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ABSTRACT

Adversarial training is the standard to train models robust against adversarial ex-
amples. However, especially for complex datasets, adversarial training incurs
a significant loss in accuracy and is known to generalize poorly to stronger at-
tacks, e.g., larger perturbations or other threat models. In this paper, we introduce
confidence-calibrated adversarial training (CCAT) where the key idea is to en-
force that the confidence on adversarial examples decays with their distance to the
attacked examples. We show that CCAT preserves better the accuracy of normal
training while robustness against adversarial examples is achieved via confidence
thresholding. Most importantly, in strong contrast to adversarial training, the ro-
bustness of CCAT generalizes to larger perturbations and other threat models, not
encountered during training. We also discuss our extensive work to design strong
adaptive attacks against CCAT and standard adversarial training which is of inde-
pendent interest. We present experimental results on MNIST, SVHN and Cifar10.

1 INTRODUCTION

Deep neural networks have shown tremendous improvements in various learning tasks including ap-
plications in computer vision, natural language processing or text processing. However, the discov-
ery of adversarial examples, i.e., nearly imperceptibly perturbed inputs that cause mis-classification,
has revealed severe security threats, as demonstrated by attacking popular computer vision services
such as Google Cloud Vision (Ilyas et al., 2018a) or Clarifai (Liu et al., 2016; Bhagoji et al., 2017).
As the number of safety- and privacy-critical applications is increasing, e.g., autonomous driving or
medical imaging, this problem becomes even more important.

While defenses promising certified robustness against adversarial examples have received consider-
able attention (Hein & Andriushchenko, 2017; Wong & Kolter, 2018; Weng et al., 2018; Mirman
et al., 2018; Gowal et al., 2018), such approaches are limited to small networks and often lead to sig-
nificantly increased test error. In practice, adversarial training, i.e., training on adversarial examples
as proposed by Madry et al. (2018), can be regarded as the state-of-the-art and, to the best of our
knowledge, has not been broken so far. However, adversarial training is known to increase test error
significantly. Only on simple datasets such as MNIST (LeCun et al., 1998), adversarial training is
able to preserve accuracy. This observation is typically described as a trade-off between robustness
and accuracy (Schmidt et al., 2018; Stutz et al., 2019). Furthermore, the success of adversarial train-
ing strongly depends on the attack used during training. The achieved robustness does not translate
to novel attacks, e.g., allowing larger adversarial perturbations at test time or different threat models
(Song et al., 2018; Sharma & Chen, 2017).

Contributions: We aim to address both problems: the robustness-accuracy trade-off and the poor
generalization to other or stronger attacks. To this end, we introduce confidence-calibrated ad-
versarial training (CCAT) based on the idea that the confidence in an adversarial example should
decrease as a function of the distance to the attacked data point. Specifically, we bias the network to
predict for the adversarial example a convex combination of the uniform distribution over the labels
and the label of the attacked point, which tends to become uniform as the distance to the attacked
point increases. We show that this novel procedure of adversarial training leads to better “gener-
alization” of the robustness to both stronger attacks and other threat models. This is in contrast to
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standard adversarial training, which does not in general generalize to other attacks. The main reason
is that adversarial training does not tell the network how to extrapolate beyond the specific pertur-
bations seen during training, which we overcome with CCAT. We show that our approach allows to
detect adversarial examples based on their confidence while better preserving the accuracy of nor-
mal training, thereby improving also upon the robustness-accuracy trade-off of regular adversarial
training. We will make our code and results publicly available.

2 RELATED WORK

Adversarial examples are roughly divided into white-box attacks, i.e., with access to the models,
its weights and gradients, e.g. (Goodfellow et al., 2014; Madry et al., 2017; Carlini & Wagner,
2017), and black-box attacks, i.e., only with access to the output of the model, e.g. (Chen et al.,
2017; Brendel & Bethge, 2017; Su et al., 2017; Ilyas et al., 2018b; Sarkar et al., 2017; Narodytska
& Kasiviswanathan, 2017). White-box attacks utilizing projected gradient ascent to maximize the
training loss or surrogate objectives, e.g., (Madry et al., 2017; Carlini & Wagner, 2017), have become
state-of-the-art. In contrast, we directly maximize the confidence in any class different from the
true class, similar to (Hein et al., 2019), to attack our proposed training procedure. Additionally,
momentum (Dong et al., 2018), backtracking and alternative initializations than used in the literature
are required for successful attacks against our models.

Many defenses against adversarial attacks have been proposed, e.g. (Yuan et al., 2017; Akhtar &
Mian, 2018; Biggio & Roli, 2018), of which some have been shown to be ineffective, e.g., in (Atha-
lye et al., 2018; Athalye & Carlini, 2018). Other methods aiming at certified robustness (Hein &
Andriushchenko, 2017; Wong & Kolter, 2018; Weng et al., 2018; Mirman et al., 2018), adversarial
training is the standard to achieve robust models. While adversarial training was proposed in differ-
ent variants (Zantedeschi et al., 2017; Miyato et al., 2016; Huang et al., 2015; Shaham et al., 2018;
Sinha et al., 2018; Lee et al., 2017; Madry et al., 2017), the formulation by Madry et al. (2017)
received considerable attention and has been extended in various ways, e.g., to universal adversarial
examples (Shafahi et al., 2018; Pérolat et al., 2018), using a curriculum learning scheme (Cai et al.,
2018) or ensembles of networks (Tramèr et al., 2017; Grefenstette et al., 2018). Our CCAT differs
from regular adversarial training in the imposed distribution over the labels enforced during training
on adversarial examples and by the attack objective. These seemingly simple modifications lead to
a classifier which can extrapolate its robustness to other attack models.

3 CONFIDENCE CALIBRATION OF ADVERSARIAL EXAMPLES

Adversarial training, specifically the robust optimization formulation proposed by Madry et al.
(2018), has become standard for obtaining neural networks robust against adversarial examples.
In fact, adversarial training is among the few approaches that have not been shown to be ineffec-
tive. However, it is known to reduce the accuracy significantly, especially on challenging tasks.
Similarly, the robustness obtained through adversarial training is argued to generalize poorly to
stronger attacks and other threat models. Our goal is to overcome these problems with our proposed
confidence-calibrated adversarial training (CCAT).

We consider a classifier f : Rd → RK where K is the number of classes and fk denotes
the confidence for class k. We assume that the cross-entropy loss is used during training, even
though our approach can be used with other losses as well. Given x ∈ Rd classified correctly as
y = argmax k fk(x), an adversarial perturbation x + δ is defined as a “small” change δ such that
argmax k fk(x + δ) 6= y, i.e., the classifier changes its decision. The strength of the change δ is
measured by some lp-norm with p ∈ {1, 2,∞}. p = ∞ is a popular choice in the literature as this
leads to the smallest perturbation per feature/pixel.

3.1 ROBUST LOSS FORMULATION OF ADVERSARIAL TRAINING

The successful and theoretically elegant robust optimization formulation by Madry et al. (2018) is
given as the following min-max problem:

min
w

E
[

max
‖δ‖∞≤ε

L(f(x+ δ;w), y)

]
(1)
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with w being the classifier’s parameters and L being the cross-entropy loss. During mini-batch
training the inner maximization problem, i.e.,

max
‖δ‖∞≤ε

L(f(x+ δ;w), y), (2)

is approximately solved. In addition to the l∞-constraint, a box constraint, i.e., x̃i = (x + δ)i ∈
[0, 1], is enforced for images. Note that for the cross-entropy loss, Eq. (2) is equivalent to finding the
point x + δ with minimal confidence in the true class y. Finally, for neural networks, we note that
Eq. (2) is a non-convex optimization problem. In (Madry et al., 2018) the problem is tackled using
projected gradient descent (PGD), which is typically initialized using a random δ with ‖δ‖∞ ≤ ε.
At test time one uses the best out of several random restarts of Eq. (2) to assess robustness.

In contrast to adversarial training as proposed in (Madry et al., 2018), which computes adversarial
examples for the full mini-batch, others compute adversarial examples only for 50% of the mini-
batch, e.g. (Szegedy et al., 2013). Compared to Eq. (1), this approach effectively minimizes

minw

(
E
[
max‖δ‖∞≤ε L(f(x+ δ;w), y)

]
+ E

[
L(f(x;w), Y )

])
. (3)

This improves test accuracy on clean examples compared to Eq. (1) but typically leads to worse
robustness. Intuitively, this variant already optimizes the mentioned robustness-accuracy trade-off.

There are two problems of adversarial training in Eq. (1). First, the ε-ball around training examples
might include examples from other classes. Then, Eq. (2) will focus on these regions such that
adversarial training for these examples gets “stuck”. This case is illustrated in our theoretical toy
dataset in Sec. 3.3. Here, both 100% and 50% adversarial training, cf. Eq. (1) and (3), are not able to
find the Bayes optimal classifier in a fully deterministic problem, i.e., zero Bayes error. This might
contribute to the observed drop in accuracy for adv. training on datasets such as Cifar10 (Krizhevsky,
2009). Second and most importantly, adversarial training as in Eq. (1) does not give any guidance to
the classifier how to extrapolate the classifier beyond the used ε-ball during training. Even worse, it
enforces high confidence predictions everywhere inside the ε-ball but clearly one cannot extrapolate
high-confidence predictions to increasingly larger neighborhoods. Thus, it is not surprising that
adversarial examples can often be found right beyond the ε-ball, i.e., there is no generalization of
robustness to stronger attacks of the same type or other threat models, e.g., other p-norm balls.

3.2 CONFIDENCE-CALIBRATED ADVERSARIAL TRAINING

We address both problems of adversarial training: the tension between accuracy and robustness
and the poor generalization to larger ε-balls and other threat models. The required modifications as
outlined in Alg. 1 are small but effective. During training, instead of searching for an adversarial

Algorithm 1 Pseudo-code of confidence-calibrated adversarial training (CCAT). The main
changes compared to regular adversarial training as, e.g., described in (Madry et al., 2018) or
(Szegedy et al., 2013), are in the attack (line 4) and the probability distribution over the classes
(line 6,7), which becomes more uniform as distance ‖δ‖∞ increases.

1: while true do
2: choose random batch (x1, y1), . . . , (xB , yB).
3: for b = 1, . . . ,B/2 do
4: {maximize confidence in other classes than true one of adversarial example x̃b, Eq. (2):}
5: δb := argmax ‖δ‖∞≤εmaxk 6=yb fk(xb + δ)
6: x̃b := xb + δb
7: {probability over classes of x̃b becomes more uniform as ‖δb‖∞ increases:}
8: λ := e−ρ‖δb‖∞ or λ := (1−min(1, ‖δ‖∞/ε))ρ

9: {ỹb is convex combination of one hot and uniform distribution over the classes:}
10: ỹb := λ one hot(yb) +

(1−λ)
K 1

11: end for
12: update parameters using

∑B/2
b=1 L(f(x̃b), ỹb) +

∑B
b=B/2 L(f(xb), yb)

13: end while
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Figure 1: Illustration of Confidence Cali-
bration. For adversarial training (AT) and
our confidence-calibrated adversarial train-
ing (CCAT) with ρpow = 10 using the power
transition in Eq. (6), both trained with ε =
0.03 on SVHN, we show the probabilities for
all ten classes along adversarial directions.
Adversarial examples were computed using
our L∞-PGD-Conf attack. The robustness
of AT does not generalize as directly after or
in the ε-ball the classifier attains high con-
fidence in a different class, whereas CCAT
predicts close to uniform confidence after
some transition phase and thus adversarial
samples can be easily distinguished from test
examples due to their low confidence.

example x + δ that minimizes the confidence in the true label y, as in Eq. (2), we search for an
adversarial example that maximizes the confidence in an arbitrary other label k 6= y:

max
‖δ‖∞≤

max
k 6=y

fk(x+ δ;w) (4)

This is motivated by our defense strategy to detect adversarial examples based on their (low) con-
fidence. Thus, a natural adaptive attack against this strategy is maximizing the target confidence,
similar to (Goodfellow et al., 2019). During training, CCAT biases the classifier by feeding back ad-
versarial examples into the training process with label distribution shifted to the uniform distribution
on adversarial examples, given as:

p̂(k) = λpy(k) + (1− λ)u(k), k = 1, . . . ,K. (5)

Here, py(k) is the original “one-hot” distribution, i.e., py(k) = 1 iff k = y and py(k) = 0 otherwise,
and u(k) = 1

K is the uniform distribution. Thus, we enforce a convex combination of the original
label distribution and the uniform distribution which is controlled by the parameter λ. We choose
λ to decrease with the distance ‖δ‖∞ of the adversarial example to the attacked example x. We
consider two similar variants of transitions:

λ =e−ρ‖δ‖∞ (“exponential transition” (exp)
λ =(1−min(1, ‖δ‖∞/ε))ρ (“power transition” (pow))

(6)

This ensures that for δ = 0 we impose the original (one-hot) label. For growing δ, however, the
influence of the original label decays proportional to ‖δ‖∞. The speed of decay is controlled by the
parameter ρ. For the exponential transition, we always have a bias towards the true label as even
for large ρ, λ will be non-zero. In case of the power transition, λ = 0 for ‖δ‖∞ ≥ ε, meaning a
pure uniform distribution is enforced. We call this procedure confidence-calibrated adversarial
training (CCAT). Both transitions used in CCAT guide the classifier to decrease its confidence to
uniform when leaving the “data manifold” in an adversarial way – we note that adversarial examples
leave the data-manifold (Stutz et al., 2019). In this way the classifier can generalize its robustness to
stronger attacks and other threat models as it predicts simply uniform confidence there, see Fig. 1.
It is important to note that in CCAT in Alg. 1 we train on 50% clean and 50% adversarial examples
in each mini-batch. Training only on adversarial examples will not work as we loose signal where
the true data manifold lies.

0 10 20 30 40
0

0.2

0.4

0.6

Iteration

E
rr
o
r

0 10 20 30 40
0

0.2

0.4

0.6

Iteration

E
rr
o
r

Figure 2: Momentum and back-
tracking. Our PGD-Conf with 40 iter-
ations with momentum and backtrack-
ing (left) and without both (right). We
plot the objective of Eq. (4) over itera-
tions for 10 samples (different colors).
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RErr @99%TPR in % on SVHN (L∞ attack with ε = 0.03)
Optimization momentum+backtrack mom
Initialization zero rand zero zero
Iterations T 40 200 2000 4000 4000 300 300

AT 38.4 46.2 49.9 50.1 51.8 38.1 30.8
AT Conf 27.4 40.5 46.9 47.3 48.1 28.5 23.8
CCAT, ρpow = 10 4.0 5.0 22.8 23.3 5.2 2.6 2.6

Table 1: Attack ablation study on SVHN. Comparison of our adapted L∞ PGD-Conf attack with
ε = 0.03 on the test set for different number of iterations T and configurations of momentum,
backtracking and initialization. As backtracking needs an additional forward pass per iteration, we
compare T = 200 with backtracking to T = 300 without. Attacks on AT succeed within a few
iterations, but are more difficult against CCAT and require initialization at zero.

3.3 CONFIDENCE-CALIBRATED ADVERSARIAL TRAINING YIELDS ACCURATE MODELS

The following Proposition analyzes 100% adversarial training, cf., Eq. (1) as proposed by Madry
et al. (2018) and its 50% variant, cf. Eq. (3), and our confidence-calibrated variant:

Proposition 1. We consider a classification problem with two points x = 0 and x = ε in R with
deterministic labels, that is p(y = 2|x = 0) = 1 and p(y = 1|x = ε) = 1 and the problem is
fully determined by the probability p0 = p(x = 0) as p(x = ε) = 1 − p0. The Bayes error of this
classification problem is zero. The Bayes optimal classifier of

• 100% adversarial training yields an error of min{p0, 1− p0}.
• adversarial training with 50% adversarial and 50% clean examples yields an error of

min{p0, 1− p0}.
• Our confidence-calibrated adversarial training with 50% clean and 50% adversarial ex-

amples yields zero error if λ < min{ p0
1−p0 ,

1−p0
p0
}.

This proposition shows a clear advantage of our confidence-calibrated adversarial training over regu-
lar adversarial training. It reconfirms that there is indeed a tension between accuracy and robustness
when using adversarial training both in the 100% and the 50% variants as it has recently been dis-
cussed (Tsipras et al., 2018; Stutz et al., 2019). However, our confidence-calibrated adversarial
training can resolve this if λ and thus ρ in Eq. (6) is chosen appropriately.

4 EXPERIMENTS

We evaluate our CCAT based on the ability to reject adversarial examples by their confidence and
generalize robustness to larger ε-balls and other threat models. Thus, we use a two-stage approach:
first, we decide whether a given (potentially adversarial) example is rejected or classified; second,
we evaluate the robustness and accuracy on the non-rejected examples. We present experiments on
MNIST, (LeCun et al., 1998) SVHN (Netzer et al., 2011) and Cifar10 (Krizhevsky, 2009).1

Attacks: We follow (Madry et al., 2018) and use projected gradient descent (PGD) to minimize
the negatives of Eq. (2) and (4); we denote them as PGD-CE and PGD-Conf. The perturbation δ is
initialized uniformly over direction and distance; for PGD-Conf, we additionally use δ = 0 as initial-
ization. Different from (Madry et al., 2018), we run exactly T iterations (no early stopping) and take
the perturbation corresponding to the best objective of the T iterations. In addition to momentum,
as in (Dong et al., 2018), we propose to use an adaptive learning rate in combination with a back-
tracking scheme to improve the attacks: after each iteration, the computed update is only applied if
it improves the objective; otherwise the learning rate is reduced. For evaluation, we use T = 2000
iterations, 10 random retries and learning rate of 0.001 for PGD-Conf and T = 200 with 50 ran-
dom retries and learning rate 0.05 for PGD-CE. As black-box attacks, we additionally use random
sampling, the attack by Ilyas et al. (2018a), adapted with momentum and backtracking optimizing
Eq. (4) for T = 2000 iterations with 10 attempts, a variant of (Narodytska & Kasiviswanathan,

1Additional details, precise descriptions of the white- and black-box attacks used, and more experimental
results can be found in Appendix B.
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Figure 3: Confidence histograms on SVHN.
For AT (left) and CCAT (right) with ρpow = 10
(right), we show confidence histograms corre-
sponding to correctly classified test examples
(top) and successful adversarial examples (bot-
tom). We consider the worst-case adversarial ex-
amples across all testedL∞ attacks for ε = 0.03.
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Figure 4: ROC and RErr curves on SVHN.
Left: ROC curves, i.e., FPR against TPR when
distinguishing correctly classified test examples
from successful adversarial examples by confi-
dence. Right: RErr against confidence threshold
τ . For evaluation, we choose τ in order to obtain
99%TPR. As described in the text, RErr sub-
sumes both Err and FPR. Curves based on worst-
case examples across all tested L∞ attacks.

2017) with T = 2000 iterations and the “cube” attack Andriushchenko (2019) with T = 5000 iter-
ations. The black-box attacks ensure that our defense avoids, e.g., gradient masking as described in
(Athalye et al., 2018). In addition toL∞ attacks, we also consider PGD-CE, PGD-Conf and the cube
attack for L2-attacks. For each model, we attack the first 1000 test examples and evaluate on the
per-example worst-case adversarial examples, i.e., the adversarial examples with highest confidence
per example but across all attacks and attempts.

Training: We use ResNet-20 (He et al., 2016) on all datasets, implemented in PyTorch (Paszke et al.,
2017). The networks are initialized using (He et al., 2015) and trained using stochastic gradient
descent with batch size of 100 for 100 or 200 epochs (MNIST and SVHN/Cifar10, respectively).
We use T = 40 iterations, ε = 0.3 on MNIST and ε = 0.03 on SVHN and Cifar10 for the attacks
during training – images are normalized to [0, 1]. For CCAT we initialize perturbations uniformly
or at zero.

Evaluation Metrics: We evaluate our proposed approach in terms of detection of adversarial exam-
ples: successful adversarial examples are considered negatives and correctly classified test examples
are considered positives. We report the area under the ROC curve, i.e., ROC AUC. For fair compari-
son with regular adversarial training (AT), we report both test error (Err) and robust test error (RErr)
and also extend these metrics to our detection setting; specifically, we report both Err and RErr for
a confidence threshold τ resulting in a true positive rate (TPR) of 99%, i.e., the network is allowed
to reject only up to 1% of correctly classified test examples. Then, RErr(τ) is calculated as:

RErr(τ) =

N∑
n=1

1f(xn)6=yn1c(xn)≥τ +
N∑
n=1

1f(xn)=yn1f(x̃n)6=yn1c(x̃n)≥τ

N∑
n=1

1c(xn)≥τ +
N∑
n=1

1c(xn)<τ1c(x̃n)≥τ1f(xn)=yn1f(x̃n)6=yn

, (7)

Here, τ is the confidence-threshold fixed on the held-out last 1000 test examples, {(xn, yn)}Nn=1 are
test examples, c(xn) denotes the classifier’s confidence on xn, and x̃n are adversarial examples. The
enumerator counts the number of incorrectly classified test examples xn with c(xn) ≥ τ (first term)
and the number of successful adversarial examples x̃n on correctly classified test examples with
c(x̃n) ≥ τ (second term). The denominator counts test examples xn with c(xn) ≥ τ (first term) and
the number of successful adversarial examples x̃n with c(x̃n) ≥ τ but where the corresponding test
example xn has c(xn) < τ (second term). The latter takes care of the special case where adversarial
examples have higher confidence than their corresponding test examples, which is encouraged by
the objective of our PGD-Conf attack, see Eq. (4). In total this yields a correct fraction within [0, 1].
For τ = 0, Eq. (7) reduces to the “regular” RErr. The confidence-thresholded Err(τ) corresponds to
taking only the first terms in both enumerator and denominator. We also note that RErr(τ) naturally
subsumes the false positive rate (FPR). RErr is always computed on the 1000 attacked test examples;
Err is computed on all test examples (without the held-out part for determining τ@99%TPR).
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MNIST (L∞ attack with ε = 0.3 during training)
τ=0 τ@99%TPR

Attack Training Err
in %

RErr
in %

ROC
AUC

Err
in %

RErr
in % τ

L∞, ε = 0.3
AdvTrain 0.50 7.20 0.97 0.00 1.00 1.00
CCAT 0.50 100.00 0.99 0.10 7.70 0.99

L∞, ε = 0.4
AT 100.00 0.20 100.00
CCAT 100.00 0.94 40.00

L2, ε = 3
AT 98.80 0.73 81.30
CCAT 82.60 1.00 1.40

SVHN (L∞ attack with ε = 0.03 during training)

L∞, ε = 0.03
AT 3.40 57.30 0.55 2.50 55.60 0.56
CCAT 2.90 97.80 0.70 2.10 38.50 0.60

L∞, ε = 0.06
AT 89.00 0.32 88.30
CCAT 99.80 0.70 46.00

L2, ε = 1
AT 92.40 0.26 92.00
CCAT 81.80 0.91 18.50

CIFAR10 (L∞ attack with ε = 0.03 during training)

L∞, ε = 0.03
AT 16.60 62.70 0.64 15.10 62.30 0.35
CCAT 10.10 96.70 0.60 8.70 67.90 0.40

L∞, ε = 0.06
AT 93.70 0.35 93.60
CCAT 99.20 0.43 91.50

L2, ε = 1
AT 74.40 0.59 73.90
CCAT 81.80 0.77 46.20

Table 2: Main results on MNIST, SVHN and Cifar10. Comparison of AT and CCAT on MNIST
(top), SVHN (middle) and Cifar10 (bottom). We report worst-case results across all tested attacks,
for L∞ and L2 attacks; the used ε values are reported in the left most column. During training, L∞
attacks with ε = 0.3 on MNIST and ε = 0.03 on SVHN/Cifar10 were used. In all cases we report
“regular” Err and RErr, their confidence-thresholded variants for τ@99%TPR as well as ROC AUC.

4.1 ABLATION STUDY

Momentum and Backtracking: Fig. 2 illustrates the advantage of momentum and the proposed
backtracking scheme for PGD-Conf with T = 40 iterations on 10 test examples of SVHN. As
shown in Fig. 2 and Tab. 1, better objective values can be achieved within fewer iterations and
avoiding oscillation which is important at training time. However, also at test time, Tab. 1 shows
that attacking our CCAT model effectively requires up to T = 2000 iterations and zero initialization
so that RErr for τ@99%TPR stagnates. In contrast, PGD-Conf performs better against AT even
for smaller T and without momentum or backtracking. Thus, finding high-confidence adversarial
examples against CCAT is more difficult than for AT. Overall, this illustrates our immense effort put
into attacking our proposed defense with an adapted attack, novel optimization techniques together
with large number of iterations and black box attacks for avoiding gradient obfuscation. We are sure
that our defense cannot be easily broken and thus our reported performance is reliable.

Evaluation Metrics: Fig. 4 shows ROC and RErr curves on SVHN, considering AT and CCAT with
ρpow = 10, i.e., using the power transition from Eq. (6). The ROC curves, and the corresponding
AUC value, quantify how well (successful) adversarial examples can be distinguished from (cor-
rectly classified) test examples. Note our conservative choice to use the confidence threshold τ at
99%TPR (τ depends only on correctly classified test examples, not adversarial examples), loosing
at most 1% correctly classified examples. We note that RErr implicitly includes FPR as well as Err;
additionally, allowing confidence thresholding will naturally also improve robustness for AT. On
SVHN and Cifar10, we found the power transition with ρpow = 10 from Eq. (6) to work best. Up to
ρ = 10, performance regarding RErr for τ@99% TPR continuously improves and after ρpow = 10
performance stagnates, as shown in detail in the appendix. On MNIST, interestingly, exponential
transition with ρexp = 7 performs best; we assume that the slight bias towards the true label pre-
served in the exponential transition helps.
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MNIST (ε = 0.3)
τ@99%TPR

ROC
AUC

FPR
in %

R
an

d Normal 0.34 100.0
AT 0.99 44.5
CCAT 1.00 0.0

D
is

t Normal 0.34 100.0
AT 0.63 100.0
CCAT 1.00 0.0

SVHN (ε = 0.03)
τ@99%TPR

ROC
AUC

FPR
in %

0.95 72.8
1.00 0.9
1.00 0.0
0.43 100.0
0.89 98.8
1.00 0.0

CIFAR10 (ε = 0.03)
τ@99%TPR

ROC
AUC

FPR
in %

0.83 87.1
0.60 100.0
1.00 0.0
0.49 100.0
0.31 100.0
1.00 0.0

Table 3: Noise and distal adversarial example results on MNIST, SVHN and Cifar10. Ro-
bustness against uniform noise (Rand) and distal adversarial examples (Dist), i.e., high-confidence
adversarial computed on uniform noise using our L∞ PGD-Conf attack by considering Eq. (4) with-
out any true label; we use ε = 0.3 on MNIST, ε = 0.03 on SVHN/Cifar10. We report ROC AUC
and FPR for a confidence threshold of τ@99%TPR.

4.2 RESULTS

In Tab. 2, we report the main results of our paper, namely robustness across all evaluated L∞ at-
tacks for the same ε used during training and an increased ε. As RErr for τ@99%TPR is always
lower than its unthresholded variant for τ = 0, showing the general advantage of allowing rejection
of adversarial examples, we concentrate on the newly introduced thresholded metrics. While on
MNIST, CCAT incurs a drop of roughly 6% in RErr, and on Cifar10 a drop of roughly 5% against
L∞ with the same ε as during training, it significantly outperforms AT on SVHN, by more than
16%. On SVHN and Cifar10, Err is additionally improved – on Cifar10, the improvement is par-
ticularly significant with roughly 6%. For larger ε, robustness of AT degrades significantly, while
CCAT is able to preserve robustness to some extend, especially on SVHN. Only on Cifar10, RErr
degrades similarly to AT. In terms of generalization to another threat model, here L2 attacks, CCAT
outperforms AT significantly. We note that on all datasets, the considered ε values of 3 on MNIST
and 1 on SVHN/Cifar10 correspond to L2-balls which are not contained in the L∞-ball used during
training. Robustness of AT degrades significantly, while CCAT generalizes to this new attack model.
Here one can clearly see the effect of better extrapolation properties of CCAT.

As second experiment we report in Tab. 3 results for detecting uniform noise and adversarial uniform
noise (i.e., distal adversarial examples) based on their confidence. For the latter, we sample uniform
noise and subsequently use PGD-Conf to maximize the confidence (without considering any true
label in Eq. (4)) in the L∞-ball around the noise point. We use the same hyper-parameters and ε
values as used for PGD-Conf in Tab. 2. Although ROC AUC values are high on uniform noise, an
FPR of 40% or higher shows that AT assigns high confidence to uniform noise. When maximizing
confidence on uniform noise, FPR approaches 100% on all datasets. In contrast CCAT allows to
separate these attacks perfectly from test examples. This further supports that CCAT induces a bias
beyond the ε-ball used for training.

5 CONCLUSION

We proposed confidence-calibrated adversarial training (CCAT) which addresses two limitations
of regular adversarial training (Madry et al., 2018; Szegedy et al., 2013): an apparent accuracy-
robustness problem, i.e., adversarial training tends to worsen accuracy; and, more importantly, the
lack of “generalizable” robustness, i.e., obtaining robust models against a larger class of adversarial
attacks than used during training (e.g., by allowing larger adversarial perturbations or other threat
models). CCAT achieves comparable or better robustness against the threat model at training time
with better test accuracy on SVHN and Cifar10. However, in strong contrast to adversarial training,
CCAT is able to generalize to stronger attacks in L∞, L2-attacks and reduces confidence on (ad-
versarial) uniform noise as it naturally extrapolates beyond the L∞-ball used during training. This
opens up new directions of research aiming at models which are robust in a broad sense.
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A PROOF OF PROPOSITION 1

Proposition 2. We consider a classification problem with two points x = 0 and x = ε in R with
deterministic labels, that is p(y = 2|x = 0) = 1 and p(y = 1|x = ε) = 1 and the problem is
fully determined by the probability p0 = p(x = 0) as p(x = ε) = 1 − p0. The Bayes error of this
classification problem is zero. The Bayes optimal classifier of

• 100% adversarial training yields an error of min{p0, 1− p0}.
• adversarial training with 50% adversarial and 50% clean examples yields an error of

min{p0, 1− p0}.
• Our confidence-calibrated adversarial training with 50% clean and 50% adversarial ex-

amples yields zero error if λ < min{p0/1−p0, 1−p0/p0}.

Proof. We introduce
a = f1(0)− f2(0), b = f1(ε)− f2(ε). (8)

and express the confidences of class 1 and 2 in terms of these quantities.

p̂(y = 2|x = x) = log
( ef2(x)

ef1(x) + ef2(x)

)
= log

(
1 + ef1(x)−f2(x)

)
= log

(
1 + ea

)
.

p̂(y = 1|x = x) = log
( ef1(x)

ef1(x) + ef2(x)

)
= log

(
1 + ef2(x)−f1(x)

)
= log

(
1 + e−b

)
.

For our confidence-calibrated adversarial training one first has to solve:

argmax
‖δ‖∞≤ε

p̂(y = 2|x+ δ) =

{
0 if a > b

ε else.
.

argmax
‖δ‖∞≤ε

p̂(y = 1|x+ δ) =

{
ε if a > b

0 else.
.

With this we can write the total loss (remember that we have half normal cross-entropy loss and half
the loss for the adversarial part with the modified “labels”) as

L(a, b) = p0

[
log(1 + ea)1a≥b

+ 1a<b

( (1 + λ)

2
log(1 + eb) +

(1− λ)
2

log(1 + e−b)
)]

+ (1− p0)
[
log(1 + e−b)1a≥b

+ 1a<b

( (1 + λ)

2
log(1 + e−a) +

(1− λ)
2

log(1 + ea)
)]

+ log(1 + ea)p0 + log(1 + e−b)(1− p0),
where we have omitted a global factor 1

2 for better readability. We distinguish two sets in the
optimization. First we consider the case a ≥ b. Then it is easy to see that in order to minimize the
loss we have a = b.

∂aL =
ea

1 + ea
p0(1 + γ)− e−a

1 + e−a
(1− p0)(1 + γ)

This yields ea = 1−p0
p0

or a = log
(
1−p0
p0

)
. The other case is a < b. We get

∂aL =
[ (1 + λ)

2

−e−a

1 + e−a
+

(1− λ)
2

ea

1 + ea

]
(1− p0)

+ p0
ea

1 + ea

∂bL =
[ (1 + λ)

2

eb

1 + eb
+

(1− λ)
2

−eb

1 + e−b

]
p0

+ (1− p0)
−e−b

1 + e−b
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This yields the solution

a∗ = log
( 1+λ

2 (1− p0)
p0 +

1−λ
2 (1− p0)

)
b∗ = log

( 1−λ
2 p0 + (1− p0)

1+λ
2 p0

)
It is straightforward to check that a∗ < b∗ for all 0 < p0 < 1. We have a∗ < 0 if

1 >
1− p0
p0

λ,

and b∗ > 0 if
1 >

p0
1− p0

λ.

Thus we recover the Bayes classifier if

λ < min
{1− p0

p0
,

p0
1− p0

}
.

Now we consider the approach by Madry et al. (2018) with 100% adversarial training. The loss can
be written as

L(a, b) =max
{
log(1 + ea), log(1 + eb)

}
p0

+max
{
log(1 + e−a), log(1 + e−b)

}
(1− p0)

The loss is minimized if a = b as then both maxima are minimal. This results in the loss
L(a) = log(1 + ea)p0 + log(1 + e−a)(1− p0).

The critical point is attained at a∗ = b∗ = log
(

1−p0
p0

)
. This is never Bayes optimal for all 0 < p0 <

1.

Next we consider 50% adversarial plus 50% clean training. The loss can be written as

L(a, b) =max
{
log(1 + ea), log(1 + eb)

}
p0

+max
{
log(1 + e−a), log(1 + e−b)

}
(1− p0)

+ log(1 + ea)p0 + log(1 + e−b)(1− p0)
We make a case distinction. If a ≥ b, then the loss reduces to

L(a, b) = log(1 + ea)p0 + log(1 + e−b)(1− p0)
+ log(1 + ea)p0 + log(1 + e−b)(1− p0)
≥ L(a, a)
= 2 log(1 + ea)p0 + 2 log(1 + e−a)(1− p0)

Solving for the critical point yields a∗ = log
(

1−p0
p0

)
= b∗. Next we consider the set a ≤ b. This

yields the loss

L(a, b) = log(1 + eb)p0 + log(1 + e−a)(1− p0)
+ log(1 + ea)p0 + log(1 + e−b)(1− p0)

Solving for the critical point yields a∗ = log
(

1−p0
p0

)
= b∗ which fulfills a ≤ b. Actually, it

coincides with the solution found already. One does not recover the Bayes classifier for any 0 <
p0 < 1.

Moreover, we note that

a∗ = b∗ =

{
> 0 if p0 < 1

2 ,

< 0 if p0 > 1
2 .

Thus, we classify x = 0 correctly, if p0 > 1
2 and x = ε correctly if p0 < 1

2 . Thus the error is given
by min{p0, 1− p0}.
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Algorithm 2 Pseudo-code for the used projected gradient descent (PGD) procedure to maximize
Eq. (9) or Eq. (10) subject to the constraints x̃i = xi + δi ∈ [0, 1] and ‖δ‖∞ ≤ ε; in practice,
the procedure is applied on batches of inputs. The algorithm is also easily adapted to work with a
L2-norm; only the projections on line 6 and 24 needs to be adapted.

input: example x with label y
input: number of iterations T
input: learning rate γ, momentum β, learning rate factor α
input: initial δ(0), e.g., Eq. (11) or δ(0) = 0

1: v := 0 {best objective achieved}
2: x̃ := x+ δ(0) {best adversarial example}
3: g(−1) := 0 {accumulated gradients}
4: for t = 0, . . . , T do
5: {projection onto L∞ ε-ball and on [0, 1]:}
6: clip δ(t)i to [−ε, ε]
7: clip xi + δ

(t)
i to [0, 1]

8: {forward and backward pass to get objective and gradient:}
9: v(t) := F(x+ δ(t), y)

10: g(t) := sign
(
∇δ(t)F(x+ δ(t), y)

)
11: {keep track of adversarial example resulting in best objective:}
12: if v(t) > v then
13: v := v(t)

14: x̃ := x+ δ(t)

15: end if
16: {iteration T is only meant to check whether last update improved objective:}
17: if t = T then
18: break
19: end if
20: {integrate momentum term:}
21: g(t) := βg(t−1) + (1− β)g(t)
22: {“try” the update step and see if objective increases:}
23: δ̂(t) := δ(t) + γg(t)

24: clip δ̂(t)i to [−ε, ε]
25: clip xi + δ̂

(t)
i to [0, 1]

26: v̂(t) := F(x+ δ̂(t), y)
27: {only keep the update if the objective increased; otherwise decrease learning rate:}
28: if v̂(t) ≥ v(t) then
29: δ(t+1) := δ̂(t)

30: else
31: γ := γ/α
32: end if
33: end for
34: return x̃, ṽ

B EXPERIMENTS

We give additional details on our experimental setup, specifically regarding attacks, training and the
used evaluation metrics. Afterwards, we include additional experimental results, including ablation
studies, results for 98% true positive rate (TPR), and results per employed attack.

B.1 ATTACKS

Complementary to the description of the projected gradient descent (PGD) attack by Madry et al.
(2018) and our adapted attack, we provide a detailed algorithm in Alg. 2. We note that the objective
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RErr @99%TPR in % on MNIST (L∞ attack with ε = 0.3)
Optimization momentum+backtrack momentum
Initialization zero rand zero zero
Iterations T 40 200 2000 4000 4000 60 300 60 300

AT 0.4 0.4 0.4 0.3 0.6 0.4 0.6 0.4 0.4
AT Conf 0.8 0.8 0.8 0.8 1.1 1.0 1.1 1.0 1.0
CCAT, ρexp = 7 0.6 3.3 4.9 6.8 5.5 0.9 3.8 0.0 0.1

RErr @99%TPR in % on SVHN (L∞ attack with ε = 0.03)
Optimization momentum+backtrack momentum
Initialization zero rand zero zero
Iterations T 40 200 2000 4000 4000 60 300 60 300

AT 38.4 46.2 49.9 50.1 51.8 37.7 38.1 29.9 30.8
AT Conf 27.4 40.5 46.9 47.3 48.1 27.1 28.5 21.1 23.8
CCAT, ρpow = 10 4.0 5.0 22.8 23.3 5.2 2.6 2.6 2.6 2.6

RErr @99%TPR in % on CIFAR10 (L∞ attack with ε = 0.03)
Optimization momentum+backtrack momentum
Initialization zero rand zero zero
Iterations T 40 200 2000 4000 4000 60 300 60 300

AT 60.9 60.8 60.8 60.8 60.9 60.9 60.9 57.4 57.6
AT Conf 60.4 60.6 60.5 60.5 60.9 60.4 60.6 56.2 56.6
CCAT, ρpow = 10 14.8 16.2 40.2 41.3 34.9 7.2 7.2 7.2 7.2

Table 4: Detailed attack ablation studies on MNIST, SVHN and Cifar10. Complementary to
Tab. 1, we compare our L∞ PGD-Conf attack with T iterations and different combinations of mo-
mentum, backtracking and initialization on all three datasets. We consider AT, AT trained with
PGD-Conf, and CCAT; we report RErr for confidence threshold τ@99%TPR. As backtracking re-
quires an additional forward pass per iteration, we use T = 60 and T = 300 for attacks without
backtracking to be comparable to attacks with T = 40 and T = 200 with backtracking.

maximized in (Madry et al., 2018) is

F(x+ δ, y) = L(f(x+ δ;w), y) (9)

where L denotes the cross-entropy loss, f(·;w) denotes the model and (x, y) is an input-label pair
from the test set. Our adapted attack, in contrast, maximizes

F(x+ δ, y) = maxk 6=y fk(x+ δ;w). (10)

We denote these two variants as PGD-CE and PGD-Conf, respectively. Deviating from (Madry
et al., 2018), we initialize δ uniformly over directions and norm (instead of uniform initialization
over the volume of the ε-ball):

δ = uε
δ′

‖δ′‖∞
, δ′ ∼ N (0, I), u ∼ U(0, 1) (11)

where δ′ is sampled from a standard Gaussian and u ∈ [0, 1] from a uniform distribution. We also
consider zero initialization, i.e., δ = 0; while for random initialization we always consider multiple
attempts, 10 for PGD-Conf and 50 for PGD-CE, with zero initialization, we use only 1 attempt.

Alg. 2 also gives more details on the employed momentum and backtracking scheme. These two
“tricks” add two additional hyper-parameters to the number of iterations T and the learning rate γ,
namely the momentum parameter β and the learning rate factor α. After each iteration, the computed
update, already including the momentum term, is only applied if this improves the objective. This is
checked through an additional forward pass. If not, the learning rate is divided by α, and the update
is rejected. Alg. 2 includes this scheme as an algorithm for an individual test example x with label y
for brevity; however, extending it to work on batches, which is used in our paper, is straight-forward.
In practice, for PGD-CE, with T = 200 iterations, we use β = 0.9 and α = 1.25; for PGD-Conf,
with T = 2000 iterations, we use β = 0.9 and α = 1.1.

We also give more details on the used black-box attacks. For random sampling, we apply Eq. (11)
T = 5000 times in order to maximize Eq. (10). We also implemented the black-box attack of Ilyas
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MNIST (L∞ attack with ε = 0.3 during training)
τ=0 τ@99%TPR

Err
in %

RErr
in %

ROC
AUC

Err
in %

RErr
in %

Normal 0.40 100.00 0.34 0.10 100.00
AT 0.50 5.60 0.97 0.00 0.40
AT Conf 0.50 6.00 0.98 0.10 1.10
CCAT, ρexp = 3 0.40 88.10 0.99 0.10 11.90
CCAT, ρexp = 5 0.40 88.70 0.99 0.10 10.80
CCAT, ρexp = 7 0.50 74.70 0.99 0.10 5.70
CCAT, ρexp = 9 0.30 86.80 0.99 0.10 11.00
CCAT, ρpow = 10 0.30 64.80 0.95 0.10 17.30

SVHN (L∞ attack with ε = 0.03 during training)
τ=0 τ@99%TPR

Err
in %

RErr
in %

ROC
AUC

Err
in %

RErr
in %

Normal 3.60 99.90 0.17 2.60 99.90
AT 3.40 56.90 0.55 2.50 54.90
AT Conf 3.70 58.70 0.61 2.80 52.50
CCAT, ρpow = 1 2.70 82.40 0.74 2.20 43.00
CCAT, ρpow = 2 2.90 79.60 0.68 2.10 44.20
CCAT, ρpow = 6 2.90 72.10 0.64 1.80 32.80
CCAT, ρpow = 10 2.90 91.00 0.67 2.10 38.50
CCAT, ρexp = 7 2.90 73.10 0.66 2.00 54.70

CIFAR10 (L∞ attack with ε = 0.03 during training)
τ=0 τ@99%TPR

Err
in %

RErr
in %

ROC
AUC

Err
in %

RErr
in %

Normal 8.30 100.00 0.20 7.40 100.00
AT 16.60 61.30 0.65 15.10 60.90
AT Conf 16.10 61.70 0.63 15.10 61.50
CCAT, ρpow = 1 9.70 95.30 0.63 8.70 72.40
CCAT, ρpow = 2 9.70 95.10 0.60 8.40 70.60
CCAT, ρpow = 6 9.20 94.10 0.54 8.00 69.80
CCAT, ρpow = 10 10.10 95.00 0.60 8.70 63.00
CCAT, ρexp = 7 13.20 77.40 0.66 11.70 68.60

Table 5: Training ablation studies on MNIST, SVHN and Cifar10. We report results for different
choices of ρ and transitions, cf. Eq. (6). We report RErr and Err with confidence threshold τ = 0
and τ@99%TPR as well as ROC AUC. The models are tested against our L∞ PGD-Conf attack
with T = 2000 iterations and zero as well as random initialization. On MNIST, the exponential
transition, especially ρexp = 7 performs best; on Cifar10, the power transition with ρpow = 10 works
best – performance stagnates for ρpow > 10. On SVHN, we also use ρpow = 10, although ρpow = 6
shows better results. However, against larger ε-balls, we found that ρpow = 10 works significantly
better.

et al. (2018a) using a population of 50 and variance of 0.1 for estimating the gradient in Line 10 of
Alg. 2; a detailed algorithm is provided in (Ilyas et al., 2018a). We use a learning rate of 0.001 (note
that the gradient is signed, as in (Madry et al., 2018)) and also integrated a momentum with β = 0.9
and backtracking as described in Alg. 2 with α = 1.1 and T = 2000 iterations. We use zero and
random initialization; in the latter case we allow 10 random retries. For the simple black-box attack
we follow the algorithmic description in (Narodytska & Kasiviswanathan, 2017) considering only
axis-aligned perturbations of size ε per pixel. We run the attack for T = 2000 iterations and allow
10 random retries. Finally, we use a variant of the cube attack proposed in (Andriushchenko, 2019).
We run the attack for T = 5000 iterations with a probability of change of 0.05. We emphasize
that, except for (Ilyas et al., 2018a), these attacks are not gradient-based and do not approximate the
gradient.
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MNIST (L∞ attack with ε = 0.3)
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Cifar10 (L∞ attack with ε = 0.03)
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Figure 5: Confidence histograms on MNIST and Cifar10. As in Fig. 3, we show histograms
of confidences on correctly classified test examples (top) and on successful adversarial examples
(bottom) for both AT and CCAT. Note that on AT, the number of successful adversarial examples is
usually lower than on CCAT, i.e., reflects the RErr for τ = 0 in Tab. 2; for CCAT in contrast, nearly
all adversarial examples are successful, while only a part has high confidence. Histograms obtained
for the worst-case adversarial examples across all tested L∞ attacks.

B.2 TRAINING

As described in Sec. 4, we follow the ResNet-20 architecture by He et al. (2016) implemented
in PyTorch (Paszke et al., 2017). For training we use a batch size of 100 and train for 100 and
200 epochs on MNIST and SVHN/Cifar10, respectively: this holds for normal training, adversarial
training (AT) and confidence-calibrated adversarial training (CCAT). For the latter two, we use
PGD-CE and PGD Conf, respectively, for T = 40 iterations, momentum and backtracking (β = 0.9,
α = 1.5). For PGD-CE we use a learning rate of 0.05, 0.01 and 0.005 on MNIST, SVHN and
Cifar10. For PGD-Conf we use a learning rate of 0.05. For training, we use standard stochastic
gradient descent, starting with a learning rate of 0.1 on MNIST/SVHN and 0.075 on Cifar10. The
learning rate is multiplied by 0.95 after each epoch. We do not use weight decay; but the network
includes batch normalization (Ioffe & Szegedy, 2015). On SVHN and Cifar10, we use random
cropping, random flipping (only Cifar10) and contrast augmentation during training. We always
train on 50% clean and 50% adversarial examples per batch, i.e., each batch contains both clean and
adversarial examples which is important when using batch normalization.

B.3 EVALUATION METRICS

For reproducibility and complementing the discussion in the main paper, we describe the used eval-
uation metrics and evaluation procedure in more detail. Adversarial examples are computed on the
first 1000 examples of the test set; the used confidence threshold is computed on the last 1000 exam-
ples of the test set; test errors are computed on all test examples minus the last 1000. As we consider
multiple attacks, and some attacks allow multiple random attempts, we always consider the worst
case adversarial example per test example and across all attacks/attempts; the worst-case is selected
based on confidence.

ROC AUC: To compute ROC curves, and the area under the curve, i.e., ROC AUC, we define
negatives as successful adversarial examples (on correctly classified test examples) and positives as
the corresponding correctly classified test examples. The ROC AUC as well as the curve itself can
easily be calculated using (Pedregosa et al., 2011). Practically, the generated curve could be used to
directly estimate a threshold corresponding to a pre-determined true positive rate (TPR). However,
this requires interpolation; after trying several constant interpolation schemes, we concluded that the
results are distorted significantly, especially for TPRs close to 100%. Thus, we followed a simpler
scheme as mentioned above: on a held out validation set of size 1000 (the last 1000 samples of the
test set), we sorted the corresponding confidences, and picked the confidence threshold in order to
obtain the desired TPR, e.g., 99%, on this set exactly.
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Robust Test Error: For clarity, we repeat our confidence-integrated definition of the robust test
error:

RErr(τ) =

N∑
n=1

1f(xn)6=yn1c(xn)≥τ +
N∑
n=1

1f(xn)=yn1f(x̃n)6=yn1c(x̃n)≥τ

N∑
n=1

1c(xn)≥τ +
N∑
n=1

1c(xn)<τ1c(x̃n)≥τ1f(xn)=yn1f(x̃n)6=yn

, (12)

As described in the main paper, Eq. (12) quantifies the performance of a classifier with reject-option
at a specific confidence threshold τ on both clean and adversarial examples. The regular robust test
error, corresponding to Eq. (12) at τ = 0, can also be written as

RErr(0) =

N∑
n=1

1f(xn)6=yn +
N∑
n=1

1f(xn)=yn1f(x̃n)6=yn

N∑
n=1

1

. (13)

The robust test error is easy to handle as it quantifies overall performance, including generalization
on clean examples (first term in Eq. (13)) and robustness on adversarial examples corresponding
to correctly classified clean examples (second term in Eq. (13)). Additionally, the robust test error
lies in [0, 1]. Generalizing Eq. (13) to τ > 0 is non-trivial due to the following considerations:
First, when integrating a confidence threshold, the reference set (i.e., the denominator) needs to be
adapted. Otherwise, the metric will not reflect the actual performance after thresholding, i.e., reject-
ing examples – specifically, the values are not comparable across different confidence thresholds τ .
Then, Eq. (13) might be adapted as follows:

RErr(τ) =

N∑
n=1

1f(xn)6=yn1c(xn)≥τ +
N∑
n=1

1f(xn)=yn1f(x̃n)6=yn1c(x̃n)≥τ

N∑
n=1

1c(xn)≥τ

. (14)

Note that in the nominator, we only consider clean and adversarial examples with confidence above
the threshold τ , i.e., c(xn) ≥ τ and c(x̃n) ≥ τ . Similarly, the denominator has been adapted ac-
cordingly, as after rejection, the reference set changes, too. However, this formulation has a problem
when adversarial examples obtain higher confidence than the original clean examples. Thus, second,
we need to account for the case where c(x̃n) > τ ≥ c(xn), i.e., an adversarial example obtains a
higher confidence than the corresponding clean example. Then, the nominator may exceed the de-
nominator, resulting in a value larger than one. To mitigate this problem, we need to include exactly
this case in the denominator. Formalizing this case, we see that it corresponds exactly to the second
term in the denominator or Eq. (12):

N∑
n=1

1c(xn)<τ1c(x̃n)≥τ1f(xn)=yn1f(x̃n)6=yn (15)

Overall, with Eq. (12) we obtain a metric that lies within [0, 1], is comparable across thresholds τ
and, for τ = 0, reduces to the regular robust test error as used in related work (Madry et al., 2018).

Worst-Case Evaluation: As described in Sec. 4, we report worst-case results across all evaluated
attacks; individual results are partly reported in Tab. 7 8, and 9. In practice, we accumulate all
adversarial examples from multiple attempts (e.g., multiple random restarts for PGD or random
sampling) and across all attacks for each test example individually. Subsequently, we only keep the
(successful) adversarial example with highest confidence (per test example). We use these “worst-
case” adversarial examples for evaluation. Compared to related work, this procedure mimics a strong
attacker that uses different attack strategies in parallel and always picks the strongest adversarial
example per test example.

B.4 ABLATION STUDY

Complementing Sec. 4, we include ablation studies for MNIST, SVHN and Cifar10; for our attack
in Tab. 4 and training in Tab. 5.
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MNIST (L∞ attack with ε = 0.3)
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Cifar10 (L∞ attack with ε = 0.03)
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Figure 6: ROC and RErr curves on MNIST and Cifar10. ROC curves, i.e. FPR plotted against
TPR for all possible confidence thresholds τ , and RErr curves, i.e., RErr over confidence threshold
τ for AT and CCAT, including different ρ parameters. Worst-case adversarial examples across all
L∞ attacks were tested.

Regarding the proposed attack, i.e., PGD-Conf, using momentum and backtracking, Tab. 4 shows
that the main observations for SVHN can be transferred to MNIST and Cifar10. Only the improve-
ment of backtracking and momentum over just using momentum cannot be confirmed on MNIST.
Note that for fair comparison, T iterations with backtracking are equivalent to 3/2T iterations without
backtracking; which is why we include results for T = 60 and T = 300. However, the importance
of using enough iterations, i.e., T = 2000, and zero initialization to attack CCAT is still clearly
visible. Interestingly, against AT on SVHN, more iterations are also beneficial, while this is not
required on MNIST and Cifar10.

Tab. 5 also reports results for CCAT with different transitions, cf. Eq. (6), and values for ρ. As
mentioned before, on SVHN and Cifar10, power transition with ρpow = 10 works best; for larger
ρ performance stagnates. It is also important to note that the power transition does not preserve a
bias towards to true label, i.e., for the maximum possible perturbation (‖δ‖∞ = ε), Eq. (6) forces
the network to predict a purely uniform distribution. This is in contrast to the exponential transition,
where the true one-hot distribution always receives a non-zero weight. On MNIST, we found this to
work considerably better.

B.5 ANALYSIS

For further analysis, Fig. 5 shows confidence histograms for AT and CCAT on MNIST and Cifar10.
The confidence histograms for CCAT reflect the expected behavior: adversarial examples are mostly
successful in changing the label, which is supported by high RErr values for confidence threshold
τ = 0, but their confidence is pushed towards a uniform distributions. For AT, in contrast, successful
adversarial examples – fewer in total – generally obtain high confidence; this results in confidence
thresholding being not effective for AT. This behavior, however, is less pronounced on MNIST.
Here, the exponential transition results in adversarial examples with confidence slightly higher than
uniform confidence, i.e., 0.1. This might be the result of preserving a bias towards the true label
through Eq. (6). In fact, for lower ρ, we found that this behavior is pronounced, until, for very small
ρ, the behavior of AT is obtained.

In Fig. 7, we plot the probabilities for all ten classes along an adversarial direction. We note that
these directions do not necessarily correspond to successful adversarial examples. Instead, we chose
the first 10 test examples on SVHN. The adversarial examples were obtained using our L∞ PGD-
Conf attack with T = 2000 iterations and zero initialization for ε = 0.03. For AT, we usually
observe a change in predictions along these directions; some occur within ‖δ‖∞ ≤ ε, corresponding
to successful adversarial examples, some occur for ‖δ‖∞ > ε, corresponding to unsuccessful ad-
versarial examples (within ε). However, AT always assigns high confidence. Thus, when allowing
larger adversarial perturbations at test time, robustness of AT reduces significantly. For CCAT, in
contrast, there are only few such cases; more often, the model achieves a near uniform prediction
for small ‖δ‖∞ and extrapolates this behavior beyond the ε-ball used for training. On SVHN, this
behavior successfully allows to generalize the robustness to larger adversarial perturbations. Fur-
thermore, these plots illustrate why using more iterations at test time, and using techniques such as
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AT on SVHN with L∞ PGD-Conf, ε = 0.03
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CCAT, ρpow = 10 on SVHN with L∞ PGD-Conf, ε = 0.03
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Figure 7: Effect of confidence calibration on SVHN. Confidences for classes along adversarial
directions for AT and CCAT, ρpow = 10. Adversarial examples were computed using PGD-Conf
with T = 2000 iterations and γ = 0.001 and zero initialization. For both AT and CCAT, the first
ten examples of the SVHN test set are shown.

momentum and backtracking, are necessary to find adversarial examples as the objective becomes
more complex compared to AT.

B.6 RESULTS

In the following, we present and discuss complementary results corresponding to the main results of
our paper as presented in Tab. 2 and 3. To this end, we consider requiring only 98% TPR instead of
99% TPR, and most importantly, break down our analysis by the different white-box and black-box
attacks used.

Main results for 98% TPR: Tab. 6 reports results (corresponding to Tab. 2) requiring only
98%TPR. This implies, that compared to 99%TPR, up to 1% more correctly classified test examples
can be rejected. For relatively simple tasks such as MNIST and SVHN, where Err values are low,
this is a significant “sacrifice”. However, as can be seen, robustness in terms of RErr only improves
slightly. We found that the same holds for 95%TPR.

Per-Attack Results.: Finally Tab. 7, 8 and 9 we break down the results of Tab. 2 regarding the
used attacks. For simplicity we focus on PGD-CE and PGD-Conf while reporting the used black-
box attacks together, i.e., taking the worst-case adversarial examples across all black-box attacks.
On MNIST, where AT performs very well in practice, it is striking that for 4/3ε = 0.4 even black-
box attacks are able to reduce robustness completely, resulting in high RErr. This observation also
transfers to SVHN and Cifar10. For CCAT, black-box attacks are only effective on Cifar10, where
they result in roughly 87% RErr with τ@99%TPR. It can also be seen that PGD-CE performs
significantly worse against our CCAT compared to AT, which shows that it is essential to optimize
the right objective, i.e., maximize confidence against CCAT.
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MNIST (L∞ attack with ε = 0.3 during training)
τ=0 τ@98%TPR

Attack Training Err
in %

RErr
in %

ROC
AUC

Err
in %

RErr
in % τ

L∞, ε = 0.3
AT 0.50 7.20 0.97 0.00 0.50 1.00
CCAT 0.50 100.00 0.99 0.00 5.60 1.00

L∞, ε = 0.4
AT 0.50 100.00 0.20 0.00 100.00 1.00
CCAT 0.50 100.00 0.94 0.00 29.20 1.00

L2, ε = 3
AT 0.50 98.80 0.73 0.00 67.60 1.00
CCAT 0.50 82.60 1.00 0.00 0.60 1.00

SVHN (L∞ attack with ε = 0.03 during training)

L∞, ε = 0.03
AT 3.40 57.30 0.55 1.80 52.90 0.71
CCAT 2.90 97.80 0.70 1.50 36.50 0.79

L∞, ε = 0.06
AT 3.40 89.00 0.32 1.80 86.90 0.71
CCAT 2.90 99.80 0.70 1.50 34.80 0.79

L2, ε = 1
AT 3.40 92.40 0.26 1.80 91.30 0.71
CCAT 2.90 81.80 0.91 1.50 15.60 0.79

CIFAR10 (L∞ attack with ε = 0.03 during training)

L∞, ε = 0.03
AT 16.60 62.70 0.64 14.00 61.90 0.39
CCAT 10.10 96.70 0.60 8.30 67.20 0.44

L∞, ε = 0.06
AT 16.60 93.70 0.35 14.00 93.60 0.39
CCAT 10.10 99.20 0.43 8.30 90.90 0.44

L2, ε = 1
AT 16.60 74.40 0.59 14.00 73.60 0.39
CCAT 10.10 81.90 0.77 8.30 45.70 0.44

Table 6: Main results for 98%TPR on MNIST, SVHN and Cifar10. While reporting results for
99%TPR in the main paper, cf. Tab. 2, reducing the TPR requirement to 98%TPR generally improves
results for CCAT, but only slightly. Again, we report Err and RErr for τ = 0 and τ@98%TPR as
well as ROC AUC.
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MNIST (L∞ attack with ε = 0.3 during training)
τ=0 τ@99%TPR

Attack Training Err
in %

RErr
in %

ROC
AUC

Err
in %

RErr
in % τ

L∞, ε = 0.3, PGD Conf
Normal 0.40 100.00 0.34 0.10 100.00 0.98
AT 0.50 5.60 0.97 0.00 0.40 1.00
CCAT 0.50 74.70 0.99 0.10 5.70 0.99

L∞, ε = 0.3, PGD CE
Normal 0.40 100.00 0.34 0.10 100.00 0.98
AT 0.50 6.70 0.97 0.00 0.80 1.00
CCAT 0.50 100.00 1.00 0.10 4.30 0.99

L∞, ε = 0.3, Black-Box
Normal 0.40 100.00 0.34 0.10 100.00 0.98
AT 0.50 7.20 0.98 0.00 1.00 1.00
CCAT 0.50 100.00 1.00 0.10 0.40 0.99

L∞, ε = 0.4, PGD Conf
Normal 0.40 100.00 0.34 0.10 100.00 0.98
AT 0.50 99.80 0.36 0.00 97.80 1.00
CCAT 0.50 97.10 0.96 0.10 15.40 0.99

L∞, ε = 0.4, PGD CE
Normal 0.40 100.00 0.34 0.10 100.00 0.98
AT 0.50 100.00 0.20 0.00 100.00 1.00
CCAT 0.50 100.00 0.97 0.10 29.60 0.99

L∞, ε = 0.4, Black-Box
Normal 0.40 100.00 0.34 0.10 100.00 0.98
AT 0.50 100.00 0.23 0.00 100.00 1.00
CCAT 0.50 100.00 0.99 0.10 3.90 0.99

MNIST (L∞ attack with ε = 0.3 during training)
τ=0 τ@99%TPR

Attack Training Err
in %

RErr
in %

ROC
AUC

Err
in %

RErr
in % τ

L2, ε = 3, PGD Conf AT 0.50 3.40 0.98 0.00 0.20 1.00
CCAT 0.50 4.40 1.00 0.10 0.00 0.99

L2, ε = 3, PGD CE AT 0.50 29.20 0.93 0.00 11.50 1.00
CCAT 0.50 82.40 1.00 0.10 0.90 0.99

L2, ε = 3, Black-Box AT 0.50 98.70 0.73 0.00 80.10 1.00
CCAT 0.50 38.40 1.00 0.10 0.60 0.99

Table 7: Per-attack L∞ and L2 results on MNIST. Per-attack results considering PGD-CE, as in
Madry et al. (2018), our PGD-Conf and the remaining black-box attacks, see text. We report results
for L∞ attacks using ε = 0.3, also used for training, and 4/3ε = 0.4 as well as L2 attacks with ε = 3.
For the black-box attacks, we take the per-example worst-case across all black-box attacks.
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SVHN (L∞ attack with ε = 0.03 during training)
τ=0 τ@99%TPR

Attack Training Err
in %

RErr
in %

ROC
AUC

Err
in %

RErr
in % τ

L∞, ε = 0.03, PGD Conf
Normal 3.60 99.90 0.17 2.60 99.90 0.78
AT 3.40 56.90 0.55 2.50 54.90 0.56
CCAT 2.90 91.00 0.67 2.10 38.50 0.60

L∞, ε = 0.03, PGD CE
Normal 3.60 100.00 0.17 2.60 99.90 0.78
AT 3.40 50.70 0.68 2.50 43.20 0.56
CCAT 2.90 94.90 1.00 2.10 2.60 0.60

L∞, ε = 0.03, Black-Box
Normal 3.60 99.70 0.23 2.60 99.70 0.78
AT 3.40 46.20 0.95 2.50 30.80 0.56
CCAT 2.90 79.50 1.00 2.10 6.30 0.60

L∞, ε = 0.06, PGD Conf
Normal 3.60 100.00 0.16 2.60 100.00 0.78
AT 3.40 86.10 0.32 2.50 84.70 0.56
CCAT 2.90 98.70 0.70 2.10 36.80 0.60

L∞, ε = 0.06, PGD CE
Normal 3.60 100.00 0.16 2.60 100.00 0.78
AT 3.40 88.90 0.66 2.50 88.00 0.56
CCAT 2.90 100.00 0.99 2.10 17.20 0.60

L∞, ε = 0.06, Black-Box
Normal 3.60 100.00 0.17 2.60 100.00 0.78
AT 3.40 84.00 0.78 2.50 82.30 0.56
CCAT 2.90 82.30 1.00 2.10 4.80 0.60

SVHN (L∞ attack with ε = 0.03 during training)
τ=0 τ@99%TPR

Attack Training Err
in %

RErr
in %

ROC
AUC

Err
in %

RErr
in % τ

L2, ε = 1, PGD Conf AT 3.40 78.70 0.50 2.50 77.10 0.56
CCAT 2.90 74.40 0.90 2.10 18.40 0.60

L2, ε = 1, PGD CE AT 3.40 92.40 0.27 2.50 92.00 0.56
CCAT 2.90 100.00 0.99 2.10 3.70 0.60

L2, ε = 1, Black-Box AT 3.40 29.80 0.98 2.50 13.70 0.56
CCAT 2.90 100.00 1.00 2.10 2.60 0.60

Table 8: Per-attack L∞ and L2 results on SVHN. Per-attack results considering PGD-CE, as in
Madry et al. (2018), our PGD-Conf and the remaining black-box attacks, see text. We report results
for L∞ attacks using ε = 0.03, also used for training, and 2ε = 0.06 as well as L2 attacks with
ε = 1. For the black-box attacks, we take the per-example worst-case across all black-box attacks.
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CIFAR10 (L∞ attack with ε = 0.03 during training)
τ=0 τ@99%TPR

Attack Training Err
in %

RErr
in %

ROC
AUC

Err
in %

RErr
in % τ

L∞, ε = 0.03, PGD Conf
Normal 8.30 100.00 0.20 7.40 100.00 0.59
AT 16.60 61.30 0.65 15.10 60.90 0.35
CCAT 10.10 95.00 0.60 8.70 63.00 0.40

L∞, ε = 0.03, PGD CE
Normal 8.30 100.00 0.20 7.40 100.00 0.59
AT 16.60 62.30 0.67 15.10 61.40 0.35
CCAT 10.10 100.00 0.99 8.70 9.80 0.40

L∞, ε = 0.03, Black-Box
Normal 8.30 100.00 0.21 7.40 100.00 0.59
AT 16.60 57.30 0.70 15.10 56.90 0.35
CCAT 10.10 96.40 0.90 8.70 49.30 0.40

L∞, ε = 0.06, PGD Conf
Normal 8.30 100.00 0.20 7.40 100.00 0.59
AT 16.60 92.20 0.37 15.10 92.10 0.35
CCAT 10.10 97.30 0.49 8.70 66.80 0.40

L∞, ε = 0.06, PGD CE
Normal 8.30 100.00 0.20 7.40 100.00 0.59
AT 16.60 93.70 0.40 15.10 93.60 0.35
CCAT 10.10 100.00 0.98 8.70 10.40 0.40

L∞, ε = 0.06, Black-Box
Normal 8.30 100.00 0.20 7.40 100.00 0.59
AT 16.60 87.20 0.50 15.10 87.10 0.35
CCAT 10.10 99.50 0.78 8.70 87.00 0.40

CIFAR10 (L∞ attack with ε = 0.03 during training)
τ=0 τ@99%TPR

Attack Training Err
in %

RErr
in %

ROC
AUC

Err
in %

RErr
in % τ

L2, ε = 1, PGD Conf AT 16.60 65.30 0.63 15.10 64.90 0.35
CCAT 10.10 80.90 0.78 8.70 45.20 0.40

L2, ε = 1, PGD CE AT 16.60 74.60 0.61 15.10 73.90 0.35
CCAT 10.10 100.00 0.95 8.70 18.90 0.40

L2, ε = 1, Black-Box AT 16.60 36.90 0.81 15.10 35.80 0.35
CCAT 10.10 100.00 1.00 8.70 8.80 0.40

Table 9: Per-attack L∞ and L2 results on Cifar10. Per-attack results considering PGD-CE, as in
Madry et al. (2018), our PGD-Conf and the remaining black-box attacks, see text. We report results
for L∞ attacks using ε = 0.03, also used for training, and 2ε = 0.06 as well as L2 attacks with
ε = 1. For the black-box attacks, we take the per-example worst-case across all black-box attacks.
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