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ABSTRACT

Training convolutional neural networks (CNNs) is time consuming. Prior work
has explored how to reduce the computational demands of training by eliminat-
ing gradients with relatively small magnitude. We show that eliminating small
magnitude components has limited impact on the direction of high-dimensional
vectors. However, in the context of training a CNN, we find that eliminating small
magnitude components of weight and activation vectors allows us to train deeper
networks on more complex datasets versus eliminating small magnitude compo-
nents of gradients. We propose Sparse Weight Activation Training (SWAT), an
algorithm that embodies these observations. SWAT reduces computations by 50%
to 80% with better accuracy at a given level of sparsity versus the Dynamic Sparse
Graph algorithm. SWAT also reduces memory footprint by 23% to 37% for acti-
vations and 50% to 80% for weights.

1 INTRODUCTION

The usage of convolutional neural networks (CNNs) has dominated a wide variety of complex com-
puter vision tasks, such as object recognition (Krizhevsky et al., 2012; Szegedy et al., 2015), object
detection (Szegedy et al., 2013; Ren et al., 2015), and image restoration (Dong et al., 2014; Zhang
et al., 2017). However, CNNs are compute and memory intensive; even a moderately sized CNN
model, like ResNet-50 with tens of millions of parameters, requires billions of floating-point opera-
tions and consumes tens of gigabytes to store weights and activations during training.

Previous works propose techniques for reducing computations and memory consumption during
CNN training. Such techniques include quantization where every operation is quantized in low-
precision during training such a (Zhou et al., 2016; Choi et al., 2018; Wu et al., 2016; Wang et al.,
2018), or, use fixed-point integers instead of floating-point numbers (Wu et al., 2018; Das et al.,
2018).

An orthogonal approach to reduce computations is sparsification, a process in which we eliminate
computations involving small values. meProp (Sun et al., 2017; Wei et al., 2017) sparsifies back-
propagating by selecting a subset of output gradients in each layer. Using only the top 5% of the
gradients (ranked by magnitude), meProp can train a CNN and MLP on MNIST dataset without
accuracy loss. The computational flow of meProp is shown in Figure 1a and 1b. meProp does
not modify the forward pass. In the backward pass meProp performs a “Top-K” operation on the
output activation gradients which sets components not ranked in the Top-K by magnitude to zero.
It then uses the sparsified output activation gradients to (potentially more efficiently) compute the
input activation and weight gradients. Our experiments suggest meProp fails to converge on larger
networks and datasets.

Recently, Liu et al. (2019) proposed a method of reducing computation during training and infer-
ence by constructing a dynamic sparse graph (DSG) using random projection for dimensionality
reduction. DSG loses accuracy on ImageNet dataset.

In this work, we propose an alternative technique, Sparse Weight Activation Training (SWAT), that
can train deep CNNs on complex data sets like ImageNet. Compared to DSG, SWAT is a straight-
forward technique which uses less expensive Top-K operation, inspired by meProp, while achieving
better accuracy than DSG on ImageNet.

This paper provides the following contributions:
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• It shows that dropping gradients during back-propagation is harmful to network conver-
gence especially when training a deeper model on a complex dataset. In this case the
model suffers high accuracy loss.
• It proposes SWAT, a sparse training algorithm that can train a broad range of deep CNNs

with minimal accuracy loss on complex datasets like CIFAR10, CIFAR100, and ImageNet.
SWAT reduces the total number of operations during training by 50%–80%. It also achieves
23%–37% activation and 50%–80% weight footprint reduction during the backward pass.
• SWAT algorithm uses sparse weight both in the forward and backward passes, and therefore

model learns sparse weights, i.e., a pruned architecture; If the model has been trained using
SWAT with S% sparsity during training, then during inference, weight can be pruned to
S% without sacrificing any loss in accuracy.
• We perform empirical studies to provide insight into why ‘SWAT performs well; we showed

that Top-K sparsification in general preserves direction in high-dimensional space.

2 SPARSITY INDUCED TRAINING

2.1 PRELIMINARIES

Let us consider a deep CNN with L convolutional layers trained using mini-batch stochastic
gradient descent, where the lth layer maps the input activation (al−1) using function fl from
RN×Cl−1×Hl−1×Wl−1 → RN×Cl×Hl×Wl . fl computes Cl channel of output feature maps, each
of dimension RHl×Wl , using Cl−1 channels of input feature maps of dimension RHl−1×Wl−1 for
each of the N samples in the mini-batch. The lth layer has weights wl ∈ RCl×Cl−1×Hf×Wf . The
forward pass of the lth layer can be defined as:

al = fl(al−1, wl) (1)

During back-propagation the lth layer receives the gradient of the loss L w.r.t its output activation
(5al ). This is used to compute the gradient of the loss w.r.t its input activation (5al−1

) and weight
(5wl

). Thus, the backward pass for the lth layer can be defined as:
5al−1

= Fl(5al , wl) (2)
5wl

= Fl(5al , al−1) (3)

BACKWARD PASS

MEPROP SWAT
FORWARD PASS

BACKWARD PASS

FORWARD PASS

  

            

 

 𝑙   𝑙−1  𝑙   𝑙   𝑙−1  𝑙  

            

 

    =         
  

 𝑙−1  𝑙  
 𝑙   𝑙  
 𝑙   𝑙−1  𝑙  
 𝑙  

 𝑙−1
𝑇  

  𝑙    𝑙    𝑙    𝑙    𝑙  
 𝑙−1
𝑇  

  𝑙    𝑙  

    =         
  

 𝑙−1
𝑇    𝑙    𝑙   𝑙−1
𝑇    𝑙    𝑙    𝑙  

 𝑙
𝑇  

 

  𝑙    𝑙−1   𝑙−1 

 a𝑙-1 = w𝑙
𝑇 .  𝑙   a𝑙-1 = w𝑙

𝑇 .  𝑙  

 𝑙
𝑇    𝑙   𝑙
𝑇    𝑙    𝑙−1   𝑙−1 

(a)

(∇ , )�� �� ��−1

(∇ , )�� �� ��

��

∇��−1

∇��

��

Backward Pass

Forward Pass Layer
Parameters

Save for backward pass

( , )�� ��−1 ��

��

��−1

��−1

TO
P 

K

∇��

∇��

(b)

(∇ , )�� �� ��−1

(∇ , )�� �� ��

��

∇��−1

∇��

��

Backward Pass

Forward Pass Layer
Parameters

Save for backward pass

( , )�� ��−1 ��

��

��−1

��−1

∇��

TOP KTOP K

(c)
Figure 1: meProp versus SWAT (a) Shows the forward and backward pass of MeProp and SWAT
for a fully connected layer. (b) Computational flow of meProp for any layer l (c) Computational
flow of SWAT for any layer l.
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2.2 SPARSE WEIGHT ACTIVATION TRAINING

Our goal is to reduce the computations required during the training process. SWAT does this by
effectively transforming small magnitude components of vectors into zero values. Since multiplica-
tion of any number by zero results in zero the multiplication is not necessary. Such a sparsification
process can be applied in a number of ways in the context of the backpropagation algorithm. Ideally,
the modified training algorithm will retain both model accuracy and rate of convergence.

We explore the sensitivity to applying this sparsification process at different points. We look at the
sensitivity of the model convergence to sparse input i.e. weight (wl) and input activation (al) for
forward pass and weights (wl), input activation (al) and output activation gradient (5al ) for the
backward pass as shown in Equation 1 , 2 and 3.

Figure 2a shows the result of our analysis of sparsification in the forward pass. Here we train
ResNet-18 on CIFAR-100 after modifying the forward pass to use sparse inputs in Equation 1 for
weights (wl) and separately activations (al) while keeping the backward pass unchanged (i.e., only
the forward pass computation is sparse). The results show that network convergence is more tolerant
to sparse weights (wl) compared to sparse activations (al). Thus, as shown in Figure 1a and 1c,
SWAT uses sparse weights in the forward pass.

Figure 2b shows the result of our analysis of sparsification in the backward pass. We modify Equa-
tion 2 and Equation 3 to sparsify either output gradient (5al ), as in meProp (see Figure 1b), or
sparsify activations (al) and weights (wl). The results show accuracy is extremely sensitive to spar-
sification of output gradients. Such sparsity consistently results in networks converging to lower
accuracy compared to using sparse activations and weights. Thus, as shown in Figure 1a and 1c,
SWAT uses sparse weights and activations in the backward pass. The overall SWAT training algo-
rithm is presented in Algorithm 1 in the appendix.

SWAT uses sparse computation in both the forward and the backward passes, while meProp (Sun
et al., 2017) uses sparse computation only in the backward pass. SWAT uses sparse weights and ac-
tivations in the backward pass allowing compression of weights and activations in the forward pass1.
Effectively, reducing overall memory access overhead of fetching weights in the backward pass and
activation storage overhead because only Top-K% are saved. This memory benefit is not present for
meProp since dense weights and activations are needed in the backward pass, whereas there is no
storage benefit of sparsifying the output gradients since they are temporary values generated during
back-propagation.
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Figure 2: Convergence Analysis: (a) Sensitivity Analysis of ResNet18 for the Forward Pass on the
CIFAR100 dataset. (b) Sensitivity Analysis of ResNet18 for the Backward Pass on the CIFAR100
dataset. (c) Shows the training curve of ResNet18 on ImageNet for meProp and SAW algorithm.
Learning rate is reduced by 1

10

th at 30th and 40th epoch.

To compare SWAT’s approach to that of meProp, we use a variant of SWAT that only sparsifies
the backward pass; we shall refer to this version of SWAT as SAW (Sparse Activation and Weight
back-propagation). We compare the performance of the meProp and SAW with deep networks, and
complex datasets2. Figure 2c shows SAW and meProp convergence of ResNet18 with the ImageNet
dataset; it compares the performance of meProp at 30% and 50% sparsity to SAW 80% sparsity.
As we can see, meProp converges to a good solution at sparsity of 30%. However, at 50% sparsity,

1more detail in section 3.3
2The performance of SWAT with deep networks and complex datasets is in the result section.
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meProp suffers from overfitting and fails to generalize (between epochs 5 to 30), and at the same
time, it is unable to reach an accuracy level above 45%. These results suggest that dropping output
activation gradient (5al ) is generally harmful during back-propagation. On the other hand, SAW
succeeds to converge to an accuracy of 64% even at a much higher sparsity of 80%.

Top-K Selection: Given CNNs operate on tensors with many dimensions, there are several options
for how to select which components are set to zero during sparsification. Our CNNs operate on
fourth-order tensors, T ∈ RN×C×H×W . Below we evaluate three variants of the Top-K opera-
tion illustrated in the right side of Figure 3. We also compared against a null hypothesis in which
randomly selected components of a tensor are set to zero.

The first variant, labeled TOPK-NCHW in Figure 3, selects activations and weights to set to zero
by considering the entire mini-batch. This variant performs Top-K operation over the entire tensor,
f
{N,C,H,W}
TOPK (T ), where the superscript represents the dimension along which the Top-K operation is

performed. The second variant (TOPK-CHW) performs Top-K operation over the dimensions C,H
and W i.e., f{C,H,W}TOPK (T ) , i.e., selects K % of input activations from every mini-batch sample and
K% of weights from every filter in the layer. The third variant (TOPK-HW) is the strictest form of
Top-K operation. It select K% of activations or weights from all channels, and thereby performing
the Top-K operation over the dimension H and W , i.e., f{H,W}TOPK (TH,W ).

The left side of Figure 3 shows the accuracy achieved on ResNet-18 for CIFAR100 when using
SAW configured with each of these Top-K variants along with a variant where a random subset of
components is set to zero. The results show, first, that randomly selecting works only for low spar-
sity. At high sparsity all variants of Top-K outperform random selection by a considerable margin.
Second, they show that the more constrainted the Top-K operation the less accuracy achieved. Con-
straining Top-K results in selecting some activations or weights which are quite small. Similarly,
some essential activations and weights are discarded just to satisfy the constraint.
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Figure 3: Different ways of performing top-k operation. ‘N’ denotes the #samples in the mini-
batch or filters in the layer, ‘C’ denotes the #channels in the layer. ‘H’ and ‘W’ denote the height
and width of the filter/activation map in the layer. Color represent the selected activations/weights
by the Top-K operation.

3 RESULTS

In this section, we present our experimental results of SWAT algorithm on different architectures and
datasets and we quantify the theoretical reduction in compute and memory bandwidth achievable
using SWAT.

3.1 EXPERIMENTAL SETUP

We implement SWAT and SAW algorithms in PyTorch Framework (Paszke et al., 2017); models
are trained on three different datasets: CIFAR10, CIFAR100 (Krizhevsky et al., 2009) and Ima-
geNet ILSVRC2012 (Deng et al., 2009) and are evaluated on four different architectures ResNet-
18, 34, 50, 101 (He et al., 2016), Wide Residual Networks (Zagoruyko & Komodakis, 2016),
DenseNet-BC-121 (Huang et al., 2017), and VGG-16 (Simonyan & Zisserman, 2014) with batch-
normalization (Ioffe & Szegedy, 2015). Batch-Normalization statistics are computed using the run-
ning average (with momentum 0.9). We use SGD with momentum as our optimization algorithm
with an initial learning rate of 0.1, momentum of 0.9 and weight decay λ of 0.0001.
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For CIFAR10 and CIFAR100 dataset, ResNet, VGG, and DenseNet models are trained for
150 epochs, and learning rate are reduced by (1/10)th at the 50-th and the 100-th epoch whereas
WRN is trained for 200 epochs and the learning rate is annealed by a factor of (1/5)th at 60-th,
120-th and 160-th epoch. ResNet, VGG, and WRN are trained using a batch-size of 128 whereas
DenseNet is trained with a batch-size of 64. We run each experiment with three different seeds and
use the average value for all the plots.

For training on ImageNet dataset, we use 224 × 224 random crops from the input images or its
horizontal flip and the input image is normalized by the per-color mean and standard deviation.
Networks are trained for 50 epochs with the mini batch-size of 256 samples, and the learning rate
are reduced by (1/10)th after 30-th and 40-th epoch.

3.2 ACCURACY ANALYSIS

In this section, we provide a comprehensive analysis of SWAT and SAW algorithms and show the
influence of sparsity on validation accuracy; thereby showing the potential of reducing computation
during training with negligible accuracy loss. We furthermore discuss the impact on convergence
and the robustness of the algorithm on a wide range of models with different depths and widths.
Last, we provide an alternative to Top-K for efficient software/hardware implementation.
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Figure 4: Comprehensive analysis of sparsity vs accuracy trade-off: (a) Accuracy of SWAT and
SAW algorithms on CIFAR10 dataset. (b) Accuracy of SWAT and SAW algorithms on CIFAR100
dataset. The dashed line represents the baseline accuracy for the corresponding model. Datapoints
for SAW algorithm are represented as dots whereas for SWAT algorithm they are represented as
stars.

Accuracy on CIFAR10 and CIFAR100: Figure 4 shows the accuracy of the SWAT and SAW
algorithms at different sparsity budgets on CIFAR10 and CIFAR100 dataset. From the graph, we can
conclude the following three points: (a) Enforcing sparsity up to 50% is beneficial for training. The
benefit is more pronounced on CIFAR10 compared to the CIFAR100 dataset, suggesting sparsity
should be enforced while training the model on a simpler dataset, i.e. a dataset with fewer classes,
as this leads to a model with better generalization property. (b) Models can be trained using SWAT
and SAW algorithm up to 60% sparsity with almost zero accuracy loss and suffer only a slight
accuracy loss at 70% sparsity. For CIFAR10 dataset at 70% sparsity, VGG-16 and DenseNet-121
have an accuracy loss of around 0.57% for SWAT (0.26% for SAW) and 0.4% for SWAT (0.23% for
SAW) whereas ResNet-18 gains an accuracy of 0.02% for SWAT (0.1% for SAW). For CIFAR100
dataset, ResNet-18, VGG-16 and DenseNet-BC-121 lose an accuracy of around 0.5%, 0.41% and
0.68% for SAW and 0.4%, 0.99% and 1.78% for SWAT respectively. (c) There is a larger drop in
accuracy at 80% sparsity, and above. At 80% the drop in accuracy for both CIFAR10 and 100 is less
than 1.8% for SAW and less than 2.5% for SWAT.

Accuracy on ImageNet: Figure 5a shows the validation curve of the SWAT algorithm on ImageNet
dataset for three different architectures and Figure 5b shows the accuracy obtained by the SWAT and
SAW algorithms. The result shows that the SWAT and SAW algorithms lose negligible accuracy at
50% sparsity for all three architectures. The solution is within an accuracy loss of 0.26 − 1.01%
compared to the baseline solution. For high sparsity of 70%, ResNet-18, VGG-16 and DenseNet-
BC-121 lose only around 1.52%, 1.6% and 2.26% accuracy for the SWAT and 1.42%, 1.28% and
1.82% for the SAW algorithm respectively. Both the algorithms perform better than the DSG al-
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gorithm proposed by (Liu et al., 2019), which accelerates training by performing dimensionality
reduction search and performing the forward and backward passes in low dimensional space. The
accuracy loss of DSG at 50% sparsity is around 2.83% for ResNet-18 and 1.54% for VGG-16 com-
pared to the SWAT accuracy loss of 0.27% and 0.86% for ResNet-18 and VGG-16 respectively.
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Figure 5: Trend of SWAT algorithm on ImageNet dataset: (a) Validation curve of SWAT al-
gorithm (b) Validation Accuracy of SWAT, SAW and DSG algorithms at different sparsity con-
straints. Dotted line represents the baseline back-propagation algorithm. ‘RN18’ represent ResNet-
18, ‘DN121’ represent DenseNet-BC-121 and ‘DSG’ denote the results reported by the Dynamic
Sparse Graph(Liu et al., 2019) algorithm.

Impact on Convergence: SWAT does not slow down the rate of convergence. Figure 5a shows the
validation curve of SWAT algorithm when training ResNet-18, VGG-16 and DenseNet-BC-121 on
ImageNet dataset. The experiment at 50% and 70% sparsity shows that SWAT algorithm converges
with slight accuracy loss but at the same rate compared to the baseline algorithm.
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Figure 6: (a) Influence of Depth and Width: Accuracy of SAW and SWAT algorithms on CI-
FAR100 dataset for ResNet-50,101 and WRN-28-10 (b) Threshold value (K-th largest values) in
Top-K operation of different layers during training

Influence of Depth and Width: Network depth (#layers) and width (#channels) are two important
design criteria. Previous studies (Lu et al., 2017; Raghu et al., 2017; Sharir & Shashua, 2018) have
found that both depth and width affect network expressivity. Increasing network depth helps in
learning complex abstraction, whereas increasing width helps in learning more features. Ideally,
we want SWAT and SAW algorithms to work with models of varying depth and width. Therefore,
we study the influence of depth and width on the SWAT and SAW algorithms. Figure 6a shows
the accuracy of ResNet-50, ResNet-101 and WRN-28-10 on CIFAR100 datasets at four different
sparsities 0%, 50%, 70% and 80%. The result for deeper networks shows that enforcing sparsity up
to 70% is beneficial for training as the ResNet-50 and ResNet-100 converged to an accuracy higher
than the baseline training. At 80% sparsity, ResNet-101 loses accuracy of a mere 0.18% whereas
ResNet-50 still has an accuracy advantage of 0.19% over the baseline. WRN-28-10 lose accuracy on
training with SWAT and SAW algorithm, but the accuracy loss is only 0.67% for SAW and 0.49%
for SWAT at 70% sparsity.
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Efficient Top-K Implementation: Top-K3 operation on 1 dimensional array of size n can be naively
implemented using sorting. The computational complexity of a naive Top-K operation isO(n log n).
The computational complexity can be reduced to O(n), if the k-th largest element can be found in
O(n) time, since for this case the Top-K operation can be implemented by a threshold operation.
The K-th largest element can be computed in O(n) average time using quickselect (Hoare, 1961) or
in θ(n) time using BFPRT (Blum et al., 1973) or introselect (Musser, 1997). The computation can
be further reduced since we found experimentally that for a given layer, the K-th largest elements
is almost constant during training as shown in Figure 6b. So we don’t need to compute the K-th
largest elements during every training iteration and can be computed once in a while after multiple
iterations.

3.3 COMPUTATIONAL AND MEMORY OVERHEAD REDUCTION DURING TRAINING

In this section, we will quantify the reduction in computational and memory overhead, using SWAT,
over the baseline training algorithm.

Computation Reduction: SWAT algorithm is accelerating CNN training by
sparsifying the computation in both the forward and the backward pass.
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During CNN training, most of
the computation is in the convo-
lution and fully connected layer,
therefore sparsifying the com-
putation in both of these lay-
ers can result in linear speed-
up during training. Figure 7
shows the computational reduc-
tion possible by SWAT for three
different architecture while train-
ing on ImageNet dataset. SWAT
achieves a computation reduc-
tion of 2x, 3.3x, and 5x at
50%, 70%, and 80% sparsity re-
spectively. Note that the over-
all overhead of implementing ef-
ficient Top-K operation using
BFRT/introselect + thresholding, as described in the previous section, is only 1-2% additional com-
putation during training. Another benefit of using SWAT is that the model learns a sparse architecture
and therefore, sparse weights are used during Inference. Thus, the same computational benefit of
2-5x is possible for Inference as well.
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Figure 8: Reduction in memory accesses during the backward pass. (a) Reduction in parameter
access (b) Reduction in activation access per sample (Dataset: ImageNet)
Memory Overhead Reduction: During training, most of the weights and activations are stored in
DRAM and accessing DRAM consumes three orders of magnitude more energy consumption than
computation (Horowitz). So reducing the memory access during training will directly reduce the
energy consumption. SWAT algorithm uses sparse input activation (al−1) and weight (wl−1) in the
backward, so input activation and weight can be compressed and stored in the memory in sparse for-
mat thereby reducing the DRAM access in the backward pass. Figure 8a shows the reduction of 2x,

3Top-K operation is performed on an absolute values.
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3.3x, and 5x at sparsity of 50%, 70% and 80% in the parameters access in the backward pass. The
other significant memory overhead is saving the activation, and this overhead is dependent not only
on the model size but also on the batch-size used during training. Figure 8b shows the activation
memory overhead for different architectures for a mini-batch size of 1. The graph only shows the
activation of batch-normalization and convolutional layer since memory overhead for the activations
of the linear layer is negligible compared to them. Note that SWAT algorithm sparsifies the compu-
tation of the linear, and convolutional layers, so full input activation of the batch-normalization layer
are saved for the backward pass. Thus, SWAT algorithm achieves activation compression of around
1.3x, 1.5x, and 1.7x at sparsity of around 50%, 70%, and 80%. The activation of batch-normalization
layer limits the overall activation compression.

4 EXPERIMENTAL ANALYSIS OF SWAT BEHAVIOUR

In this section, we will give some experimental evidence which explains why the SWAT algorithm
is working so well in practice. The experiment shows the general behavior of vector sparsification
in high dimensional space. Let us first define two new terminologies which we are going to use in
this section: “Top-K sparsification” and “Sparsification Angle”4. Top-K sparsification of a vector v
selects K% of the highest magnitude component and set the rest of the component to zero. Sparsifi-
cation angle is the angle between the original and the Top-K sparsified instance of that vector.

4.1 VECTOR SPARSIFICATION IN HIGH-DIMENSIONAL SPACE

A vector in high-dimensional space behaves differently from their low dimensional counterpart. It
is well known that in high-dimension, two independent isotropic vectors tend to be orthogonal. Re-
cently Anderson & Berg (2017) extended the analysis of the geometry of high-dimensional vectors
to binary vectors. They proved that the angle between any random vector, drawn from a rotationally
invariant distribution, and its binarized version would be concentrated around 37◦. Thus, binariza-
tion of high dimensional vector approximately preserves their direction. We apply a similar kind
of geometry analysis to high dimensional sparsified vectors. We show that sparsification indeed
preserves direction in high-dimensional space, which is contrary to our low-dimensional intuition.

The first question we need to answer is how should we sparsify a vector v ∈ Rd such that the
sparsification angle is minimum between the original and the sparsified instance of the original
vector (has only K% non-zero component). We found that the cosine angle is minimum when
the K% non-zero component corresponds to the K% highest magnitude component, i.e., Top K
sparsification. The proof is in the appendix.

We did an experiment for analyzing how Top K sparsification affect angle as shown in Figure 9a,
Here we are showing the sparsification angle distribution for a 1000 dimensional vector drawn from
standard normal distribution at different sparsity. The peak of sparsification angle at 90% sparsity
is concentrated around 48◦ which is much less than peak of random vectors which is concentrated
around 90◦. Similarly, the peak up to 80% sparsity is concentrated at an angle of 36.4◦ only. This
suggest that deviation caused by sparsification is indeed small in high-dimension.

For our next experiment shown in Figure 9b, we study how much a vector of a given dimen-
sion, drawn from standard normal distribution, can be maximally sparsified such that the sparsi-
fication angle is less than δ. We can see that the percentage of Top-K components needed for
δ = {20◦, 30◦, 40◦} is around only 43%, 29% and 18% respectively with a variance less than 3%
as shown in Figure 9c. Thus, these experiment suggest that a high-dimensional vector can be spar-
sified up to 70%, which will lead a deviation (δ) of only 30◦. All the above experimental results
are dependent on the distribution from which random vectors are drawn, in Figure 9e, we calculate
the sparsification angle during training ResNet18 on CIFAR100 dataset at 70% Sparsity. Here the
sparsification angle for weight and activation is less than 36◦ for all the layer in the network. So the
experiment suggests that the above analysis is applicable during training.

4The mathematical definition of both of these terms is in the appendix B
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Figure 9: Vector sparsification in high-dimension approximately preserves the direction:(a)
Shows the sparsification angle distribution at different Top-K percentage for a 1000 dimensional
vector in 10, 000 trials. Random represents the angle distribution between 2 random vectors. (b)
and (c) Shows the percentage of Top-K components needed for sparsification angle to be within δ in
1000 trials and the variance in those trials. (d) Shows the relation between Top-K sparsification and
the sparsification angle in 1000 trials. (e) Shows how the sparsification angle (at 70% sparsification)
varies during training for ResNet-18 architecture on CIFAR100 dataset.

5 RELATED WORK

We can classify most of the previous studies which focus on accelerating training or inference in the
following broad categories:

Pruning: Most of the pruning work focuses on inference optimization. Weight pruning can be
classified into two broad categories of structured and unstructured pruning. The idea of unstructured
pruning can be traced back to LeCun et al. (1990); Hassibi & Stork (1993), which prune the network
using the saliency of parameters derived from the second-order information of loss function. Han
et al. (2015b;a) pruned network parameters using a magnitude based method. There are several
other unstructured pruning methods such as Molchanov et al. (2017); Louizos et al. (2017), but the
drawback of all these methods is that it is difficult to extract parallelism on hardware. In contrast,
structured pruning such as Liu et al. (2017); Li et al. (2016b); He et al. (2017); Luo et al. (2017); Wen
et al. (2016); Molchanov et al. (2016) removes entire channels or filters at a time which preserves the
inherent regular computation structure, and therefore it is easy to extract parallelism on hardware.

Quantization: Quantized networks can be used to accelerate both training and inference since en-
ergy consumption in the hardware is directly proportional to bit-width of the operands. There are
many works which focus on quantizing weights for efficient inference such as McDonnell (2018);
Wu et al. (2016); Zhu et al. (2016); Li et al. (2016a); Courbariaux et al. (2015) whereas much other
work focuses on accelerating training as well, such as Banner et al. (2018); Choi et al. (2018); Wang
et al. (2018); Lin et al. (2017a); Zhou et al. (2016); Courbariaux et al. (2016); Rastegari et al. (2016);
Gupta et al. (2015). Some of the other work such as Zhao et al. (2019); McKinstry et al. (2018);
Zhou et al. (2017); Mellempudi et al. (2017) shows that training from scratch is not necessary for
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finding the quantized model, but one can find a quantized model from pre-trained full precision
models. Other work focuses on discrete training and inference using Integers such as Wu et al.
(2018); Das et al. (2018); Jacob et al. (2018); Lin et al. (2016) since integer added/multiplier is more
efficient than floating-point adder/multiplier. Few studies such as Louizos et al. (2019); Jung et al.
(2019); Zhang et al. (2018); Zhou et al. (2018); Hou & Kwok (2018); Hou et al. (2016) formulate
the quantization as an optimization problem to minimize the accuracy loss due to quantization. Few
other work such as Yang et al. (2019); De Sa et al. (2018) focus on improving the learning algorithm
by proposing novel stochastic averaging of the low precision iterates or using SVRG to reduce the
variance and by dynamically adjusting the precision representation using bit centering. Few works
instead of quantizing the entire model to a fixed bit-width focus on per tensor or parameter quan-
tization such as Sakr & Shanbhag (2019); Khoram & Li (2018). Compared to all these works, our
work is orthogonal as we eliminate the computation instead of reducing the computation precision.

Distributed Training: There are few works (Stich et al., 2018; Lin et al., 2017b) which look at
reducing the communication overhead in distributed training by transferring only sparse gradients
during gradient aggregation step but these works are accumulating the rest of the gradients locally
for subsequent iterations. Compared to all these works, our work objective is different as we are con-
cerned with accelerating single node training, whereas their objective is minimizing communication
during distributed training.

6 CONCLUSION

In this work, we propose SWAT, a robust training algorithm based on the insight that sparsifying
weights and activation during training has little impact on convergence. SWAT sparsify both the for-
ward and the backward passes, thereby eliminating lots of redundant computation such as addition
and multiplication by zero. SWAT is a simpler technique and performs better than the recently pro-
posed dimensionality reduction (DSG) technique for accelerating training. Our experiments over
various benchmarks demonstrate significant computation reduction of up to 2-5x for training and
inference and provides a memory footprint reduction of activation by 1.3-1.7x and reduction in
memory access overhead for weight by 2-5x in the backward pass.
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APPENDIX A IMPLEMENTATION DETAIL

The data: A mini-batch of inputs & targets (a0, a∗), training iteration t, previous weights wt,
learning rate η.

The result: Update weights wt+1.

Step 1. Forward Computation;
for l = 1 to L do

if l ==‘ConvolutionLayer’ or ‘LinearLayer’ then
if algorithm ==‘SWAT’ then

wtl ⇐ fTOPK(wtl );
atl ⇐ forward(wtl , atl−1);
atl−1 ⇐ fTOPK(atl−1);

else
atl ⇐ forward(wtl , atl−1) // algorithm == ‘SAW’;
wtl ⇐ fTOPK(wtl );
atl−1 ⇐ fTOPK(atl−1);

end
save for backwardl ⇐ wtl , al−1;

else
al ⇐ forward(wtl , al−1);
save for backwardl ⇐ wtl , al−1;

end
end

Step 2. Backward Computation;
Compute the gradient of the output layer5aL = ∂loss(aL,a∗)

∂aL ;
for l=L to 1 do

wtl , al−1 ⇐ save for backwardl;
5al−1

⇐ backward input(5al , w
t
l );

5wl−1
⇐ backward weight(5al , a

t
l−1);

end

Step 3. Parameter Update;
for l=1 to L do

wt+1
l ⇐ Optimizer(wtl ,5wl

, η);
end

Algorithm 1: Training a L layer network using SAW or SWAT Algorithm
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APPENDIX B PROOF SHOWING TOP-K IS THE BEST SPARSIFICATION
FUNCTION

Definition 1 Sparsifying Function (fS): Given a parameter 1 < k ≤ d, let fS : Rd → Rd be a
function that selects k component of vector and sets the rest of the component to zero. For a vector
v ∈ Rd, fS(v) = Ik(v)�v, where Ik(v) is an indicator vector having k non-zero values determined
by input vector v.

Definition 2 Top-K Sparsifying Function (fTOPK): Given a parameter 1 < k ≤ d, let fTOPK
: Rd → Rd is a special sparsifying function that sets all but the k highest component of input
vector in absolute value to zero. More precisely, for a vector v ∈ Rd, fTOPK(v) = Itopk(v) � v
where Itopk is an indicator function, I(i ∈ {π1, · · · , πk}), and π is a permutation of [d] such that
|v|πi

≥ |v|πi+1
for i = 1, . . . , d− 1.

Definition 3 Sparsification Angle (θ): For a vector v ∈ Rd, the deviation in the direction caused by
sparsification fS(.) is defined as the sparsification angle, i.e., it is the angle between the vector v and
sparse vector fS(v).
Lemma B.1. For any vector v ∈ Rd and of all the sparsifying function fS , Top-K sparsifying
function (fTOPK) causes the minimum deviation in direction i.e. minimum sparsification angle.

Proof. Given a parameter k ∈ [1, d], for a vector v = (v1, · · · , vn)T ∈ Rd let fS(v) =
(m1v1, · · · ,mdvd)

T ∈ Rd such that mi ∈ {0, 1} ∀i, be the Top-K indicator mask i.e., mi = 1
only if ith component of v is selected by the sparsifying function.

cos〈fS(v),v〉 =
fS(v) · v
‖fS(v)‖‖v‖

=

d∑
i=1

(miv
2
i )√

d∑
i=1

(mivi)2

√
d∑
i=1

v2i

=

d∑
i=1

(mivi)
2√

d∑
i=1

(mivi)2

√
d∑
i=1

v2i

(4)

=

√
d∑
i=1

(mivi)2√
d∑
i=1

v2i

=
‖fS(v)‖
‖v‖

(5)

In other words,

Sparsifying Angle(θ) = arccos
‖fS(v)‖
‖v‖

(6)

arccos is a strictly decreasing function, so to minimize θ, ‖fS(v)‖ must be maximized. Therefore
Top-K component of the vector v magnitude wise should be selected.
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