
Under review as a conference paper at ICLR 2020

RE-EXAMINING LINEAR EMBEDDINGS FOR
HIGH-DIMENSIONAL BAYESIAN OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Bayesian optimization (BO) is a popular approach to optimize resource-intensive
black-box functions. A significant challenge in BO is to scale to high-dimensional
parameter spaces while retaining sample efficiency. A solution considered in pre-
vious literature is to embed the high-dimensional parameter space into a lower-
dimensional manifold, often a random linear embedding. In this paper, we identify
several crucial issues and misconceptions about the use of linear embeddings for
BO. We thoroughly study and analyze the consequences of using linear embed-
dings and show that some of the design choices in current approaches adversely
impact their performance. Based on this new theoretical understanding we pro-
pose ALEBO, a new algorithm for high-dimensional BO via linear embeddings
that outperforms state-of-the-art methods on a range of problems.

1 INTRODUCTION

Bayesian optimization (BO) is a robust, sample-efficient technique for optimizing resource-intensive
black-box functions (Mockus, 1989; Jones, 2001). BO has been successfully applied to diverse ap-
plications, ranging from automated machine learning (Snoek et al., 2012; Hutter et al., 2011) to
robotics (Lizotte et al., 2007; Calandra et al., 2015; Rai et al., 2018). One of the most active topics
of research in BO is how to extend current methods to higher-dimensional spaces. A common frame-
work to tackle this problem is to consider a high-dimensional BO (HDBO) task as a standard BO
problem in a low-dimensional embedding, where the embedding can be either a (typically random)
linear projection or nonlinear, e.g., via a multi-layer neural network (see Sec. 2 for a full review).
An advantage of this framework is to explicitly decouple the problem of finding low-dimensional
representations suitable for optimization from the actual optimization technique.

In this paper we study the use of linear embeddings for HDBO, and in particular we re-examine
prior efforts to use random linear projections. Random projections are attractive for BO because,
by the Johnson-Lindenstrauss lemma, they can be approximately distance-preserving (Johnson &
Lindenstrauss, 1984) without requiring any data to learn the embedding. Random embeddings come
with several strong theoretical guarantees, but have shown mixed empirical performance for HDBO.

The contributions of this paper are: 1) We provide new results that identify why linear embeddings
have performed poorly in HDBO. We show that existing approaches produce representations that
cannot be well-modeled by a Gaussian process (GP), or representations that likely do not contain
an optimum (Sec. 4). 2) We construct a representation with better properties for BO (Sec. 5): we
improve modelability by deriving a Mahalanobis kernel tailored for linear embeddings and adding
polytope bounds to the embedding, and we show how to maintain a high probability that the em-
bedding contains an optimum. 3) We show that using this representation for BO outperforms a wide
range of previous approaches for HDBO, on test functions up to D = 1000 (Sec. 6). These include
the first results for HDBO with black-box constraints.

2 RELATED WORK

There are generally two approaches to extending BO into high dimensions. The first is to produce
a low-dimensional embedding, do standard BO in this low-dimensional space, and then project up
to the original space for function evaluations. The foundational work on embeddings for BO is

1

Under review as a conference paper at ICLR 2020

REMBO (Wang et al., 2016), which creates a linear embedding by generating a random projection
matrix. Sec. 3 provides a thorough description of REMBO and several subsequent approaches based
on random linear embeddings (Qian et al., 2016; Binois et al., 2018; Nayebi et al., 2019). If deriva-
tives of f are available, the active subspace method can be used to recover a linear embedding (Con-
stantine et al., 2014; Eriksson et al., 2018), or approximate gradients can be used (Djolonga et al.,
2013). BO can also be done in nonlinear embeddings through VAEs (Gómez-Bombarelli et al.,
2018; Lu et al., 2018; Moriconi et al., 2019). An attractive aspect of random embeddings is that they
can be extremely sample-efficient, since the only model to be estimated is a low-dimensional GP.

The second approach to extend BO to high dimensions is to make use of surrogate models that better
handle high dimensions, typically by imposing additional structure on the problem. Work along
these lines include GPs with an additive kernel (Kandasamy et al., 2015; Wang et al., 2017; Gardner
et al., 2017; Wang et al., 2018; Rolland et al., 2018; Mutný & Krause, 2018), cylindrical kernels (Oh
et al., 2018), or deep neural network kernels (Antonova et al., 2017). Random forest is used as the
surrogate model in SMAC (Hutter et al., 2011). These methods produce trade-offs between sample
efficiency of the model and the ability to effectively optimize the acquisition function.

Here, we focus on the embedding approach and in particular the use of linear embeddings for HDBO.
Without box bounds, REMBO comes with a strong guarantee: with probability 1, the embedding
contains an optimum (Wang et al., 2016, Theorem 2). However, if function evaluations are limited
to the box bounds, as is typical in BO problems, REMBO requires a collection of heuristics for
which there are no longer guarantees on performance. While REMBO can perform well in some
HDBO tasks, subsequent papers have found it can perform poorly even on tasks with a true low-
dimensional linear subspace (e.g. Nayebi et al., 2019). In this paper, we analyze the properties of
linear embeddings as they relate to BO, and show how to improve the representation of the function
we seek to optimize.

3 PROBLEM FRAMEWORK AND REMBO

In this section we define the problem framework and notation, and then describe BO via random
linear projections (REMBO)—a promising method for HDBO—along with known challenges and
follow-up work that has been proposed to address these issues.

Bayesian optimization We consider optimization problems of the form minx∈B f(x) where f is
a black-box function and B are box bounds. We assume gradients of f are unavailable. The box
bounds on x specify the range of values that are reasonable or physically possible to evaluate. For
instance, Gramacy et al. (2016) use BO for an environmental remediation problem in which each xi
represents the pumping rate of a particular pump, which has physical limitations. The problem may
also include nonlinear constraints cj(x) ≤ 0 where each cj is itself a black-box function. BO is a
form of sequential model-based optimization, where we construct a surrogate model for f and use
that model to identify which parameters x should be evaluated next, according to an explore-exploit
strategy. The surrogate model is typically a GP, f ∼ GP(m(·), k(·, ·)), with mean function m(·)
and a kernel k(·, ·). Under the GP prior, the posterior for the value of f(x) at any point in the space
is a normal distribution with closed-form mean and variance. Using that posterior, we construct an
acquisition function α(x) that specifies the value of a function evaluation at x, such as Expected
Improvement (EI) (Jones et al., 1998). We find x∗ ∈ argmaxx∈B α(x), and evaluate f(x∗).

The GP is useful for BO because it provides a well-calibrated posterior in closed form. With typical
kernels and acquisition functions, α(x) is differentiable and can be effectively optimized. However,
with typical kernels like the ARD RBF kernel, there are significant limitations. GPs are known to
predict poorly in high dimensions, which for a GP is D larger than 15–20 (Wang et al., 2016; Li
et al., 2016; Nayebi et al., 2019). This prevents BO from being a useful tool in high dimensions.

In HDBO, the objective f : RD → R operates in a high-dimensional (D) space, which we call the
ambient space. When using linear embeddings for HDBO, we assume there exists a low-dimensional
linear subspace that captures all of the variation of f . Specifically, let fd : Rd → R, d� D, and let
T ∈ Rd×D be a projection matrix from D down to d dimensions. The linear embedding assumption
is that f(x) = fd(Tx) ∀x ∈ RD. T is unknown, and we only have access to f , not fd. We assume
without loss of generality that the box bounds are B = [−1, 1]D; the parameter space can always be
scaled to these bounds.

2

Under review as a conference paper at ICLR 2020

REMBO: Bayesian optimization via random embedding REMBO generates a random projec-
tion matrix A ∈ RD×de with each element drawn independently from N (0, 1) to specify a de-
dimensional embedding. BO is done in the embedding to identify a point y ∈ Rde to be evaluated,
which is given objective value f(Ay). The embedding dimension de should satisfy de ≥ d for the
REMBO guarantee of containing an optimum to hold.

The main challenges for using REMBO come when dealing with box bounds in the ambient space.
We may select a point y in the embedding to be evaluated and find that its projection to the ambient
space, Ay, falls outside B. The first challenge this poses is a theoretical challenge: Rde is guaran-
teed to contain an optimum, but that optimum is not guaranteed to project up to B. When function
evaluations are restricted to the box bounds, the embedding may not contain an optimum—it is not
difficult to construct examples of this. The second challenge posed by box bounds is the practi-
cal challenge of how function evaluations should be done for points that project outside B. Here
REMBO introduces three heuristics. First, the embedding is given box bounds [−

√
de,
√
de]

de . BO
will only select points within those bounds to be projected up and evaluated. Second, if a point y
in the embedding projects up outside B, then it is clipped to B. Let pB : RD → RD be the L2

projection that maps x to its nearest point in B. A point y in the embedding is given objective value
f(pB(Ay)), which can always be evaluated. Note that clipping to B renders the projection of y to
the ambient space a nonlinear transformation whenever Ay /∈ B. Third, the optimization is done
with k=4 separate projections, to improve the chances of generating an embedding that contains an
optimum inside [−

√
de,
√
de]

de . Since these embeddings are independent, no data can be shared
across them.

Extensions of REMBO Binois et al. (2015) consider the issue of non-injectivity, where the L2

projection causes many points in the embedding to map to the same vertex of B. They define a
warped kernel that reduces non-injectivity. Binois et al. (2018) consider the issue of setting bounds
on the embedding. They define a projection matrix B ∈ Rd×D that maps from the ambient space
down to the embedding, and replace the L2 projection with a projection γ that maps y to the closest
point in B that satisfies Bx = y. The γ projection resolves the core challenge of REMBO related
to setting bounds in the embedding: we can restrict the optimization in the embedding to points for
which ∃x ∈ B s.t. Bx = y, and so heuristic box bounds in the embedding are no longer required.
The γ projection projects to the same points on the facets of B as the L2 projection.

Binois (2015) studies different choices for the projection matrix and shows that BO performance
can be improved for small d by sampling each row of A from the unit hypersphere Sde−1. If
z ∼ N (0, Ide

), then z
||z|| is a random sample from Sde−1, so this amounts to normalizing the rows

of the usual REMBO projection matrix.

HeSBO (Nayebi et al., 2019) is a recent extension of REMBO that avoids clipping to B by changing
the projection matrix A. In de = 1, it is easy to see that the projection matrix A = 1, which sets
every xi = y, is optimal. With this projection we can set bounds of [−1, 1] on the embedding and
there is no need for L2 projections because every point in the embedding will map to a point in
B. HeSBO extends this to de > 1 by setting each row of A to have a single non-zero element,
which is randomly set to ±1. The column with the non-zero value is chosen uniformly at random.
Thus, each parameter in the ambient space is mapped directly to a parameter in the embedding,
xi = ±yj , where j is sampled uniformly from {1, . . . , de} and ± is chosen uniformly at random.
The embedding is given box bounds of [−1, 1]de .

4 CHALLENGES WITH LINEAR EMBEDDINGS

Heuristics for handling box bounds when utilizing linear embeddings introduce several issues
that impact HDBO performance. We highlight one recent observation from Binois et al. (2018),
along with two novel observations about how existing methods can make it difficult to learn high-
dimensional surrogates.

Most points in the embedding map to the facets of B. Fig. 1 shows the probability that an
interior point in the embedding projects up to the interior of B. This is measured empirically by
sampling y uniformly at random from [−

√
de,
√
de]

de , sampling A with N (0, 1) entries, and then

3

Under review as a conference paper at ICLR 2020

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0
Branin function, d = 2

−1.4 −1.0 −0.5 0.0 0.5 1.0 1.4

−1.4

−1.0

−0.5

0.0

0.5

1.0

1.4

REMBO embedding, D = 100, de = 2

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0
Hartmann6 function, d = 6

−2 −1 0 1 2

−2

−1

0

1

2

REMBO embedding, D = 100, de = 6

Figure 2: A visualization of REMBO embeddings for two test functions. (Top left) The Branin
function, d=2, extended to D=100. (Top right) A REMBO embedding of the D=100 Branin func-
tion. (Bottom left) A center slice of the d=6 Hartmann6 function, similarly extended to D=100.
(Bottom right) The same slice of a REMBO embedding of that function. The embedding produces
distortions in the function that render it difficult to model.

checking if Ay ∈ B. Even for small D, with de > 2 practically all of the volume in the embedding
projects up outside the box bounds, and is thus clipped to a facet of B.

1 2 3 4 5

Embedding dimension de

0.0

0.1

0.2

0.3

0.4

0.5

P
ro

b
a
b
il
it

y
p
ro

je
ct

io
n

sa
ti

sfi
es

b
ox

b
o
u
n
d
s D = 20

D = 100

D = 1000

Figure 1: The probability that a ran-
domly selected point in the REMBO
embedding satisfies the ambient box
bounds after being projected up.
For de > 2, nearly all points in
the embedding map outside the box
bounds.

This is an issue because it means the optimization will be
done primarily on the facets of B and not in the interior,
which will likely not even be reached in a typical BO random
initialization. We will see below that the function behaves
very differently on points projected to the facets. The prob-
lem cannot be resolved by simply shrinking the box bounds
in the embedding. Binois et al. (2018) provide an excellent
study of the issue of setting bounds in the embedding and
show that with the REMBO strategy there is no good way
to do this. The projection of B down to the embedding pro-
duces a geometric object called a zonotope, a star-shaped ob-
ject with up to 2

∑d−1
i=0

(
D−1

i

)
vertices (Ferrez et al., 2005).

Shrinking box bounds in the embedding cuts off the vertices
of the zonotope and increases the chance of not containing an
optimum.

Projection to the facets of B produces a nonlinear distor-
tion in the function. The function value at any point in the
embedding is measured as f(pB(Ay)) where, as described
above, most points are being mapped to a facet by pB. This
has a powerful, detrimental effect on the ability to model f in
the embedding. Fig. 2 provides visualizations of an actual REMBO embedding for two classic test
functions: the Branin (d=2) and Hartmann6 (d=6) functions, both extended to D=100 by adding un-
used variables. The REMBO embedding for the Branin function contains all three optima, however
there is visible distortion to the function caused by the the clipping to B. The embedding for the
Hartmann6 function is even more heavily distorted.

4

Under review as a conference paper at ICLR 2020

Even if the function is well-modeled by a GP in the true low-dimensional space, the distortion pro-
duced by the REMBO projection transforms it into one on the embedding that is not appropriate for
a GP. This can happen for any embedding strategy that cannot guarantee all points in the embedding
project into B. The distortion induced by mapping to the facet depends on the relative angles of
the facet and the true embedding. Projection to a facet essentially induces a non-stationarity in the
kernel: each of the 2D facets sits at different angles to the true subspace, and so the change in the
rate of function variance will differ for each. To correct for the non-stationarity, we would have to
estimate the true subspace T , which with d×D entries is not feasible for D large.

The idea behind using low-dimensional embeddings for HDBO is that it enables the use of standard
BO techniques on the embedding. However, from these results we see that for the REMBO projec-
tion with box bounds we cannot expect to successfully model the function on the embedding with a
regular GP. The problem is especially acute for de > 2 where, as shown in Fig. 1, nearly all points
in the embedding map to one of 2D facets.

Linear projections do not preserve product kernels. Although less visible than that produced by
the projection to the facets, there is also distortion to interior points just from the linear projection A.
The ARD kernels typically used in GP modeling are product kernels that decompose the covariance
into the covariance across each dimension. Inside the embedding, moving along a single dimension
will move across all dimensions of the true subspace, at rates depending on the angles between the
embedding and the true subspace. A product kernel in the true subspace will not produce a product
kernel in the embedding; we will see this more explicitly in Sec. 5.1.

Linear embeddings can have a low probability of containing an optimum. HeSBO avoids the
primary two challenges of BO in linear embeddings: all interior points in the embedding map to
interior points of B, and there is no longer any need for the L2 projection and thus no distortion
from projecting to facets. However, for de > 1 there is no guarantee that the embedding will contain
an optimum, and in fact the probability of containing an optimum can be quite low. Consider the
example of an axis-aligned true subspace: f operates only on some set of d elements of x, which
we denote I = {i1, . . . , id}. For d = 2 and de ≥ 2, there are three possible embeddings: xi1 and
xi2 map to different features in the embedding, xi1 = xi2 , or xi1 = −xi2 . These three embeddings
are visualized in Appendix A.1. In the first case the embedding successfully captures the entire
true subspace and we can expect the optimization to be successful. However, in the other two cases
the embedding is only able to reach the diagonals of the true subspace, which, unless f happens to
have an optimum on the diagonal, will not reach the optimal value. Under a uniform prior on the
location of optima, we can compute analytically the probability that the HeSBO embedding contains
an optimum (see Appendix A.1). The probability is independent of D, but is low for even moderate
values of d. For instance, with d = 6, de = 20 gives only a 44% chance of recovering an optimum.

Relative to REMBO, HeSBO improves the ability to effectively model and optimize in the embed-
ding, but reduces the likelihood of the embedding containing an optimum. Empirically, this trade-off
leads to HeSBO having better BO performance than REMBO. Like HeSBO, here we wish to elimi-
nate the L2 projection and thus improve our ability to model and optimize in the embedding. We will
show that this can be done while maintaining a much higher chance of the embedding containing an
optimum, which will further improve BO performance.

5 LEARNING AND OPTIMIZING IN LINEAR EMBEDDINGS

We now show how to overcome the embedding issues described in Sec. 4. Similarly to Binois et al.
(2018), we define the embedding via a matrix B ∈ Rde×D that projects from the ambient space
down to the embedding, and fB(y) = f(B†y) as the function evaluated on the embedding. The new
techniques we develop here are applicable to any linear embedding, not just random embeddings.

5.1 A KERNEL FOR LEARNING IN A LINEAR EMBEDDING

As discussed in Sec. 4, a product kernel over dimensions of the true subspace (ARD) does not trans-
late to a product kernel over dimensions in the embedding. However, stationarity in the true subspace
does imply stationarity in the embedding, and this result gives the appropriate kernel structure.

5

Under review as a conference paper at ICLR 2020

Proposition 1. Suppose the function on the true subspace is drawn from a GP with an ARD RBF
kernel: fd ∼ GP(m(·), kRBF(·, ·)). For any pair of points in the embedding y and y′,

Cov[fB(y), fB(y′)] = σ2 exp
(
−(y − y′)>Γ(y − y′)

)
,

where σ2 is the kernel variance of fd, and Γ ∈ Rde×de is symmetric and positive definite.

Proof. To determine the covariance in function values of points in the embedding, we first project
up to the ambient space and then project down to the true subspace:

fB(y) = f(B†y) = fd(TB†y).

Then,

Cov[fB(y), fB(y′)] = Cov[fd(TB†y), fd(TB†y)]

= σ2 exp
(
−(TB†y − TB†y′)>D(TB†y − TB†y′)

)
,

where D = diag
([

1
2`21
, . . . , 1

2`2d

])
. Let Γ = (TB†)>D(TB†). Because D is positive definite, it

follows that Γ is symmetric and positive definite.

This kernel replaces the ARD Euclidean distance with a Mahalanobis distance, and so we refer to
it as the Mahalanobis kernel. Similar kernels have been used for GP regression in other settings
(Vivarelli & Williams, 1999; Snelson & Ghahramani, 2006). This result shows that the impact of
the linear projection on the kernel can be correctly handled by fitting a de(de+1)

2 -parameter distance
metric rather than the typical de-parameter ARD metric. In Appendix A.2, we show that this kernel
produces significantly better predictions in linear embeddings than an ARD kernel.

5.2 AVOIDING NONLINEAR PROJECTIONS

The most significant distortions seen in Fig. 2 result from clipping projected points to B. We can
avoid this by constraining the optimization in the embedding to points that do not project up outside
the bounds, that is, B†y ∈ B. Let α(y) be the acquisition function evaluated in the embedding that
we wish to optimize. We select the next point to evaluate by solving

max
y∈Rde

α(y) subject to − 1 ≤ B†y ≤ 1. (1)

Note that there are no box bounds on the embedding. The constraints added to the acquisition func-
tion optimization form a polytope, which can be efficiently handled with off-the-shelf optimization
tools. Appendix A.3 provides visualizations of the embedding subject to these constraints.

5.3 THE PROBABILITY THE EMBEDDING CONTAINS AN OPTIMUM

Restricting the embedding with the constraints in (1) eliminates distortions from clipping to B, but
it also reduces the volume of the embedding and thus reduces the probability that the embedding
contains an optimum. To understand the performance of BO in the linear embedding, it is critical to
understand this probability, which we denote Popt.

Popt depends on where the optima are in the ambient space—for instance, an optimum at 0 will
always be contained in the embedding. Suppose the true subspace has an optimum at z∗, and let
O(T , z∗) = {x : Tx = z∗} be the set of optima in the ambient space. Let E(B) = {x : B†Bx =
x} be the points that can be evaluated from the embedding. If we have a prior over the locations of
optima (that is, over T and z∗) then we can compute Popt as:

Popt = EB,T ,z∗
[
1O(T ,z∗)∩E(B)∩B6=∅

]
. (2)

Importantly,O(T , z∗), E(B), and B are all polyhedra, so their intersection can be tested by solving
a linear program (see Appendix A.4). The expectation can be estimated with Monte Carlo sampling
from the prior over T and z∗ and from the chosen generating distribution of B.

For our analysis here, we give T a uniform prior over axis-aligned subspaces as described in Sec. 4,
and we give z∗ a uniform prior in that subspace. Under these uniform priors, we can evaluate (2) to

6

Under review as a conference paper at ICLR 2020

0 5 10 15 20

Embedding dimension de

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b

il
it

y
em

b
ed

d
in

g
co

n
ta

in
s

o
p

ti
m

iz
er

d = 2

REMBO

HeSBO

Hypersphere

0 5 10 15 20

Embedding dimension de

d = 6

0 5 10 15 20

Embedding dimension de

d = 10

Figure 3: Probability the embedding contains an optimum (Popt) when restricted to the constraints
of (Eq. equation 1), under a uniform prior for the location of the optima and D = 100, for three
embedding strategies. Setting de > d rapidly increases Popt, and high probabilities can achieved
with reasonable values of de. Hypersphere sampling produces the best embedding, particularly for
d small.

compute Popt as a function of B, D, d, and de. Fig. 3 shows these probabilities for D = 100 as a
function of d and de, for three strategies for generating the projection matrix: the REMBO strategy
of N (0, 1), the HeSBO projection matrix, and the unit hypersphere sampling described in Sec. 4.
Increasing de above d rapidly improves the probability of containing an optimum. For d = 6, with
de = 6 the probability is nearly 0, while increasing de to 12 is sufficient to raise it to 0.5 and with
de = 20 it is nearly 1. Across all values of d and de, hypersphere sampling produces the embedding
with the best chance of containing an optimum. Appendix A.4 shows Popt for more values of D and
d. By using hypersphere sampling and selecting de > d, we can maintain a high Popt while still
avoiding clipping to B.

5.4 A NEW METHOD FOR BO WITH LINEAR EMBEDDINGS: ALEBO

We combine the results and insight gained into a new method for HDBO, which we call adaptive
linear embedding BO (ALEBO), since the kernel metric and embedding bounds are adapted with the
choice of B. The approach is given in algorithm form in Appendix A.5, along with implementation
details. In short, GP modeling in the embedding is done using the Mahalanobis kernel of Proposition
1. Uncertainty from the hyperparameters Γ is propagated into the posterior by sampling from a
Laplace approximation posterior. The acquisition function is optimized over the polytope in (1).
A high probability of the embedding containing an optimum is maintained by using hypersphere
sampling for the projection matrix, and selecting de > d. Code is available at github.com/
anonymized-for-review.

6 BENCHMARK EXPERIMENTS

We evaluate the performance of ALEBO on synthetic HDBO tasks, and compare its performance
to a broad selection of HDBO methods. We include in these benchmarks: REMBO and HeSBO;
additive kernel methods Add-GP-UCB (Kandasamy et al., 2015) and Ensemble BO (EBO) (Wang
et al., 2018); SMAC, which uses a random forest model; CMA-ES, an evolutionary strategy (Hansen
et al., 2003); and quasirandom search (Sobol). For ALEBO we took de = 2d for these experiments.

Fig. 4 shows BO performance on the Hartmann6 D=100 problem, averaged across 50 runs, each us-
ing an independently sampled projection matrix. Starting from about 75 iterations, ALEBO achieved
the best optimization performance. For the other linear embedding approaches, we see that HeSBO
does improve significantly over REMBO and was able to quickly reach values below -2, but then
stalled. Relative to other methods, ALEBO had low variance in the final best-value, which is impor-
tant in real applications where one can typically only run one optimization run.

Benchmark experiments were also run using the Branin problem and the Gramacy problem, which
includes two black-box constraints that must also be modeled. The Branin optimization was done
for de ranging from 2 to 8 and D from 50 to 1000, and we found that BO performance was not too

7

github.com/anonymized-for-review
github.com/anonymized-for-review

Under review as a conference paper at ICLR 2020

0 25 50 75 100 125 150

Function evaluations

−3

−2

−1

0
B

es
t

va
lu

e
fo

u
n

d

NewMethod

REMBO

HeSBO(de=6)

HeSBO(de=12)

EBO

Add-GP-UCB

SMAC

CMA-ES

Sobol

Method

−3

−2

−1

0

V
a
lu

e
a
t

fi
n

a
l

it
er

a
ti

o
n

Figure 4: BO performance on the Hartmann6 problem (d = 6) extended toD = 100, for 9 methods.
(Left) Best value by each iteration, averaged over 50 runs. (Right) Distribution of the best value at
the final iteration. Starting at iteration 75, ALEBO achieved the best average performance with low
variance in the final performance across runs.

sensitive to de or D. These results, along with more details of the benchmark methods and analysis
of the results, are given in Appendix A.7.

7 DISCUSSION

Our work highlights the importance of two basic requirements for an embedding to be useful for
optimization that are often not examined critically by the literature: 1) the function must be well-
modeled on the embedding; and 2) the embedding should contain an optimum. To the first point, we
showed how polytope constraints on the embedding eliminate boundary distortions, and we derived
a Mahalanobis kernel appropriate for GP modeling in a linear embedding. These two contributions
allow effective modeling in the embedding space. To the second point, we developed an approach
for computing the probability that the embedding contains an optimum, which we then used to
construct embeddings with a higher chance of containing an optimum, via hypersphere sampling
and selecting de larger than d.

These same two considerations are important for any embedding, not just linear. For instance, when
constructing a VAE for BO, it will be equally important to ensure the function remains well-modeled
on the embedding, and that bounds are not handled in a way that adds distortion. We must also
ensure that the VAE embedding captures enough of the ambient space to have a high probability
of containing an optimum. With linear embeddings we were able to derive analytical quantities for
answering these questions—more work in this area will be needed for nonlinear embeddings.

Given D and d, we can solve (2) to determine the probability of containing an optimum for any
de, and thus select de based on a desired target probability. We showed on test problems that BO
performance was not too sensitive to the exact choice of de. In reality, of course, we do not know d,
in which case selecting an appropriate embedding dimension remains an important open question.

REFERENCES

Rika Antonova, Akshara Rai, and Christopher G Atkeson. Deep kernels for optimizing locomotion
controllers. In 1st Conference on Robot Learning, CoRL, pp. 47–56, 2017.

Mickaël Binois. Uncertainty quantification on Pareto fronts and high-dimensional strategies in
Bayesian optimization, with applications in multi-objective automotive design. PhD thesis, Ecole
Nationale Supérieure des Mines de Saint-Etienne, 2015.

Mickaël Binois, David Ginsbourger, and Olivier Roustant. A warped kernel improving robustness in
Bayesian optimization via random embeddings. In Proceedings of the International Conference
on Learning and Intelligent Optimization, LION, pp. 281–286, 2015.

8

Under review as a conference paper at ICLR 2020

Mickaël Binois, David Ginsbourger, and Olivier Roustant. On the choice of the low-dimensional
domain for global optimization via random embeddings. arXiv preprint arXiv:1704.05318, 2018.

Roberto Calandra, André Seyfarth, Jan Peters, and Marc P. Deisenroth. Bayesian optimization for
learning gaits under uncertainty. Annals of Mathematics and Artificial Intelligence, 76(1):5–23,
2015.

Paul G. Constantine, Eric Dow, and Qiqi Wang. Active subspace methods in theory and practice:
applications to Kriging surfaces. SIAM Journal on Scientific Computing, 36:A1500–A1524, 2014.

Josip Djolonga, Andreas Krause, and Volkan Cevher. High-dimensional Gaussian process bandits.
In Advances in Neural Information Processing Systems 26, NIPS, pp. 1025–1033, 2013.

David Eriksson, Kun Dong, Eric Hans Lee, David Bindel, and Andrew Gordon Wilson. Scaling
Gaussian process regression with derivatives. In Advances in Neural Information Processing
Systems 31, NIPS, pp. 6867–6877, 2018.

Jean-Albert Ferrez, Kornei Fukuda, and Th. M. Liebling. Solving the fixed rank convex quadratic
maximization in binary variables by a parallel zonotope construction algorithm. European Journal
of Operational Research, 166(1):35–50, 2005.

Jacob Gardner, Chuan Guo, Kilian Q. Weinberger, Roman Garnett, and Roger Grosse. Discovering
and exploiting additive structure for Bayesian optimization. In Proceedings of the 20th Interna-
tional Conference on Artificial Intelligence and Statistics, AISTATS, pp. 1311–1319, 2017.

Jacob R. Gardner, Matt J. Kusner, Zhixiang Xu, Kilian Q. Weinberger, and John P. Cunningham.
Bayesian optimization with inequality constraints. In Proceedings of the 31st International Con-
ference on Machine Learning, ICML, 2014.

Rafael Gómez-Bombarelli, Jennifer N. Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamı́n Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D. Hirzel,
Ryan P. Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven contin-
uous representation of molecules. ACS Central Science, 4(2):268–276, 2018.

Robert B. Gramacy, Genetha A. Gray, Sébastien Le Digabel, Herbert K. H. Lee, Pritam Ranjan,
Garth Wells, and Stefan M. Wild. Modeling an augmented Lagrangian for blackbox constrained
optimization. Technometrics, 58(1):1–11, 2016.

Nikolaus Hansen, Sibylle D. Mller, and Petros Koumoutsakos. Reducing the time complexity of
the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evolutionary
Computation, 11(1):1–18, 2003.

Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based optimization
for general algorithm configuration. In International Conference on Learning and Intelligent
Optimization, LION, pp. 507–523, 2011.

William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert
space. Contemporary mathematics, 26(189–206):1, 1984.

Donald R. Jones. A taxonomy of global optimization methods based on response surfaces. Journal
of Global Optimization, 21(4):345–383, 2001.

Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global optimization of expen-
sive black-box functions. Journal of Global Optimization, 13:455–492, 1998.

Kirthevasan Kandasamy, Jeff Schneider, and Barnabás Póczos. High dimensional Bayesian optimi-
sation and bandits via additive models. In Proceedings of the 32nd International Conference on
Machine Learning, ICML, pp. 295–304, 2015.

Benjamin Letham, Brian Karrer, Guilherme Ottoni, and Eytan Bakshy. Constrained Bayesian opti-
mization with noisy experiments. Bayesian Analysis, 14(2):495–519, 2019.

Chun-Liang Li, Kirthevasan Kandasamy, Barnabás Póczos, and Jeff Schneider. High dimensional
Bayesian optimization via restricted projection pursuit models. In Proceedings of the 19th Inter-
national Conference on Artificial Intelligence and Statistics, AISTATS, pp. 884–892, 2016.

9

Under review as a conference paper at ICLR 2020

Daniel J. Lizotte, Tao Wang, Michael Bowling, and Dale Schuurmans. Automatic gait optimization
with Gaussian process regression. In Proceedings of the 20th International Joint Conference on
Artificial Intelligence, IJCAI, pp. 944–949, 2007.

Xiaoyu Lu, Javier González, Zhenwen Dai, and Neil Lawrence. Structured variationally auto-
encoded optimization. In Proceedings of the 35th International Conference on Machine Learning,
ICML, pp. 3267–3275, 2018.

Jonas Mockus. Bayesian approach to global optimization: theory and applications. Mathematics
and its applications: Soviet series. Kluwer Academic, 1989.

Riccardo Moriconi, K. S. Sesh Kumar, and Marc P. Deisenroth. High-dimensional Bayesian opti-
mization with manifold Gaussian processes. arXiv preprint arXiv:1902.10675, 2019.

Mojmı́r Mutný and Andreas Krause. Efficient high dimensional Bayesian optimization with addi-
tivity and quadrature Fourier features. In Advances in Neural Information Processing Systems 31,
NIPS, pp. 9005–9016, 2018.

Amin Nayebi, Alexander Munteanu, and Matthias Poloczek. A framework for Bayesian optimiza-
tion in embedded subspaces. In Proceedings of the 36th International Conference on Machine
Learning, ICML, pp. 4752–4761, 2019.

ChangYong Oh, Efstratios Gavves, and Max Welling. BOCK : Bayesian optimization with cylindri-
cal kernels. In Proceedings of the 35th International Conference on Machine Learning, ICML,
pp. 3868–3877, 2018.

Hong Qian, Yi-Qi. Hu, and Yang Yu. Derivative-free optimization of high-dimensional non-convex
functions by sequential random embeddings. In Proceedings of the 25th International Joint Con-
ference on Artificial Intelligence, IJCAI, 2016.

Akshara Rai, Rika Antonova, Seungmoon Song, William Martin, Hartmut Geyer, and Christo-
pher G. Atkeson. Bayesian optimization using domain knowledge on the ATRIAS biped. In
Proceedings of the IEEE International Conference on Robotics and Automation, ICRA, pp. 1771–
1778, 2018.

Paul Rolland, Jonathan Scarlett, Ilija Bogunovic, and Volkan Cevher. High-dimensional Bayesian
optimization via additive models with overlapping groups. In Proceedings of the 21st Interna-
tional Conference on Artificial Intelligence and Statistics, AISTATS, pp. 298–307, 2018.

Edward Snelson and Zoubin Ghahramani. Variable noise and dimensionality reduction for sparse
Gaussian processes. In Proceedings of the 22nd Conference on Uncertainty in Artificial Intelli-
gence, UAI, pp. 461–468, 2006.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical Bayesian optimization of machine
learning algorithms. In Advances in Neural Information Processing Systems 25, NIPS, pp. 2951–
2959, 2012.

Francesco Vivarelli and Christopher K. I. Williams. Discovering hidden features with Gaussian
processes regression. In Advances in Neural Information Processing Systems 11, pp. 613–619,
1999.

Zi Wang, Chengtao Li, Stefanie Jegelka, and Pushmeet Kohli. Batched high-dimensional Bayesian
optimization via structural kernel learning. In Proceedings of the 34th International Conference
on Machine Learning, ICML, pp. 3656–3664, 2017.

Zi Wang, Clement Gehring, Pushmeet Kohli, and Stefanie Jegelka. Batched large-scale Bayesian
optimization in high-dimensional spaces. In Proceedings of the 21st International Conference on
Artificial Intelligence and Statistics, AISTATS, 2018.

Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson, and Nando de Feitas. Bayesian op-
timization in a billion dimensions via random embeddings. Journal of Artificial Intelligence
Research, 55:361–387, 2016.

10

Under review as a conference paper at ICLR 2020

A APPENDIX

This appendix contains a number of additional results and analyses to supplement the main text.

A.1 HESBO EMBEDDINGS

We consider HeSBO embeddings in the case of a random axis-aligned true subspace, and a uniform
prior on the location of the optimum within that subspace. As explained in Sec 4, with d = 2 and this
prior, regardless of de or D there are three possible embeddings: (1) Each of the active parameters
are captured by a parameter in the embedding; (2) the embedding is constrained to the diagonal
xi1 = xi2 ; or (3) the embedding is constrained to the diagonal xi1 = −xi2 . Fig. 5 shows these three
embeddings for the Branin problem from the top row of Fig. 2.

Within the first embedding, the optimal value of 0.398 can be reached. Within the second, the best
value is 0.925 and within the third it is 17.18. Under a uniform prior on location of the optimum
within a random axis-aligned true subspace, it is easy to compute the probability that the HeSBO
embedding contains an optimum:

Popt(de) =
de!

(de − d)!dde
. (3)

For d = 2, this is exactly the probability of the first embedding shown in Fig. 5. This probability
increases with de, and is exactly the probability shown in Fig. 3.

A.2 THE MAHALANOBIS KERNEL

When fitting the Mahalanobis kernel derived in Proposition 1, we use an approximate Bayesian
treatment of Γ to improve model performance while still maintaining tractability. We propagate
uncertainty in Γ into the GP posterior by first constructing a posterior for Γ using a Laplace approx-
imation with a diagonal Hessian, and then drawing m samples from that posterior. The marginal
posterior for f(y) can then be approximated as:

p(f(y)) ≈ 1

m

m∑
i=1

p(f(y)|Γi).

Because of the GP prior, each conditional posterior p(f(y)|Γi) is a normal distribution with known
mean µi and variance σ2

i . Thus the posterior p(f(y)) is a mixture of Gaussians, which we can
approximate using moment matching:

p(f(y)) ≈ N

(
1

m

m∑
i=1

µi,
1

m

m∑
i=1

σ2
i + Vari[µi]

)
.

−1.0 −0.5 0.0 0.5 1.0

x1

−1.0

−0.5

0.0

0.5

1.0

x
2

−1.0 −0.5 0.0 0.5 1.0

x1

−1.0 −0.5 0.0 0.5 1.0

x1

Figure 5: Three possible HeSBO embeddings of the d = 2 Branin function. (Left) The first em-
bedding fully captures the function, and thus captures all three optima. (Middle) The second is
restricted to the subspace x1 = −x2. This subspace does not contain an optimum, but comes fairly
close. (Right) The third embedding is restricted to the subspace x1 = x2 and does not come close
to any optima.

11

Under review as a conference paper at ICLR 2020

50 100 150 200

Training set size

0.25

0.50

0.75

1.00

1.25

P
re

d
ic

ti
v
e

M
S
E Mahalanobis

ARD

Figure 6: Empirical learning curves on the Hartmann6 D = 100 problem, with a de = 12 embed-
ding restricted to the polytope of (1). Figure shows test MSE averaged across repeated trials, and
error bars show 2 standard errors. An ARD kernel is not able to make accurate predictions in the
embedding, while the Mahalanobis kernel is.

25 50 75 100 125 150 175 200

Training set size

0.0

0.2

0.4

0.6

0.8

1.0

P
re

d
ic

ti
v
e

co
v
er

a
g
e

Mahalanobis

ARD

Mahalanobis, point estimate

Figure 7: For the same simulation as Fig. 6, coverage on test set predictions, averaged over random
training sets with error bars showing two standard errors. Nominal coverage is 95%. Uncertainty
intervals are over-conservative, but are much better with approximate posterior sampling of Γ (Ma-
halanobis) than with using a point estimate for Γ (Mahalanobis, point estimate).

The Mahalanobis kernel significantly improves modeling performance inside the linear embedding,
particularly for larger values of d. Here we show this using data from the Hartmann6 D = 100
function from Fig. 2 to construct empirical learning curves. We used hypersphere sampling to
produce a projection matrix B with de = 12 (the value used in the BO benchmarks for this problem
in Sec. 6). We generated random training and test sets from within the embedding (that is, within
the polytope given by (1)) using rejection sampling. The test set was kept fixed, but across trials
different training sets with varying sizes were generated. In each trial, we fit a GP to the training set
and used it to make predictions on the test set, and computed predictive mean squared error (MSE).
These were averaged across 25 trials for each training set size to produce the learning curves in Fig.
6.

Fig. 6 shows learning curves for GPs with two kernels: the Mahalanobis kernel given in Proposition
1, and a regular ARD kernel. Despite only being in de = 12 dimensions, the ARD kernel was unable
to learn in the embedding, whereas the Mahalanobis was. This shows the importance of having the
correct kernel for the embedding.

Handling uncertainty in Γ is critical for getting reasonable posterior uncertainty. Fig. 7 shows this
using the same simulation as Fig. 6, this time measuring coverage on the test set predictions. The
figure shows that the Bayesian treatment of Γ led to significantly better coverage for smaller training
set sizes. In BO exploration is driven by model uncertainty, so well-calibrated uncertainty intervals
are especially important.

12

Under review as a conference paper at ICLR 2020

−40 −20 0 20 40

x1

−20

0

20

x
2

−50 −25 0 25 50

x1

−40

−20

0

20

40

x
2

Figure 8: (Left) An embedding from a N (0, 1) projection matrix on the same Branin D = 100
problem from Fig. 2 subject to constraints of (1). (Right) The embedding from the same projection
matrix after normalizing the columns to produce unit circle samples. Sampling from the unit circle
increases the probability that an optimum will fall within the embedding.

A.3 POLYTOPE BOUNDS ON THE EMBEDDING

Rather than using projections to the box bounds B, we specify polytope constraints in (1). Fig. 8
illustrates the embedding with these constraints for the same Branin D = 100 problem from the top
row of Fig. 2. The embedding in the left figure was created with the REMBO strategy of sampling
each entry from N (0, 1). For the embedding in the right figure, that same projection matrix had
each column normalized. This converts the projection matrix to be a sample from the unit circle, as
described in Sec. 4.

The N (0, 1) embedding does not contain any optima within the polytope bounds. Converting that
projection matrix to a hypersphere sample rounds out the vertices of the polytope and expands the
space to capture two of the optima. Consistent with Fig. 3, we see that hypersphere sampling
significantly improves the chances of the embedding containing an optimum.

A.4 EVALUATING THE PROBABILITY THE EMBEDDING CONTAINS AN OPTIMUM

As in other parts of the paper, we consider a uniform prior on the location of the optimum within
a random axis-aligned subspace. A random true projection matrix T is sampled by selecting d
columns at random and setting each to one of the d-dimensional unit vectors. z∗ is then sampled
uniformly at random from [−1, 1]d. B is sampled according to the desired strategy, which in our
experiments was REMBO, HeSBO, or hypersphere. Given these three quantities, we can evaluate
whether or not B contains an optimum subject to the constraints of (1) by solving the following
linear program:

maximize 0>x

subject to Tx = z∗,

(B†B − I)x = 0,

x ≥ −1,

x ≤ 1.

If this problem is feasible, then the embedding produced by B contains an optimum. If it is infea-
sible, then it does not. Solving this over many draws of T , z∗, and B produces an estimate of Popt
under that prior for the location of optima. Here we used a uniform prior, but this linear program
can be taken to compute Popt under any prior.

Fig. 9 shows Popt for a wide range of values of d andD, for hypersphere sampling. Across this wide
range we see that for many values of d we can achieve high values of Popt with reasonable values of
de.

A.5 THE ALEBO ALGORITHM

The steps of the The ALEBO method are given in Algorithm 1.

13

Under review as a conference paper at ICLR 2020

2 6 10 14 18

Embedding de

2

6

10

14

18

T
ru

e
su

b
sp

a
ce

d
im

en
si

o
n
d

D = 50

2 6 10 14 18

Embedding de

D = 100

2 6 10 14 18

Embedding de

D = 200

0.00

0.25

0.50

0.75

1.00

Figure 9: Popt for hypersphere sampling, as estimated in Fig. 3 but here for a wider range of values
of d and D. Contour color indicates Popt. Doubling D decreases Popt for d and de fixed, however
even at D = 200, high values of Popt with reasonable values of de can be had for many values of d.

Algorithm 1: ALEBO method for high-dimensional BO in a linear embedding.
Data: D, de, ninit, nBO.
Result: Approximate optimizer x∗.

1 Generate a random projection matrix B by sampling D points from the hypersphere Sde−1.
2 Generate ninit random points yi in the embedding using rejection sampling to satisfy polytope (1).
3 Let D = {(yi, f(B†yi)}ninit

i=1 be the initial data.
4 for j = 1, . . . , nBO do
5 Fit a GP by maximizing marginal log-likelihood of D, with the Mahalanobis kernel.
6 Draw posterior samples of Γ using a Laplace approximation. Marginalize over the posterior

with moment matching.
7 Use the GP to find yj that maximizes the acquisition function according to (1).
8 Update D with (yj , f(B†yj))

9 return B†y∗, for the best point y∗.

14

Under review as a conference paper at ICLR 2020

In Line 1 the embedding is specified by generating a random projection matrix. We use hypersphere
sampling, which gave the best Popt in Fig. 3 among strategies tried here. This could be replaced
with a different strategy for constructing a projection matrix should one be more appropriate for a
particular setting.

A.6 HANDLING BLACK-BOX CONSTRAINTS IN HIGH-DIMENSIONAL BAYESIAN
OPTIMIZATION

In many applications of BO, in addition to the black-box objective f there are black-box constraints
cj and we seek to solve the optimization problem

minimize f(x)
subject to cj(x) ≤ 0, j = 1, . . . , J,

x ∈ B.

In most settings the constraint functions cj are evaluated simultaneously with the objective f . Con-
straints are typically handled in BO by fitting a separate GP to each outcome (that is, to f and to
each cj). The acquisition function is then modified to consider not only the objective value but also
whether the constraints are likely to be satisfied (e.g., Gardner et al., 2014).

The extension of BO in an embedding to constrained BO is straightforward, so long as the same
embedding is used for every outcome. A separate GP (in our case, using the Mahalanobis kernel) is
fit to data from each outcome. Because the embedding is shared, predictions can be made for all of
the outcomes at any point in the embedding. This allows us to evaluate and optimize an acquisition
function for constrained BO in the embedding. Once a point is selected, it is projected up to the
ambient space and evaluated on f and each cj as usual. Random projections are especially well-
suited for constrained BO because there is no harm in requiring the same projection for all outcomes,
since it is a random projection anyway.

A.7 ADDITIONAL EXPERIMENTAL RESULTS

Here we provide results from two additional problems (Branin and Gramacy), and provide a study
of the sensitivity of BO performance to de and D. We also provide implementation details for the
experiments.

A.7.1 METHOD IMPLEMENTATIONS AND EXPERIMENT SETUP

The linear embedding methods (REMBO, HeSBO, and ALEBO) were all implemented using
BoTorch, a framework for BO in PyTorch, and so used the same acquisition functions and the same
tooling for optimizing the acquisition function. EI was the acquisition function for the Hartmann6
and Branin benchmarks, and NEI (Letham et al., 2019) was used to handle the constraints in the
Gramacy problem. ALEBO and HeSBO were given a quasirandom initialization of 10 points from
a scrambled Sobol sequence. REMBO was given a Sobol initialization of 2 points for each of its 4
projections used within a run.

The remaining methods used reference implementations from their authors with default settings for
the package: EBO1, Add-GP-UCB 2, SMAC3, and CMA-ES4. EBO requires an estimate of the best
function value, and for each problem was given the true best function value. SMAC and CMA-ES
require an initial point, and were given the point at the center of the ambient space box bounds.

For all three problems, the optimization was repeated 50 times for each method, with the exception
of Add-GP-UCB which was significantly slower than other methods (each Hartmann6 optimization
took ∼17 hours) and so was repeated only 10 times. The function evaluations for all problems were
noiseless, so the stochasticity throughout the run and in the final value all comes from stochasticity
in the methods themselves. For linear embedding methods the main sources of stochasticity are in
generating the random projection matrix and in the quasirandom initialization.

1github.com/zi-w/Ensemble-Bayesian-Optimization
2github.com/dragonfly/dragonfly, with option acq="add ucb"
3github.com/automl/SMAC3, SMAC4AC mode
4github.com/CMA-ES/pycma

15

github.com/zi-w/Ensemble-Bayesian-Optimization
github.com/dragonfly/dragonfly
github.com/automl/SMAC3
github.com/CMA-ES/pycma

Under review as a conference paper at ICLR 2020

0 20 40 60 80 100 120 140

Function evaluations

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

B
es

t
va

lu
e

fo
u
n
d

NewMethod

REMBO

HeSBO(de=6)

HeSBO(de=12)

EBO

Add-GP-UCB

SMAC

CMA-ES

Sobol

Figure 10: The same results from Fig. 4, with error bars showing two standard errors. Starting at
about iteration 75, ALEBO significantly outperformed other approaches for HDBO.

Nayebi et al. (2019) also used the Hartmann6 and Branin functions with axis-aligned embeddings
to evaluate HeSBO. They used de = 4 for Branin and de = 6 for Hartmann6. In our comparisons
here we used those same choices, but for Hartmann6 additionally evaluated HeSBO with de = 12
to provide a more direct comparison to ALEBO, for which we used de = 12.

A.7.2 HARTMANN6 BENCHMARK PROBLEM

Fig. 10 shows the same results from Fig. 4, except with standard errors for the values across op-
timization iterations. REMBO performed worse than quasirandom on this problem, despite there
being a true linear subspace that satisfies the REMBO assumptions. The source of the poor per-
formance is the poor representation of the function on the embedding illustrated in Fig. 2. The
remaining methods all performed better than quasirandom. CMA-ES was competitive with all of
the methods except SMAC and ALEBO, which is somewhat surprising since it is not designed to
have the same degree of sample efficiency as BO methods. HeSBO and Add-GP-UCB both did very
well early on, but then got stuck and did not progress significantly after about iteration 50. SMAC
continued to improve throughout the entire optimization, as did ALEBO, which achieved the best
performance.

Fig. 11 shows the average time required to generate a candidate (fit the model and optimize the
acquisition function) per iteration of the optimization. Even with the additional parameters in the
Mahalanobis kernel and the added linear constraints to the acquisition function optimization, BO
with ALEBO required similar time as other methods for high-dimensional BO. The average of
25s per iteration is short relative to the function evaluation time of typical resource-intensive BO
applications.

A.7.3 BRANIN BENCHMARK PROBLEM

BO results for the Branin problem are shown in Fig. 12. The results are qualitatively similar to
those seen with the Hartmann6 function, except here REMBO outperformed quasirandom, and in
fact outperformed HeSBO as well, and matched CMA-ES. The additive kernel methods and SMAC
all performed similarly, and, starting from around iteration 20, ALEBO performed the best. The
distribution of final iterations shows that in one iteration the ALEBO embedding did not contain an
optimum and so achieved a final value near 10. However, across all 50 runs nearly all achieved a
value very close to the optimum, leading to the best average performance.

The poor performance of HeSBO on this problem can be attributed entirely to the embedding not
containing an optimum. Recall that for this problem there are exactly three possible HeSBO em-
beddings, which are shown in Fig. 5. As explained in Appendix A.1, the first embedding contains
the optimum of 0.398, while the best value in the other embeddings are 0.925 and 17.18. Thus, if
the BO were able to find the true optimum within each embedding with the budget of 50 function

16

Under review as a conference paper at ICLR 2020

Method

0

5

10

15

20

25

A
v
er

a
g
e

ti
m

e
p

er
it

er
a
ti

o
n

(s
) NewMethod

REMBO

HeSBO(de=6)

HeSBO(de=12)

EBO

SMAC

Figure 11: Running times for each method on the Hartmann6 benchmark test of Fig. 4, as average
time per iteration across all 150 iterations and across the 50 optimization runs. Error bar shows two
standard errors across runs. Not shown are: CMA-ES and Sobol, which had running times of less
than 0.1s per iteration, and Add-GP-UCB, which required 400s per iteration.

0 10 20 30 40 50

Function evaluations

0

1

2

3

4

5

6

7

8

B
es

t
va

lu
e

fo
u
n
d

NewMethod

REMBO

HeSBO(de=4)

EBO

Add-GP-UCB

SMAC

CMA-ES

Sobol

Method

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

V
a
lu

e
a
t

fi
n
a
l

it
er

a
ti

o
n

Figure 12: BO performance on the Branin problem (d = 2) extended to D = 100 with unused
parameters. ALEBO showed the best performance after 20 iterations. HeSBO performed poorly
because of the third embedding in Fig. 5 which has an optimal value of 17.18, and a 12.5% chance
of being selected.

evaluations given in this experiment, the expected best value found by HeSBO would be:

0.398Popt + 0.925

(
1− Popt

2

)
+ 17.18

(
1− Popt

2

)
.

This is the best average performance one can hope to achieve using the HeSBO embedding on
this problem. Using (3) we can compute Popt for de = 4 as 0.75, and it follows that the HeSBO
expected best value is 2.56. This is nearly exactly the average best-value shown in Fig. 12. The
poor performance of HeSBO is thus not related to BO, but comes entirely from the 12.5% chance of
generating an embedding whose optimal value is 17.18. The presence of these embeddings can be
clearly seen in the distribution of final best values in the figure.

A.7.4 GRAMACY BENCHMARK PROBLEM

The Gramacy problem is a toy-problem from Gramacy et al. (2016) with d = 2 that includes two
black-box constraints. The problem has 3 local optima and a single global optimum. For the linear

17

Under review as a conference paper at ICLR 2020

10 20 30 40 50

Function evaluations

0.6

0.7

0.8

0.9

1.0
B

es
t

fe
a
si

b
le

va
lu

e
fo

u
n
d

NewSubspaceBO REMBO HeSBO Sobol

Method

0.6

0.8

1.0

1.2

1.4

V
a
lu

e
a
t

fi
n
a
l

it
er

a
ti

o
n

Figure 13: BO performance on the Gramacy problem, which includes black-box constraints. (Left)
Best value reached that satisfied the constraints, averaged over 50 runs with two standard errors
shaded. (Right) the distribution of best feasible value found across the entire optimization. ALEBO
can effectively optimize with black-box constraints.

embedding methods, constrained optimization was done as described in Appendix A.6. ALEBO
and HeSBO both used de = 4. The other optimization methods (EBO, Add-GP-UCB, SMAC, and
CMA-ES) do not support black-box constraints and so they are not included in this comparison.

Optimization results are shown in Fig. 13, starting at iteration 10 where all methods had evaluated
at least one feasible point in each of the 50 optimization runs. The results are qualitatively similar to
those seen on the other problems. All BO methods outperformed Sobol. HeSBO did well initially
but average performance stalled due to the 25% chance of the embedding missing an optimum, and
by iteration 50 REMBO performance had caught up. ALEBO performed the best and reached values
very close to optimal after only 25 iterations.

A.7.5 PERFORMANCE AS A FUNCTION OF EMBEDDING AND AMBIENT DIMENSIONS

We study sensitivity of BO performance to the embedding dimension de and the ambient dimension
D using the Branin function. To test dependence on de, for D = 100 we ran 50 optimization runs
for each of de ∈ {2, 3, 4, 5, 6, 7, 8}. To test dependence on D, for de = 4 we ran 50 optimization
runs with ALEBO for each of D ∈ {50, 100, 200, 500, 1000}. Note that the de = 4 and D = 100
case in each of these is exactly the optimization problem of Fig. 12. The results are shown in Fig.
14.

For de = d, optimization performance was poor. From Fig. 3 we know this is because there is a
low probability of the embedding containing an optimizer. Increasing de increases that probability,
but also increases the dimensionality of the embedding and thus reduces the sample efficiency of the
BO in the embedding. This trade-off can be clearly seen in the figure, where performance improved
until de = 5 and then started to degrade. Fortunately, the degradation is not substantial: even at
de = 8 ALEBO significantly outperformed all of the comparison methods in Fig. 12.

Optimization performance is similarly stable when varying the ambient dimension D and only de-
grades slightly from D = 50 to D = 1000. Even at D = 1000, ALEBO had better performance
than the comparison methods had on D = 100.

18

Under review as a conference paper at ICLR 2020

2 3 4 5 6 7 8

Embedding dimension de

0.5

1.0

1.5

2.0

2.5

B
es

t
va

lu
e

fo
u
n
d

D = 100

50 200 500 1000

Ambient dimension D

de = 4

Figure 14: Final best value for the Branin problem (Fig. 12) for ALEBO (Left) for ambient dimen-
sion D = 100 as a function of embedding dimension de, and (Right) for de = 4 as a function of D.
BO performance was consistently good for a wide range of values of de and D.

19

	Introduction
	Related Work
	Problem Framework and REMBO
	Challenges with Linear Embeddings
	Learning and Optimizing in Linear Embeddings
	A Kernel for Learning in a Linear Embedding
	Avoiding Nonlinear Projections
	The Probability the Embedding Contains an Optimum
	A New Method for BO with Linear Embeddings: ALEBO

	Benchmark Experiments
	Discussion
	Appendix
	HeSBO Embeddings
	The Mahalanobis Kernel
	Polytope Bounds on the Embedding
	Evaluating the Probability the Embedding Contains an Optimum
	The ALEBO Algorithm
	Handling Black-Box Constraints in High-Dimensional Bayesian Optimization
	Additional Experimental Results
	Method Implementations and Experiment Setup
	Hartmann6 Benchmark Problem
	Branin Benchmark Problem
	Gramacy Benchmark Problem
	Performance as a Function of Embedding and Ambient Dimensions

