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ABSTRACT

Recurrent neural networks (RNNs) provide a powerful tool for online prediction in
online partially observable problems. However, there are two primary issues one
must overcome when training an RNN: the sensitivity of the learning algorithm’s
performance to truncation length and and long training times. There are variety
of strategies to improve training in RNNs, particularly with Backprop Through
Time (BPTT) and by Real-Time Recurrent Learning. These strategies, however, are
typically computationally expensive and focus computation on computing gradients
back in time. In this work, we reformulate the RNN training objective to explicitly
learn state vectors; this breaks the dependence across time and so avoids the need
to estimate gradients far back in time. We show that for a fixed buffer of data,
our algorithm—called Fixed Point Propagation (FPP)—is sound: it converges to a
stationary point of the new objective. We investigate the empirical performance
of our online FPP algorithm, particularly in terms of computation compared to
truncated BPTT with varying truncation levels.

1 INTRODUCTION

Many online prediction problems are partially observable: the most recent observation is typically
insufficient to make accurate predictions about the future. Augmenting the inputs with a history can
improve accuracy, but can require a long history when there are long-term dependencies back in time.
Recurrent Neural Networks (RNNs) (Elman, 1990; Hopfield, 1982) learn a state which summarizes
this history. Specifically, RNNs contain recurrent connections to their hidden layers which allow past
information to propagate through time. This state need not correspond to a true underlying state;
rather, it is a subjective, constructed state to facilitate prediction. RNNs have been widely used, in
speech recognition (Hinton et al., 2012; Graves et al., 2013; Miao et al., 2015; Chan et al., 2016),
image captioning (Mao et al., 2014; Lu et al., 2016; Vinyals et al., 2014), speech synthesis (Mehri ef
al., 2016) and reinforcement learning (Hochreiter and Schmidhuber, 1997; Diill et al., 2012).

Despite these success, there are significant stability and computational issues in training RNNs
online (Pascanu et al., 2013; Tallec and Ollivier, 2017). In the online setting, the agent faces an
unending stream of data, and on each step must update its parameters a make a new prediction.
RNNGs are typically trained either using Backpropagation-through-time (BPTT) (Werbos, 1990) or
approximations to an algorithm called Real-Time Recurrent Learning (RTRL) (Williams and Zipser,
1989a; Pearlmutter, 1995). The update for BPTT is a variant of standard backpropagation, computing
gradients all the way back in time. This approach is problematic because the computational cost scales
linearly with the number of time-steps. A more common alternative is truncated BPTT (T-BPTT)
(Williams and Peng, 1990) which only computes the gradient up to some maximum number of steps:
we truncate how far back in time we unroll the network to update the parameters. This approximation,
though, is not robust to long-term dependencies (Tallec and Ollivier, 2017). Approximate gradients
can also be computed online by RTRL (Williams and Zipser, 1989b). This online algorithm, however,
has high computational complexity per step and therefore is not commonly used in practice.

Recently, there have been some efforts towards approximating gradients for back-propagation, both
for feedforward NNs and RNNs. Synthetic gradients and BP(\) (Jaderberg et al., 2017) use an idea
similar to returns from reinforcement learning: they approximate gradients by bootstrapping off
estimated gradients in later layers (Jaderberg et al., 2017; Czarnecki et al., 2017). There are several
methods estimating RTRL—which is itself an estimate of the true gradient back in time—including
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NoBackTrack (Ollivier and Charpiat, 2015), and Unbiased Online Recurrent Optimization (UORO)
(Tallec and Ollivier, 2017) which use an unbiased rank-1 approximation to the full matrix gradient.
Finally, there are some methods that use selective memory back in time to compute gradients for the
most pertinent samples, using skip connections (Ke et al., 2017). All of these methods, however,
attempt to approximate the gradient back in time, for the current observation and state, and so suffer
to some extent from the same issues as BPTT and RTRL.

In this paper, we investigate an alternative optimization strategy that does not attempt to approximate
the gradient back in time. Instead we learn the state variables in the RNN explicitly. These new
variables are optimized to both improve prediction accuracy, and to maintain consistency in producing
the next learned state variables. This second constraint is a fixed-point formula for the states under
the given RNN dynamics.! We develop a provably sound stochastic update for the new fixed-point
objective, which we then use to develop an online algorithm for training RNNs. The algorithm
explicitly optimizes state vectors and RNN parameters with many efficient one-step—or short term
multi-step updates—across a buffer. Instead of focusing computation to get a more accurate gradient
estimates for this time-step, our algorithm, called Fixed Point Propagation (FPP), can more effectively
use computation to update prediction accuracy across states. We demonstrate that the algorithm is
effective on several problems with long-term dependencies, and improves over T-BPTT, particularly
in terms of stability and computation.

2 PROBLEM SETTING AND BACKGROUND

We consider a partially observable online setting, where an immediate observation is not sufficient
for prediction. More formally, assume there is a sequence of n observations, o1, ..., 0,, which
provide only partial information about an unknown underlying sequence of states. After obtaining
an observation o;, the agent makes a prediction y; and sees the actual outcome y;. The goal is
to minimize this prediction error. Given only o,, however, the agent is unlikely to make accurate
predictions about y;, because o; is not a sufficient statistic to predict y;: p(y|0;, 0;—1,0;—2,...) #
p(y|o;). The agent could have obtained lower prediction error by using a history of observations.
The length of such a history, however, may need to be prohibitively long, even when this history
could have been summarized compactly.

An alternative is to construct state using a Recurrent Neural Network (RNN), by learning a state-
update function. Given a current (constructed) state s;_1 € R¥, and a new observation o; € R?, the
parameterized state-update function fyw : R* x R — R¥, with parameters W, produces the next
(constructed) state s; = fw(s;—1,0;). For example, fyw could be a linear weighting of s;_; and
o4, with a ReLu activation: fw (s;—1,0;) = max([s;—1,0;]W,0). More complex state-updates are
possible, like the gating in Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997).

The prediction error is the objective for learning these parameters W for the state-update. For
the current state s;, a prediction is made by parameterized function gg : RF — R™ for learned
parameters 3. For example, the prediction could be a linear weighting of the state, gg(s) = ,BTS.
We denote the prediction error as £ : R* x R™ — R for a given 3. For example, this loss could be

la(se;yi) = |lgp(se) — Yt||§~
The goal in RNNSs is to minimize, for some start state s,

Iﬁl}iwn;%(fw(---fw(fw(so, 01),02),...,04); ¥i)- (D

S1

Computing gradients for this objective, however, can be prohibitively expensive. A large literature on
optimizing RNNs focuses on approximating this gradient, either through approximations to RTRL or

"Recurrent Backpropagation and related variants (Almeida, 1987; Pineda, 1987; Scellier and Bengio, 2017;
Liao et al., 2018) also use fixed points for their optimization, but in a different way. These algorithms only
address a restricted class of RNNS, that assume a fixed input and converge to a single low-energy state—a fixed
point of the dynamics for that given input. These RNNs are actually highly related to Graph NNs (Scarselli ef al.,
2008), because the temporal nature only arises from cyclic connections, rather than from temporal data. Their
problem setting is fundamentally different from our online prediction setting, and is usually used for associate
memory with Hopfield networks or semi-supervised problems. Recurrent Backpropagation cannot be used for
our setting and so we do not further discuss this class of RNN algorithms.
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improvements to BPTT. RTRL (Williams and Zipser, 1989b) uses a recursive gradient form, which
can take advantage of gradients computed up until the last observation to compute the gradient for
the next observation. This estimate, however, is only exact in the offline case and thus RTRL is an
approximation of the true gradient in our online setting. Further, in either online or offline, RTRL
requires O(k?) computation per observation. In BPTT, gradients are computed back in time, by
unrolling the network. In the online setting, it is infeasible to compute gradients all the way back to
the beginning of time. Instead, this procedure is truncated to 7" steps back in time. T-BPTT is suitable
for the online setting, and costs O(T'k?) at each time step, i.e., for each observation.

Arguably the most widely-used strategy is T-BPTT, because of its simplicity. Unfortunately, though,
T-BPTT has been shown to fail in settings where dependencies back in time are further than 7" (Tallec
and Ollivier, 2017), as we affirm in our experiments. Yet, the need for simple algorithms remains. In
this work, we investigate the potential of an alternative direction for optimizing RNNss, that does not
attempt to estimate the gradients of (1).

Note that in addition to a variety of optimization strategies, different architectures have also been
proposed to facilitate learning long-term dependencies with RNNs. The most commonly used are
LSTMs (Hochreiter and Schmidhuber, 1997), which use gates to remember and forget parts of the
state. Other architectures include clockwork RNNs (Koutnik et al., 2014), phased LSTMs (Neil et al.,
2016), hierarchical multi-scale RNNs (Chung et al., 2016), dilated RNNs (Chang et al., 2017), and
skip RNNs (Campos et al., 2017). In this work, we focus on a general purpose RNN algorithm, that
could be combined with each of these architectures for further improvements.

3 A NEW FIXED-POINT OBJECTIVE FOR RNNSs

In this section we introduce our new formulation for training RNNs. We begin with an idealized
setting to introduce and explain the ideas. Later we will generalize our approach to partially observable
online training tasks.

First, assume the observations are produced by an underly Markov Chain with a discrete set of states,
and the agent has access to a set of observations that are deterministic function of the state. We denote

the set of states H = {1,...,n}, and the observations from each state as o1, ..., 0,, . The goal is to
find state vectors sy, . .., s, € R that satisfy two goals. One is to enable the state to be updated
fw(si,0;) =s; Vj where P(i,5) >0 ()

for P : H x " — [0,1] the transition dynamics. Another criterion is for these state vectors to
facilitate accurate predictions. In particular, the learned state should minimize /3(s;;y;) for all
h, where y; € R is the expected target for a true state j. Together, this results in the following
optimization, with the relationship between states encoded as a constraint

ﬁmvl‘}ls ,Z.E:HP(ijj)g'G(fw(Si; 0;),¥;) s.t. fw(si,05) =s; Vi,jwhere P(i,5) >0
i,

The satisfiability of this will depend on fyw and if s; and o; can uniquely determine s;.

More generally, we will not know the underlying state, nor is it necessarily discrete. But, we
can consider a similar objective for observed data. Assume n observations have been observed,

01,...,0,, with corresponding targets y1,...,y,. Let the state variables be stacked in a matrix
S € R¥*™ and observations as a matrix O € R¥", with S = [sg,...,s,] and O = [oy,...,0,].
The constraint on the states becomes S = Fyw (S, O) for operator

Fw(S,0) £ [S.0,/w (8.0, 051).fw(S:n-1,0:.0)] 3)

We call this the fixed-point constraint, since a solution S to the constraint is a fixed point of the
system defined by Fw (-, O). The resulting optimization, for this batch, is

ﬁ%r}sgeﬁ(fw(si,l,oi);yi) st. S = Fw (S, 0). 4)

The solution to this new optimization corresponds to the solution for the original RNN problem in
(1)—when also optimizing over sg in (1)—because the fixed-point constraint forces variables s; to
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be representable by fw . Therefore, the reformulation as a fixed point problem has not changed the
solution; rather, it has only made explicit that the goal is to learn these states and facilitates the use of
alternative optimization strategies.

Reformulations like the one in (4) have been widely considered in optimization, because (4) is
actually an auxiliary variable reformulation of (1). In this case, the auxiliary variables are the states
S. Using auxiliary variables is a standard strategy in optimization—under the general term method of
multipliers—to decouple terms in an optimization and so facilitate decentralized optimization.

Such auxiliary variable methods have even been previously considered for optimizing neural networks.
Carreira-Perpifidn and Wang (2014) introduced the Method of Auxiliary Coordinates (MAC), which
explicitly optimize hidden vectors in the neural network. Taylor et al. (2016) proposed a similar
strategy, but introduced an additional set of auxiliary variables to obtain further decoupling and
a particularly efficient algorithm for the batch setting. Scellier and Bengio (2017) introduced
Equilibrium Propagation for symmetric neural networks, where the state of the network is explicitly
optimized to obtain a stationary point in terms of the energy function. Gotmare et al. (2018) built on
these previous ideas to obtain a stochastic gradient descent update for distributed updates to blocks of
weights in a neural network. Our proposed optimization can be seen as a variation of the objective
considered for MAC (Carreira-Perpiiidn and Wang, 2014, Equation 1), though we arrived at it from a
different perspective: with the goal to learn explicit state vectors.

The objective in (4) still has two issues. First, it is not amenable to online updating: it is a batch
optimization with a constraint. Second, it does not allow for any training back in time. But, this
stringent computational restriction is unnecessary. We could have instead asked: learn states so that
when iterated twice through the RNN, the resulting state enables accurate predictions on the target
two steps in the future. We develop a more general objective below to address both issues.

We can rewrite the objective so that it is clear how to stochastically sample it, and so enable online
updating. As in MAC-QP (Carreira-Perpifidn and Wang, 2014), we reformulate this constrained
objective into an unconstrained objective with a quadratic penalty, with A > 0

def 1 n )\ n
L(B,W,S) = - ;gﬁ(fW(si—hoi)QYi) o, Z; Isi = fw(si-1,0)ll5 o)
Once in this unconstrained form, we can perform stochastic gradient descent on this objective in
terms of 3, W and S to reach a stationary point. To use stochastic gradient descent, the objective
needs to break up into a sum of losses, L(3, W, S) = % i Li(B,W,S), where we define

e A
Li(B,W,S) € 5(fw (si—1,0,):yi) + §||Si — fw(si—1,0:)|]3.

We can stochastically sample ¢ from our buffer of n samples and update our variables with VL;.
Fortunately, because the state variables break connections across time, this gradient is zero for most
variables, except 3, W, s;_1 and s;. Therefore, each stochastic update can be computed efficiently.

Second, we can generalize this objective to incorporate more than one step of propagation back in
time, simply by generalizing the fixed-point operator. Consider the more general T-step fixed point
problem S = Fpr w(S, O) where

def

Frw(S,0)=1{S.0,S.1,...,S.7—1, fw(... fw(fw(S:0,0.1),0.2),...),0.7),...

S. T

fW( . fW(fW(S:,n—T—la O:n—T)a O:,n—T+1); .. -); O:,n) .

For T' = 1, we recover the operator provided in (3). This generalization mimics the use of T-step
methods for learning value functions in reinforcement learning. This generalization provides more
flexibility in using the allocated computation per step. For example, for a budget of T" updates per
step, we could use T' 1-step updates, T'/2 2-step updates, all the way up to one T'-step update.

The loss for general T similarly decomposes into a sum ﬁ S Li(B,W,S) for

. A .
Li(ﬁ7wa S) = gﬁ(Si(Si_T,W); y’b) + §||Si - Si(si—T7W)H% (6)

where  §;(s;—7, W) < fw( .. fw(fw(Si—17=1,0i—7),0i—741), . -.), 0;).
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Figure 1: A single update by FPP. It randomly samples ¢, and performs a gradient descent update to s;—7,s;, W
and 3, where the loss on the targets affects s;_7, W, 3 and the loss producing the next state variable s; affects
si—T,Si, W. The state variables are stored in the buffer, but are explicit variables we learn, just like W and 3.

For each stochastic sample ¢, VL; is only non-zero for 3, W, s,;_r and s;. Though these updates
can simply be computed using automatic differentiation on L;, the explicit updates are simple so we
include them here, using shorthand §; for §;(s;—r, W):

Vs, rLi = [Vs,0a(8:yi) — M(si — 8:)] ' Vs, 8
Vs, Li = A(s; — §i)
VwLi = Vs, ls(8:;y:) — Nsi — 8;)] Vws; (7
VeLi=Vgla(si;yi)

The online algorithm uses these updates on a sliding window buffer, instead of a fixed buffer. This
algorithm—called Fixed Point Propagation (FPP)— is summarized in Figure 1 and Algorithm A.

As alluded to, the advantage of FPP over T-BPTT is that we are not restricted to focusing all
computation to estimate the gradient 7-steps back in time for one state-observation pair. Rather,
instead of sweeping all the way back, we spread value by using updates on random transitions in the
buffer. This has three advantages. First, it updates more states per step, including updates towards
their targets. Second, this ensures that targets for older transitions are constantly being reinforced,
and spends gradient computation resources towards this goal, rather than spending all computation
on computing a more exact gradient for the recent time step. This distributes updates better across
time, and should likely also result in a more stable state. Third, the formulation as stochastic gradient
descent on the fixed point objective makes it a sound strategy—as opposed to truncation which is not
sound. FPP, therefore, maintains the simplicity of T-BPTT, but provides a more viable direction to
obtain sound algorithms for training RNNSs.

4 CONVERGENCE RESULTS

In this section we show two theoretical results. First, we show that the FPP algorithm converges to a
stationary point, for a fixed buffer. This result is a relatively straightforward application of recent
theory for nonconvex optimization (Ghadimi et al., 2016), mainly requiring us to show that our
algorithm can be written as an instance of that framework and to show that each stochastic gradient
update is unbiased. This convergence result, nonetheless, is key, as it suggests that FPP is a sound
strategy for using replay with RNNs. Previous attempts to use replay for RNNs, in reinforcement
learning, were not able to show convergence (Kapturowski et al., 2019), which is to be expected as
truncated BPTT updates on a buffer may not be sound.

Additionally, we show that as A approaches infinity, the set of stationary points of the FPP objective
approaches the set of stationary points for the RNN objective. In our experiments, we use A = 1,
as obtaining precisely the same solutions as the RNN objective is not our goal. We include this
theoretical result nonetheless for completeness to characterize the relationship between the stationary
points of FPP objective and the RNN objective. The proof is similar to that for MAC-QP (Carreira-
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Perpifidn and Wang, 2014), with the main novelty in checking the KKT conditions for our objective
and for linear independence in the Jacobian. Full proofs for both results are in Appendix B.

4.1 CONVERGENCE OF FPP TO A STATIONARY POINT FOR A FIXED BUFFER

Recent work uses the idea of randomized gradient descent to show convergence to a stationary point
for nonconvex objectives (Ghadimi et al., 2016), as opposed to typical restrictions such as convexity
or the PL condition (Karimi et al., 2016). The randomized approach uses a random stopping time
R, and characterizes the norm of the expected gradient for the variables at this random time. The
variables we learn are (W, 3, S) € R*, where z is the appropriate dimension.

For the proof we also require the variables to remain in a closed, convex set, to ensure that our
objective is Lipschitz. To do so, we will analyze our update with the addition of a projection operator
onto a closed ball C' in R? of radius > 0 about the origin. r can be very large, and we emphasize
that C' is only a convenience used for theoretical analysis. In practice, we do not project our iterates.
Since R¢ is a Hilbert space and C'is closed and convex, we have the existence of a unique projection
operator I'

I'(Wo, B8y,S0) & argmin [|(Wo, By, S0) — (W, 3,S)]?. (8)
(W,3,8)eC

Our objective is L(W,3,8) = & n7%+1 Yo Li(W,3,8), for L; defined in Equation (6), for
n > T samples. Each time we perform an update, we randomly sample k; ~ uniform-(7,n),
inclusive of both endpoints. The update to parameters at time ¢, for stepsize oy, is

(Wit1, Biit, Ser1) ET((Wy, 8,,S:) — VL, (W, B,,S0)). ©)

Theorem 1. Letr D be a Lipschitz constant of VL(W, 3, S). Define probability mass functions

oy — Daﬁ
N 2
2j—105 — Daj

foreach N € N. Let R be distributed according to Py. Assume o = % for all t and that we
perform N stochastic updates. Write tp = (W g, Bg,Sgr). Then

E [;R IerLtn)l| =0 ()

4.2 RECOVERING RNN SOLUTIONS

PN(k) =

Consider the standard RNN problem,

S E(W,B,50) for E(W,8,50) = > lg(fw(- fw(fw(s0,01),02), - ,0:);y:) (10)
0 i=1

where we also optimize over sg. Our goal is to show that for increasing ), the set of stationary points
of the FPP objective in Equation (5) approach stationary points of the RNN objective in Equation
(10). We assume 7" = 1 in our analysis of FPP.

Theorem 2. Assume we have a positive, increasing sequence {\;,} — 00, a non-negative sequence

{ex} — 0, and a sequence of points { (W, By, S.)} such that ||V L(Wy, B, Sk); Ar)|| < e for
n Ak
LW, By, Si): M) & %Z (fw(si-1,00)yi) + - lIsi — fw(si-i,0)3 (D

Assume further that {(Wy, By, Sk)} has a convergent subsequence {(Wy,, By, Sk, )} with limit
(W* 3%,S*). Then (W*, 3%, S*) is a KKT point of the constrained FPP objective (see (12)) and
(W*, 8%, st) is a KKT point of the RNN objective (10). Further, if (W*, 3", S*) is a local min of
the constrained FPP objective, then (W*, 3%, st) is a local min of (10).
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5 EXPERIMENTAL RESULTS

We designed a sequence of experiments in real and synthetic problems to evaluate our new method
compared with several common baselines and to highlight the robustness of our method to different
truncation lengths, buffer sizes and number of updates. In particular we compare (1) against T-BPTT
with a variety of truncation lengths greater and lesser than the temporal delay required to solve each
problem; (2) No-Overlap T-BPTT, a common a variant of T-BPTT that updates on disjoint partitions
of the data; and (3) FPP without the state update, which is similar to the Stored State T-BPTT
algorithm (Kapturowski et al., 2019). We begin by describing the problems we used to evaluate our
methods, and why they were chosen. Unless otherwise stated, we report average performance over
all training steps (online performance), averaged over 30 independent runs.

Simulation Problems We used two small simulation problems to highlight the robustness of each
method to increasing temporal delay in online training. The first tasks is a simple ring of states.
On each timestep the agent deterministically transitions to the next state in the chain. The agent’s
observation is zero in every state, except the last. The agent’s objective is to predict the next
observation, which is difficult without a memory equal to the length of the cycle. This task has been
used exclusively in benchmarking k-Markov methods, POMDPs, and predictive state representations
(Tanner and Sutton, 2005). The complexity of the task can be easily varied, and yet the determinism
ensures the variance does not introduce confounding factors. At each time step, we measure the
prediction accuracy for the next observation.

We also experimented with a stochastic prediction task, where correct prediction requires remem-
bering two independent observation’s from the past. In particular, the target on the next timestep is
probabilistically dependent on the one-dimensional observation 15 timesteps ago and 30 timesteps
ago. The dynamics are summarised in Table 1, in Appendix D. For this problem, a cross-entropy loss
of 0.66 or higher indicates that the learned state did not capture the observation from either 15 or 30
steps in the past. If the state captures the observation from 15 time-steps ago the cross entropy loss is
about 0.51. Optimal performance in this problem results in a cross-entropy loss is about 0.46. Like
Cycle World, this Stochastic World requires a long and detailed memory of past observations, but the
stochastic nature of the target pose an additional challenge.

Real DataSets We also performed experiments on two fixed datasets, to gain insights into how
each method performed on better known benchmark tasks. In both cases the data was processed and
performance evaluated in an online fashion. The first problem is Sequential MNIST. The objective is
to classify numerical digits based on a stream of pixel inputs. On each timestep the input is one row
(1x28) of the image, and the target is the label of the image. We used an RNN architecture with 512
hidden units as in previous work (Arjovsky et al., 2015). It is not possible to predict the target image
base on a few samples, so we wait until 15 steps (corresponding to 15x28 pixels) to begin measuring
the error. Here, we report these incorrect predictions for the last 15 time-steps for every image. We
ran this on 1000 images, which correspond to 28000 steps.

Finally, we also include results on a a character prediction problem called Penn Tree Bank dataset.
This problem is relevant because language modelling remains an important application of recurrent
learning systems, and robust performance on this dataset can provide insight into the utility of our
new method in application. We used a vocabulary size of 10000. The Target Loss function used here
is a weighted cross-entropy loss for a sequence of logits. We used an LSTM with 200 hidden nodes
as this architecture was found to perform well in previous work (Zaremba et al., 2014).

Comparison to T-BPTT We compare FPP to T-BPTT for varying truncation levels. For all the
algorithms, we used a constant buffer size of 100 and the trajectory length T for both T-BPTT(overlap
and no overlap versions) and FPP. All algorithms use O(7") computation per step.

We first compare the performances of FPP and T-BPTT on Cycleworld with varying p. We expect
T-BPTT to degrade with T less than the dependence back in time (the length of the cycle p); we
therefore test both 7' = p and T' = p/2 for increasing p. To make the results comparable across p, we
report performance as the ratio to a simple baseline of predicting O at every time step. From Figure 2,
we can see that FPP is more robust to 7', whereas T-BPTT with 7' = p/2 performs poorly even when
given more data (Figure 2(b)). In early learning, with fewer samples, FPP has an even more clear
advantage. Even though T-BPTT can eventually learn optimal predictions for 7' = p, it takes longer
than FPP which learns near optimal predictions in early learning (Figure 2(a)).
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We additionally compare FPP and the two variants of T-BPTT across all four problems, under different
settings of 7', shown in Figure 3. Across all problems, FPP outperforms the other two for every T,
except ' = 1 in CycleWorld where all three methods perform similarly. The performance of FPP is
notably better for smaller 7', as compared to T-BPTT. For example, in Figure 3(b) 20-BPTT has a
high loss and is unable to learn both the dependencies, whereas FPP with T=20, performs almost as
well as 40-BPTT. Similar conclusions can be made for 7" € {3,5} in (a), T € {10, 15,20, 30} in (b),
T e€{7,14,21,28} in (¢c)and T € {1,5,10,20} in (d).

p-CycleWorld p-CycleWorld
1.0 T-BPTT(T=p) 10 T-BPTT(T=p)
T-BPTT(T=p/2) . T-BPTT(T=p/2)
—— FPP(T=p) —— FPP(T=p)
081 . FPP(T=p/2) 081 FPP(T=p/2)
Ratio Ratio
Error with 06 Error with 06
respect respect
to 0.4 to 04
Baseline Baseline
0.2 02 .
_-Lo
0.0 0.0
p=4 p=8 p=12 p=16 p=20 p=4 p=8 p=12 p=16 p=20
Cycle Length Cycle Length
(a) Early Learning (2500 steps) (b) Learning with More Data (15000 steps)

Figure 2: The ratio error of each of the algorithms with respect to the baseline of predicting 0 at every time step
is our measure of performance. For all the values of p, FPP seems to be more robust to T, especially with larger
p- The numbers are average over 30 runs with standard error bars.
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Figure 3: Average online performance for FPP (red), T-BPTT (orange) and No-Overlap T-BPTT (blue). Across
all the domains, FPP seems to be more robust to T, and it does much better than T-BPTT especially for small T.
The numbers are average over 30 runs with one standard error with (a) being run for 5000 steps, (b) for 10000
steps, (c) for 1000 images (28000 steps) and (d) for 5000 steps (5000 points in dataset, processed in order). FPP
at T = 20, 30, 40 reaches a final solution with optimal performance; it is only above the second line because the
plot shows average performance across all steps, rather than final performance.

Benefits of mini-batch updates and multiple updates per step One of the advantages of using
a buffer is the ability to perform mini-batch updates and multiple updates per step. We evaluate
the performance of FPP with and without state updates using M updates per step and a mini-batch
of size B. We show the performance with varying T'. To show the effect of multiple update, we
fix B and vary M € {1,2,4,8,16}. To show the effect of mini-batch update, we fix M and vary
B € {1,2,4,8,16}. We use a buffer size of 1000 and 10000 training steps.
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We also include FPP without state updating, to determine if the benefits of FPP are mainly due to
using a buffer rather than due to the new objective to learn explicit state variables. We particularly
expect FPP to outperform FPP without state updating under more updates per step, because we
showed converge for FPP on a fixed buffer whereas no such result exists for FPP without state
updating. Here, the buffer is not fixed, but performing more updates per step should move the FPP
solution closer to a stationary point of the current buffer.

Figure 4 (a) and (b) shows the effect of multiple updates and (c) and (d) the effect of mini-batch
updates. For both, increasing the number of updates and the size of the mini-batch improves
performance, except for a bit of overfitting we observed in Stochastic World for increasing updates
(B = 1, M = 16). However, in general, FPP can better take advantage of both multiple updates
and mini-batch updating. The most noticeable gaps are for 7' = 16 and 7' = 32 in StochasticWorld
and "= 1 and T' = 2 in CycleWorld. The theory suggests that more updates, even with T' = 1,
should allow FPP to converge to a reasonable solution. We test this on CycleWorld (with Figure 7 in
Appendix D), and find that for both larger mini-batch and number of updates FPP can get the error
down to zero, whereas FPP without state updating cannot.

101 7

101 T

9

Incorrect 8 Incorrect
Predictions Predictions
(%) °© (%)
. o FPP T
——- FPP without state updating 1
1 2 4 8 16
M B

(a) Multiple Updates in CycleWorld (B = 1) (c) Mini-batch Updates in CycleWorld (M = 1)

0.66

0.64
Cross
0.62

Entropy ’

0.60
Loss

0.58

0.56

(b) Multiple Updates in StochasticWorld (B = 1)  (d) Mini-batch Updates in StochasticWorld (M = 1)

Figure 4: The performance for increase number of updates (with mini-batch of B = 1) and increasing mini-batch
size (with number of updates M = 1). The numbers are average over 30 runs with 10000 training steps. The
solid line is FPP and the dashed line is FPP without state updating.

6 CONCLUSION

The main objective of this paper is to reformulate RNN training to explicitly learn state variables. In
particular, the goal is to investigate methods that can better distribute computation, and improve state
updating without having to compute expensive—and potentially unstable—gradients back in time for
each state. We introduce a new objective to explicitly learn state variables for RNNs, which breaks
gradient dependence back in time. The choice of 7" to compute gradients back in time is used only to
improve training speed, rather than to effectively approximate gradients. We found that our algorithm,
called FPP, was indeed more robust to 7, than truncated BPTT was to its truncation level. We proved
that our algorithm converges to a stationary point, under a fixed buffer, and so is a sound approach
to using a buffer to train RNNs. Further, we chose simple optimization choices in this work; there
are clear next steps for benefiting more from the decoupled update, such as by parallelizing updates
across state variables. Overall, this work provides evidence that FPP could be a promising direction
for robustly training RNNs, without the need to compute or approximate long gradients back in time.
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A ALGORITHM DETAILS

The pseudocode for Fixed Point Propagation is presented in Algorithm 1.

Algorithm 1 Fixed Point Propagation (FPP)

Input: a truncation parameter T’
Initialize weights W and 3 randomly
Initialize state s < 0 € R
Initialize an empty buffer B of size N
fort < 1,2,...do
if B is full then
Remove the oldest transition
end if
Observe oy, y¢, and compute s; = fw(S¢—1,0¢)
Add (s, 0¢,y:) to buffer B
if t >= T then
Sample a trajectory of length 7" from the buffer: (s;—7,0;,_7,...,8;,0;,¥;)
Update s;_1,s;, W and 3 using Equation (7)
Update s;_7 and s; in the buffer
end if
end for

B FULL PROOFS

B.1 CONVERGENCE ON A FIXED BUFFER

At first glance, the update (9) is different than the update in Ghadimi et al. (2016, p. 276). Nevertheless,
the following lemma guarantees that they are indeed the same.

Lemma 1. Let f be L or a stochastic sample of L and let « > 0. Write x = (W, 3, S). Then

arg min {(Vf(x),u) + i”x - u||2} = ar;genclin {llu—(z—aVf()|*} =T(z—aVf(z)).

uelC

Proof. The proof is a straightforward calculation.
argmin {[[u — (@ — 0V (@)][*} = argmin {|u — * + 2|V (@) + 2fu — 2,0V F ()}
ue ue

— argmin {|[u — |* + 2a(u, V f(z))}
ueC

= argmin {(V1(a). 00 + oLl - ul?}

uelC 2a
O

Our goal is to apply Corollary 3 of Ghadimi ez al. (2016, p. 282). We must show that Vg is Lipschitz
on C and demonstrate that Assumption A1 in Ghadimi et al. (2016, p. 268) holds.

12
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Lemma 2. VL is Lipschitz on C.

Proof. A function is Lipschitz if it gradient is bounded. Since L is smooth and C' is compact
(continuous functions on compact sets are bounded), this lemma follows. ]

Lemma 3. V Ly, is an unbiased estimate of V L, where k ~ uniform-(T,n).

Proof. The terms in V Lj, corresponding to the gradients of W and 3 are exactly Vw.L and VgL in
expectation, given that k& ~ uniform-(7', n).

Let us consider the gradient elements corresponding to the parameters sg.,. For shorthand, define
la:b] :={a,a+1,--- ,b—1,b}. Define Py :=[0:n—T],P, := [T : n]. If j € Py, then s;
predicts future states. If s; € P, then s; is predicted by other states in the regularizer terms of L.
Note that Py and P, are not disjoint. First, we calculate.

n—%"—i—l (v§j+T£B(§j+T; Yj+r) — A(Sj47 — §j+T))TVS_7. s; ifjePRyn PlC
— s —8) ifjePS NP
Vs, L(W,3,8) == q 777 \(55 — 85) + (Ve a(8j415 yjer) — AM(Sjar — 8j41)) ' Vs, 85]
ifje PhN Py
0 ifjePSnPE

IfjefPon Plc, then s; does not show up as the target (i.e., the term that is not §;) in any regularizer
term of L. Hence, Vs, Ly, is zero with probability 1 — ﬁm, and is (Vs,, . £a(8;4+1:yj+1) —
)\(Sj+T — éjJrT))TVsj éj with probability n%TJrl

Ifje POE N Py, then s; only shows up as a target in a regularizer term, so Vs, Ly, is zero with

probability 1 — ﬁ and is otherwise ﬁ)\(sj —§j).
If j € Py N Py, then Vg, Ly, is zero with probability 1 — ﬁ A(s; — §;) with probability ﬁ
and (Vs £a(811;Yj417) — A(Sjtr — 8;47)) " Vs, 8; with probability —f—.
The case for j € PS N PP is trivial. Consequently, E[Vs,Li] = Vg, Lforall j € {0,--- ,n}.
O

Lemma 4. The variance of V Ly, is bounded on C.

Proof. This follows because VL and V L are both smooth functions on a compact set C, and thus
bounded. O
Theorem 1. Let D be a Lipschitz constant of VL(W, 8, S). Define probability mass functions

ar — Da?

Pulh) = —o Dok

Zj:l a;j — Daoj

for each N € N. Let R be distributed according to Py. Assume oy = % for all t and that we
perform N stochastic updates. Write tg = (W g, Bg,Sgr). Then

E [;R IMervLE)] =0 ().

Proof. The gx r (defined in Ghadimi et al. (2016, p. 271, 274)) in Corollary 3 of Ghadimi e? al.
(2016, p. 282) corresponds in our case to the following.

L - T
IX.R = an <;LR argmm{(Vf(m),u)—i— Za”l ul| })

ueC
1

= L (en — D(er — anVL(za).
QR

13
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In the last line, we use Lemma 1. Since we project based on squared norm distance in (8) (corre-

sponding to w(z) = %||#||3 in Ghadimi et al. (2016)), the ov in Ghadimi et al. (2016, p. 271) (not our

step-size o) can be set to 1.

After applying our Lemma 2, Lemma 3, and Lemma 4, we have from Corollary 3 of Ghadimi et al.
(2016, p. 282) that

B [ ITon - anYLien)) - oel?| =0 (5)-

The only thing left to check is that T'(x g — agrVL(zgr)) — xr = T'(VL(xRr)).

INaxgr — arVL(zRr)) —zr = argncﬂn {Hu — (zr — ozRVL(xR))HZ} — TR
ue

= argmin {|lu — VL(zg))|*}
ueC

O
B.2 RECOVERY OF RNN SOLUTIONS
Recall our goal is to compare to the RNN solutions of (10).
E(W,B,50) = > La(fw(--- fw(fw(s0,01),02), - ,0:);¥:) (10 revisited)
i=1

in E(W
ﬁ%{lso ( 7/6750)7

Let us also write a constrained version of the above problem, which we will use in the analysis of
FPP.

n
Epp(W, 8,50, - ,8n) = > Lp(fw(si-1,0:);y:) (12)
i=1
st.V1<i<n,fw(si—1,0;) =s;
min  Fr,,(W,3,80, - ,Sn
W.3,50.n fpp( B, so )

The idea is that FPP can be viewed as a way to solve the problem (12) and thus (10) through quadratic
regularization.

We will use sg., as shorthand for {sg, - - - , s, }, which in the main paper we labeled as S, but for this
proof it will be convenient to use explicit variables. Define the feasible set of (12) as

Q:={(W,B,50m): WER";s; e R BER"VI<i<n,s; = fw(si—1,0:)}.
Proposition 1. Let (W*, 3% s}) be a local min of (10). For 1 < i < n, define recursively
si = fw=(si_1,0;). Then (W*, 3" s{.,.) is a local min of (12).

Let (W™, B%,s§.,,) be a local min of (12). Then (W*, 3%, s8) is a local min of (10).

Proof. First, let N C RTP** be a neighbourhood of (W*, 3", s%) such that V(W, 3,s¢) € N, we
have

E(W*a ﬁ*v SS) < E(W7 ﬂa SO)'
Without loss of generality, we may take /N to be open. Otherwise, by definition of a neighbourhood,

we may take a smaller open set around (W*, 3", s#) by definition of a neighbourhood and call that
set IV.

Let s} be defined as above. Define M := N x R™*_ which is an open neighbourhood of (W*, 3", s%)
since N is open. Let (W, 3,s0.,) € M N . Note that (W, 3,s7) € N. By definition of {2, we
have that fw (s;—1,0;) =s;. Hence, E,,(W, 8,s0.n) = E(W, 3,s0).

14



Under review as a conference paper at ICLR 2020

By definition of (12), (10), we have E(W™*, 8%, s§) = Ef,,(W*, 3%,s{.,,). Finally,
EfPP(W*vﬂ*v Som) = E(W™,8%,55) < E(W, B,s0) = EfPP(W7 B,80:n)-
For the second part of the proof, assume (W*, 3", s{..) is a local min of (12), meaning there is a
neigbourhood M C R¥+b+(n+Dk of (W* 3% s¥ ) such that for every (W, 3,s0.,) € M NQ,
EfPP(W*7 /B*a ngn) S Efpp(wv 16’ SO:TL)'
Similarly, without loss of generality, we can assume that )M is an open ball, so we may write for
some € > 0, M = B.(W*, 8%,s{.,.).

We will construct an open set N C R¥*+b+k guch that (W*, 3%, s%) is a local min with respect to N.
Define the projection 7 onto the first w + b + k indices. Define N := (M N Q). Let us show that
N is open.

We will write fw (So:n—1,01:n) to mean {fw(s0,01), -, fw(fw(---(s0,01),02), - ,0,))}.
We can write N as

N ={(W,B,s0) : (W,B,80.n) € Q2N B(W™,8%,85...)}
= {(W75750) : (W7167SO7fW(SO:n—170127L)) € BE(W*HB*?SS:TL)}
= {(Wvﬂ’so) : H(W’ﬂvsmfW(SO:nflvoltn)) - (W*7ﬂ*’56n)H < 6}

On the second line, we used the fact that s; = fw(s;—1,0;) in . Since the norm and f are
continuous and (—oo, €) is open, we have that IV, a continuous preimage of an open set, is open.

Now, let (W, 3,s0) € N such that 3 sy, with (W, 3,s¢.,) € M N Q.

E(W*n@*;sg) = Epr(W*wg*asgm) S EfPP(WHB’SOi") = E(WHB?SO)
The claim follows. 0

Proposition 2. The first order KKT equations for (10) and for (12) are the same.

Proof. Given (W*, 3" s%), for 1 <4 < n define §; := fw(5;—1, 0;), where 5 := s. If we write
fwrGroue) g instance, this is taken to mean the gradient of fw+(8;, 0;41) with respect to the

851
function arguments corresponding to §;. Furthermore, when writing Ofw($0541) e only mean

the gradient with respect to the parameters of the outer fw-, and not with respect to any of the
parameters of ;.

Using the chain rule for the first and third equations below, the first order KKT conditions for (10)
are given by

aE(W*aIB*vsg) — 8€ﬁ* (fW* (56701);?/1) 8fW* (58701)

TW O w W + (13)
7§ g (fw+(55,0541);Yj+1)
~ Ofw
dfw=(35,05+1) L dfwe (3,0041) | Ofwe (5i-1,00)
( ow ;E D81 oW
=0
OE(W*,B%,s8) = 0g(fw-(5i-1,0:):¥:)
i S R =0 14
33 ; B (14)
3E(W*a,3*753) _ agﬁ*(fW*(Sé,m);zn)Jr Sagﬁ*(fW*(gi,OiH);yiH) (15)
D50 O fw o~ dfw
ﬁ 5fw*(§lvol+1)> ) Ofw~(sg,01)
Pl Os; Osg
=0
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The Lagrangian for (12) is

Lrop(W, B,80:n) = Zéﬁ(fw(si—hoi);w) - )\iT(fW(SFhOi) —8i),
i=1

(16)

where \; € R for 1 < i < n are Lagrange multipliers. We define )\ := 0 for convenience. The

KKT equations for (16) are

agfpp(W*>ﬂ*a So:n) _ i aeﬁ*(fw*(sfflvoi)ﬁ’i) Ofw(s}_1,0i)

oW p Ofw oW
dfw-(sj_y,0:)
_ )\T—7 =0
! oW
agfpp(w*7ﬂ*’ Sazn) — i 86,3* (fW* (52117 0L)7 yi) =0
98 08
) AP it =mn
agfpp(W*aﬁ 758:71) =T+ L= (fw=(87,0j+1)iU5+1) AT O fwr(s},05+1)
s, ) ofw J+1 s,
if0<j<n
=0
First, let us find a closed-form expression for ;.
Lemma 1. Let 0 < j < n. Then
n—1 % % *
A Z I (fw=(s],0i41); Yi+1) H dfw: (s}, 0141)
J = O fw . Os;

a7

(18)

Proof. We proceed by induction. The base case and the case j = n — 1 are trivial. Assume the claim
is true for m + 1 > 0. We will show the claim for 7 = m. Using the KKT equations (17) and the

induction hypothesis,

AT .= 8€ﬁ* (fW* (S:naom—&-l);ym—i-l) Y 0 fw+ (an,om_;'_l)
m afw 7n+1 asm
_ [ 9 (fw= (85, Om+1); Ym+1) + Tf g (fw~(s],0i+1); Yi+1)
Ofw i=m+1 dfw
ﬁ Ofw- (s}, 0041) | Ofw- (S5 Om1)
Os Osm,
l=m+1
_ Ol (fw+ (850, Om+1); Ym+1) Ofwe (85, Omi1)
dfw Osm,
nz—:l 9l (fw- (87, 0it1); Yit1) ﬁ fw= (s}, 0141) Ofw= (8}, Om+1)
i=mt+1 Ofw ettt Osy IS,
- _ nil g+ (fw(8],0i+1); Yi+1) ﬁ O fw-(s],0141)
i=m afW I—m, 851
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Now, we will show that the sets of equations are the same. First, it is clear that the two equations
involving gradients of 3 in (13) and (17) are the same given that the constraint must be satisfied in
(17). Now consider the equations involving gradients with respect to W.

OLspp _ i Olg~(fw~(s;_1,0i);¥i) afw*(s:—l70i)+

IW =1 afW oW
Zn: "z’:l Olg-(fw=(s},0j+41); Yjt1) ﬁ dfwe(sf,0101) | Ofwe(si_1,0:)
; ' O fw | . i
=t 7= =1
_ N~ O (fw-(85-1,05)595) 8fw*(s;%_17oj)+
j=1 dfw OW
— Z Ol (fw= (], 0541); Yj+1) ﬁ dfw-(s},0111) \ Ofw(s]_1,04)
Jj=1 \i=1 Ofw e Os; oW
_ Ol (fw-(s5,01); y1) Ofw- (s, 01) N ’f D (fw(s7,0541)i 9541)
v w3 Ofw

Ofw+(s},0j+1) I Ofw-(sf,0141) | Ofw=(si_1,0i)
< w21, oW

i=1l=1
=0.

By substituting in the constraint equations s} = fw=(s}_;, 0;), this recovers exactly the gradient
with respect to W in (13).

Finally, consider the gradient with respect to sg.

8$fPP(W*716*aSS:n) _ )\T+ <5€ﬂ*(fW*(SS,01);y1) >\T> aJCVV* (53701)
- 0 1

850 6fw 850
= Ip- (fw=(s5,01); 1) n ni:l g (fw~(s],0i41); Yi+1)
ofw p ofw
f[ afw*(sz:ozﬂ)) ) Ofw- (5, 01)
Pl Os; Osg
=0.
This matches the corresponding equation in (13). O

Proposition 3. Let (W*, 3" st ) be a local min of (12). Write the constraints of (12) as a vector:
MW, s0:n) == [[(fw(so,01) —s1)T -+ (fw(Sn—1,0n) —sn)7] (19)

Index each element of h by h;. Then the vectors Vh;(W*,s{.,,) are linearly independent.

Proof. In the following, we will write [Q]’ to mean the derivative of the [-th component of g with

respect to the i-th component of ;. For compactness, write (i) := fw-+(s;_;,0;) —s}. We can
write the Jacobian VA(W™, s§.,,) as

17
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(oo .. 2lgMh  2lgM: .. dlgMh .. g
oW1 OWw a:;% 8@’{ osk
B%gx(;slz)l]’“ o aﬁ%m a[%@l)]k o a[%u)'] o a[%(l)]k
V(W™ 80.,,) = | olg@l 0le@h  o@h . ole@L . oG
oW T oW 951 sk sk
olamle . Oe(mk  Ole(]x . Oe(mlk . Olg(n)k
| oWl OWw st Osk osk

We will show that the rows of VA(W™*,s;. ) are linearly independent. To this end, let \;; € R for
ie{l,---,n},je{l, -, k} besuch that:

k

D> A Vifwe(s;_1,0:) —s7]; = 0.

j=1i=1

In particular, for 1 <a <n,1 <b <k,

kK n k n
a[va*(S;‘—l’OZ - 7—1 fW*( 7, 1707/)] 7
D03 A S 5y (e PR ) o
j=11i=1 Jj=11i=1
b fW* Sav 0a+1)]
- 1a<n Z )\a+1,] asa+l - )\ab (21)
=0 22)

By setting a = n, we have that \,,;, = O forall 1 < b < k. Setting a = n — 1, we similarly have
that A\,,_1;, = 0. Proceeding in this fashion, we have that A\,, = Oforalll <a <n,1 <b < k.
Actually, we did not at any point use the fact that (W*, 3%, s§. ) is a local min, so that the constraint
gradients are linearly independent everywhere, and in particular at (W*, 8%, s{.,.). O

Theorem 2. Assume we have a positive, increasing sequence {\;,} — 00, a non-negative sequence
{ex} — 0, and a sequence of points {( Wy, By, Sk)} such that ||VL(Wy, B, Sk); M) || < e for

gl 1\ A
L(Wk, By Sk); Ak) = %Z (fw(si—1,0);y:) + EkHSi — fw(si-,0)[3 (D)

Assume further that {(Wy, By, Sy)} has a convergent subsequence {(Wy,, By, Sk,)} with limit
(W*,8%,S*). Then (W*,3",S*) is a KKT point of the constrained FPP objective (see (12)) and
(W*,8%,88) is a KKT point of the RNN objective (10). Further, if (W*, 3", S*) is a local min of
the constrained FPP objective, then (W*, 8%, s8) is a local min of (10).

Proof. By Proposition 3 and Proposition 2.3 from Bertsekas (1982), We have the existence of a
Lagrange multiplier vector A such that

VEfPP(W*’ 16*? Sszn) - Vh(W*v ngn))‘ = Oa
(W, s5.,,) = 0,
where h(W*,s§.,.) is as in Proposition 3. Hence, (W*, 3%, s;.,,) is a KKT point of (12).
By Proposition 2, (W*, 8%, s§) is a KKT point for (10). Finally, if (W*, 3%, s{.,,) is a local min of
(12), then by Proposition 1 we have that (W*, 3% s#) is a local min of (10). O
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C PARAMETER STUDY

We investigate the sensitivity of FPP to its two key parameters: the length of the trajectory 7', and
the buffer size N. Overall, the losses on y-axis of Figure 5 show that FPP is robust to buffer size
and truncation length. As expected, for very small T, performance degrades, but otherwise the move
from T= 10 to T= 50 does not result in a large difference. The algorithm was quite invariant to
buffer size, starting from a reasonable size of 100. For too large a buffer with a small number of
updates, performance did degrade somewhat. Overall, though, across this wide range of settings, FPP
performed consistently well.

10-CycleWorld

8

6
Incorrect
Predictions
%) 4

2

0

— Buffer Length=100
Buffer Length=1000
— Buffer Length=10000

T=1

T=5 T=10 T=15
Truncation parameter

(a) 10-CycleWorld

T=50

StochasticWorld

Cross 058
Entropy

Loss 056

054

052

— Buffer Length=100
Buffer Length=1000
— Buffer Length=10000

T=15 T=20 T=30
Truncation parameter

(b) StochasticWorld

Figure 5: Sensitivity to buffer length and trajectory length in FPP, for buffer sizes 100, 1000 and 10000 and
truncations of 1, 5,10,15 and 50.

We also investigated how performance changes when changing A. Throughout all previous exper-
iments, we simply set A = 1, to avoid unfairly tuning our method to each problem. Interestingly,
tuning A does enable further performance improvements, though the algorithm worked well for quite
a large range of \.

10-CycleWorld StochasticWorld

0.62

T=10

0.60

Incorrect
Predictions
(%)

Cross 038
Entropy

L
0SS | oo

0.54

Lambda

(b) StochasticWorld

(a) 10-CycleWorld

Figure 6: Sensitivity of Lambda for various values of T. For small T, higher lambda works better suggesting the
impact of propagation of state values across the buffer.

D EXPERIMENTAL DETAILS

The dynamics for the Stochastic World environment are in Table 1.

P(Y; =10i1,0i1,) | Or_q, | O_myy

50% 0 0
100% 1 0
25% 0 1
75% 1 1

Table 1: The conditional probability of the target output given the past observations.
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o] T PP
FPP without state updating
Incorrect 8
Predictions ¢

), T

i 2 4 8 16
M

Figure 7: The performance of FPP and FPP without state updating with 7" = 1, B = 16 after 50000 training
steps, for varying M. This result highlights that FPP can better take advantage of more updates and larger
mini-batches, with its sound updating strategy on a buffer.

For all experiments, we use RMSprop optimizer and the learning rate is chosen over the set
{0.0001, 0.0003, 0.001, 0.003,0.01,0.03} based on the average accuracy/loss. The details of each
task are provided below:

D.1 CYCLEWORLD

Network Type = simple RNN
Hidden Units = 4

D.2 STOCHASTIC WORLD

Network Type = simple RNN
Hidden Units = 32

D.3 SEQUENTIAL MNIST

Network Type = simple RNN

Hidden Units = 512

Image size = 784 pixels

Input dimension = 28 pixels

Number of Steps = 28000 (1000 images of 28 steps)

D.4 PTB

Network Type = LSTM

Hidden Units =200

Vocabulary Size = 10000

Embedding Size = 200

Number of Steps = 5000 (5000 samples in the dataset)
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