

d =
∑
j

αj (6)

A corollary that follows from this is that if minima, potentially with low generalization error, are
outside of the n-dimensional sphere reachable by U(τs; θ,H), they will not be found by U given the
same hyperparameters H used during meta-training. Thus, on many problems, it may be useful to
estimate an optimal update procedure on the available data given the meta-learned initialization.

We apply this insight to developing a simple update hyperparameter optimization (UHO) algorithm.
The routine samples n hyperparameter values within a predefined, broad range, evaluates each of
the hyperparameters on a sample of tasks, τval. After evaluating all τs in τval, UHO defines a range
around the x% best hyperparameter configurations and samples from that space, repeating until a
predefined computational budget is exhausted or the expectation of the loss is no longer reduced.
Finally, the best configuration of the hyperparameters that was seen is returned. This algorithm can
be a viewed as a variant of Successive Halving (Jamieson & Talwalkar, 2016).

5 EXPERIMENTS

We evaluate the FOMAML and Reptile meta-learning algorithms on the FSS-1000 dataset. Model
topology development and hyperparameter search was done on a held out set of validation tasks
and not the final test tasks. For the final evaluations, we train for ∼200 epochs through the training
and validation tasks, using a meta-batch size of 5, an inner loop batch size of 8, and 5 inner loop
iterations. During training, we use SGD in the inner loop with a fixed learning rate of 0.005. After
we have learned an initialization, we then applied the UHO algorithm on 100 randomly sampled
tasks from the training set to search over the learning rate. Because the effects of the learning rate
are intertwined with the number of gradient updates we also use early stopping (ES) to estimate the
optimal number of gradient steps when adapting to a new task.

5.1 DATASETS

The first few-shot image segmentation dataset was the PASCAL-5i presented in Shaban et al. (2017)
which reimagines the PASCAL dataset (Everingham et al., 2010) as a few-shot binary segmentation
problem for each of the classes in the original dataset. Unfortunately, the dataset contains relatively
few distinct tasks (20 excluding background and unlabeled). The idea of a meta-learning dataset for
image segmentation was further developed with the recently introduced FSS-1000 dataset, which
contains 1000 classes, 240 of which are dedicated to the test-set, with 10 image-mask pairs for each
class (Wei et al., 2019). This dataset is the focus of the empirical work of this paper.

For investigating how the meta-learned representations integrate new information as more data be-
comes a available, we put together a small dataset that we call FP-k. FP-k takes 5 tasks from FSS-
1000 and 5 tasks from PASCAL-5i for the same concept3 Using this dataset, we train over a range
of “k”-training shots from ImageNet-trained initializations4 and our meta-learned initializations.

3See the Appendix for more details on the dataset construction.
4The encoder is trained on ImageNet, while the lightweight skip decoder and final layer weights are initial-

ized using the Glorot uniform initialization (Glorot & Bengio, 2010)
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5.2 NEURAL NETWORK ARCHITECTURE

To extend first-order MAML-type algorithms to more expressive models, with larger hypothesis
spaces, while yielding state of the art few-shot learning results, we developed a novel neural network
architecture, which we term EfficientLab. The top level hierarchy of the network’s organization of
computational layers is similar to Chen et al. (2018), with 4 convolutional blocks that successively
halve the features in spatial resolution while increasing the number of feature maps. This is followed
by a 4x bilinear upsampling which is concatenated with features from a long skip connection from
the second downsampling block in the encoding part of the network. The concatenated low and
high resolution features are then fed through an atrous spatial pyramid pooling (ASPP) module and
finally bilinearly upsampled to original image size.

The differences between our model and the original DeepLabV3+ model are in (1) the encoder
network used and (2) how the low resolution embedded features are upsampled to full resolution
predictions. For the encoding subnetwork, we utilize the recently proposed EfficientNet (Tan & Le,
2019). After encoding the images, instead of feeding them directly into an atrous spatial pyramid
pooling module (ASPP), we first immediately bilinearly upsample the features by 4x. The upsam-
pled features are then concatenated with features from the second downsampling block. Moving the
ASPP module to the usampled resolution provides two advantages. First, it allows us to use 1 con-
volutional module in place of two. Due to the high dimensionality of the features along the channel
axis at the lowest resolution, the convolutional kernels are especially expensive in terms of number
of parameters. Second, the ASPP module is designed to learn multiscale context which could be
useful in refining the boundaries of semantic features in mid-resolution feature maps. Our ASPP
module utilizes three parallel branches of a 1x1 convolution, 3x3 convolution with dilation rate = 2,
and a simple average-pooling across spatial dimensions of the feature maps. The output of the three
branches is concatenated and fed into a final 3x3 convolutional layer with 112 filters. We call this
structure a lightweight skip decoder (LSD). A residual connection wraps around the LSD to ease
gradient flow. Before the final 1x1 convolution that produces the unnormalized heatmap of class
scores, we use a single layer of dropout with a drop rate probability = 0.2 5. We use the standard
softmax to produce the normalized predicted probabilities.

We use batch normalization layers following convolutional layers (Ioffe & Szegedy, 2015). We
meta-learn the β and γ parameters, adapt them at test time to test tasks, and use running averages as
estimates for the population mean and variance, E[x] and V ar[x], at inference time as suggested in
Antoniou et al. (2018). All parameters at the end of an evaluation call are reset to their pre-adaptation
values to stop information leakage between the training and validation sets. The network is trained
with the binary cross entropy minus the log of the dice score:

L = H − log(J ) (7)

where H is binary cross entropy loss:

H = − 1

n

n∑
i=1

(yi log ŷi + (1− yi) log (1− ŷi)) (8)

J is the modified Dice score:
J =

2IoU

IoU + 1
(9)

and IoU is the intersection over union metric:

IoU =
1

n

n∑
i=1

(
yiŷi + ε

yi + ŷi − yiŷi + ε

)
(10)

5.3 RESULTS

The results of our model with an initialization meta-learned using Reptile and FOMAML are shown
in Table 1. We find that our model trained with FOMAML and importantly with improved use of
batch normalization yields near state of the art results. After optimizing the update hyperparameters,

5As described in Li et al. (2019) and used in Tan & Le (2019) the dropout layer is applied after all batch
norm layers.
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Table 1: FSS-1000 5-shot Results
Shots Method MeanIoU

1 FSS-1000 Baseline(Wei et al., 2019) 73.47%
5 FSS-1000 Baseline(Wei et al., 2019) 80.12%
1 FOMAML 73.26%
1 FOMAML+UHO 73.86%
5 Reptile 69.63%
5 FOMAML 79.02%
5 FOMAML+UHO 81.39%

Figure 1: Each point represents the mean IoU for the validation tasks with a sampled learning rate α.
The blue dashed line indicates the learning rate used by SGD in the inner loop during meta-training.
Points are colored by how many iterations they were trained before stopped by early stopping (ES)
with a patience of 3 iterations.

our approach sets the new state of the art for the FSS-1000 dataset by a small margin. We also find
that by searching through a range of learning rates that are 10x less to 10x greater than the learning
rate, that the learned representations are not robust to such large variations in the hyperparameter 1.

In this work we posit that a fixed update procedure that is used at test time and not conditioned on
the training data is one of major hinderances of MAML-type algorithms. In section 4, we show that
minima with low generalization error may be unreachable via a single update routine from a single
parameter initialization θ. We find this analysis to be supported empirically as well. We find that: (1)
the estimated optimal hyperparameters for the update routine even on the training tasks are not the
same as those specified a priori during meta-training, as illustrated in Figure 1. One may expect that
MAML-type algorithms would converge to a point in parameter space from which optimal minima
for each of the training tasks are reachable. We find that even after 200 epochs through the training
set, this was not the case. The best learning rate and number of iterations we found via the random
search UHO algorithm were 0.007475495476045889 and 8, respectively, compared to a learning
rate of 0.005 and 5 iterations used during training. (2) Optimizing the hyperparameters (even on the
training set) improves test-time results on unseen tasks.
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Figure 2: Mean IoU results as a function of the training set size of our EfficientLab model trained
on the FP-k dataset. The meta-learned initialization outperformed EfficientLab initialized with an
ImageNet-trained encoder and a randomly initialized decoder for all numbers of labeled training
examples that we evaluated.

By training our model on the FP-k dataset, we also found that our meta-learned initializations out-
performed an ImageNet-trained encoder and a randomly initialized decoder for up to 400 training
examples6.

6 DISCUSSION

In this work, we showed that gradient-based first order model agnostic meta-learning algorithms do
in fact extend to the high dimensionality of the hypothesis spaces and the skewed distributions of
few-shot image segmentation problems. Furthermore, we find that the representations that are meta-
learned smoothly transition as more data becomes available, unifying few- and many-shot regimes.

Future work could look more critically at learned update procedures, forms of meta-regularization,
and second order methods for image segmentation. It would also be useful in future work to take
a more critical look at the interplay between batch normalization and meta-learning. While single
task deep neural networks in large data regimes apply batch normalization with a consistent pattern,
different groups working in few-shot meta-learning have incorporated batch norm in completely
different ways such as by: (1) not using it at all for the meta-learning components (Rusu et al., 2018),
(2) not using learned β and γ parameters at all while still using estimated population means and
variances during inference Zhang et al. (2019), or (3) meta-learning β and γ while only using batch
statistics for the normalization (Finn et al., 2017; Nichol & Schulman, 2018), or (4) meta-learning
β and γ and also using population estimates of the mean and variance, as done conventionally when
training deep neural networks in the large data regime, which is the approach that we adopt and find
to be most useful.

We showed that the optimal hyperparameter configuration for the update procedure may not be
the same configuration used during meta-learning. These findings are supported by our theoretical

6The examples in the PASCAL dataset are known to be more challenging than the FSS-1000 dataset (Wei
et al., 2019). From visual inspection of the two datasets, it is also clear that the PASCAL dataset contains
more label noise than the FSS-1000 dataset. For these reasons, the mean IoU values shown in Figure 1, which
contain examples from both datasets, are not directly comparable to the results shown in Table 1, which contain
examples only from FSS-1000.
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analyses which show that MAML-type algorithms minimize the empirical risk on the training set
of the update procedure and the initialization θ. We suspect that improvements realized by relation
networks (Wei et al., 2019; Zhang et al., 2019; Rusu et al., 2018), models that learn to generate
parameters conditioned on the training data (Rusu et al., 2018; Shaban et al., 2017), and models with
learned learning rates (Antoniou et al., 2018) directly leverage information on how to adapt given a
few-shot sample. It is our hope that our empirical analyses and formalization of the generalization
error of meta-learning systems leads to better explanations of why some meta-learning systems work
better than others in different problem spaces. Lastly, we hope that this work draws, what we argue
is necessary, attention to the open problem of building learning systems that can unify low and high
data regimes by gaining expertise and smoothly integrating new information as more data becomes
available, much as people do.
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A FP-K DATASET

The 5 tasks in PASCAL-5i that have direct analogs in FSS-1000, which we
use, are: [{"airliner", "aeroplane"}, {"bus"}, {"motorbike"},
{"potted_plant", "potted plant"}, {"television", "tvmonitor"}]
Each entry in this list is a set of 1 or 2 strings (if they differ between the two parent datasets)
for the names of tasks in FSS-1000 and PASCAL-5i, respectively. We combine all examples for
synonymous tasks. During evaluation, we simply randomly sample 20 test examples, and sample a
training set of k examples over the range: [1, 5, 10, 50, 100, 200, 400]

B FSS-1000 TEST TASKS

At the time of this writing, the authors of Wei et al. (2019) had not released the train-
val-test splits of their work, noting that “The train/validation/test split used in the exper-
iments consists of 5,200/2,400/2,400 image and label pairs.” For our test set, we ran-
domly sampled the following 240 tasks (which contain 2,400 image-label pairs in total):
["chess_bishop", "lifeboat", "african_grey", "kobe_logo", "ab_wheel",
"face_powder", "gourd", "ski_mask", "stool", "vine_snake", "ladle",
"wandering_albatross", "agama", "school_bus", "ballpoint", "radio",
"television", "orange", "mitten", "pizza", "sealion", "toaster",
"window_shade", "corn", "albatross", "african_elephant", "pidan", "taxi",
"cardoon", "indian_elephant", "moon", "pistachio", "brambling",
"fire_screen", "quail_egg", "yawl", "pencil_box", "rhinoceros",
"bighorn_sheep", "diver", "bison", "golden_retriever", "stretcher",
"prairie_chicken", "zebra", "water_heater", "espresso_maker", "sundial",
"stop_sign", "microsd", "mite_predator", "sports_car", "mount_fuji",
"pyramid", "truss_bridge", "giant_panda", "walnut", "hippo",
"loggerhead_turtle", "avocado", "partridge", "telescope", "fan",
"egyptian_cat", "tile_roof", "potato_chips", "chinese_knot", "cradle",
"garbage_can", "guitar", "airship", "spoonbill", "pencil_sharpener2",
"acorn", "turnstile", "cn_tower", "typewriter", "microscope",
"hornbill", "ashtray", "scorpion", "vestment", "combination_lock",
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"hare", "nintendo_gba", "titi_monkey", "golfcart", "garbage_truck",
"candle", "pyraminx", "nagoya_castle", "beaker", "scissors",
"feather_clothes", "american_alligator", "fish_eagle", "abe’s_flyingfish",
"streetcar", "jacko_lantern", "taj_mahal", "stole", "sunscreen",
"poached_egg", "aubergine", "calculator", "lobster", "swimming_trunk",
"power_drill", "windsor_tie", "sandwich_cookies", "kazoo",
"indian_cobra", "soap_dispenser", "spotted_salamander", "strawberry",
"warplane", "flying_squirrel", "tennis_racket", "dragonfly", "crepe",
"skull", "starfish", "shovel", "electronic_toothbrush", "bra",
"chess_knight", "white_shark", "red_fox", "smoothing_iron", "colubus",
"flying_disc", "excavator", "toothbrush", "peregine_falcon",
"polo_shirt", "magpie_bird", "apple_icon", "triumphal_arch", "bottle_cap",
"great_wall", "ac_wall", "manatee", "pinwheel", "nintendo_3ds",
"pinecone", "melon_seed", "ruler", "wrench", "throne", "pomegranate",
"killer_whale", "tiger", "shih-tzu", "croquet_ball", "conch",
"oscilloscope", "frog", "coho", "golf_ball", "monitor", "sparrow",
"paper_plane", "tiger_cat", "seal", "buckingham_palace",
"waffle_iron", "sewing_machine", "paper_crane", "dumbbell", "quail",
"band-aid", "beer_glass", "ox", "hawk", "spider_monkey",
"pufferfish", "cuckoo", "carrot", "sweatshirt", "terrapin_turtle",
"arctic_fox", "eletrical_switch", "african_crocodile",
"electronic_stove", "timber_wolf", "hammer", "wagtail",
"cushion", "angora", "mario", "paper_towel", "kit_fox", "snail",
"snowball", "gazelle", "fig", "cloud", "nike_logo", "scarerow",
"lacewing", "letter_opener", "mcdonald_sign", "eft_newt", "black_swan",
"file_cabinet", "turtle", "assult_rifle", "sandbar", "monkey",
"common_newt", "rocket", "triceratops", "siamese_cat", "panda",
"mountain_tent", "mortar", "adhensive_tape", "afghan_hound", "mule",
"tomb", "air_strip", "orang", "space_shuttle", "aircraft_carrier",
"tofu", "cello", "water_buffalo", "sulphur_crested", "garlic",
"besom", "baby", "beer_bottle", "pingpong_ball", "coucal", "grey_whale",
"drumstick", "banjo", "flamingo", "plate", "hover_board"]
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