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ABSTRACT

Few-shot classification aims to recognize novel categories with only few labeled
images in each class. Existing metric-based few-shot classification algorithms pre-
dict categories by comparing the feature embeddings of query images with those
from a few labeled images (support examples) using a learned metric function.
While promising performance has been demonstrated, these methods often fail to
generalize to unseen domains due to large discrepancy of the feature distribution
across domains. In this work, we address the problem of few-shot classification
under domain shifts for metric-based methods. Our core idea is to use feature-wise
transformation layers for augmenting the image features using affine transforms
to simulate various feature distributions under different domains in the training
stage. To capture variations of the feature distributions under different domains,
we further apply a learning-to-learn approach to search for the hyper-parameters
of the feature-wise transformation layers. We conduct extensive experiments and
ablation study under the domain generalization setting using five few-shot classi-
fication datasets: mini-ImageNet, CUB, Cars, Places, and Plantae. Experimental
results demonstrate that the proposed feature-wise transformation layer is appli-
cable to various metric-based models, and provides consistent improvements on
the few-shot classification performance under domain shift.

1 INTRODUCTION

Few-shot classification (Lake et al., 2015) aims to recognize instances from novel categories (query
instances) with only few labeled examples in each class (support examples). Among various recent
approaches for addressing the few-shot classification problem, metric-based meta-learning meth-
ods (Garcia & Bruna, 2018; Sung et al., 2018; Vinyals et al., 2016; Snell et al., 2017; Oreshkin et al.,
2018) have received considerable attention due to their simplicity and effectiveness. In general,
metric-based few-shot classification methods make the prediction based on the similarity between
the query image and support examples. As illustrated in Figure 1, metric-based approaches con-
sist of 1) a feature encoder and 2) a metric function. Given an input task consisting of few labeled
images (the support set) and unlabeled images (the query set) from novel classes, the encoder first
extracts the image features. The metric function then takes the features of both the labeled and
unlabeled images as input and predicts the category of the query images. Despite the success of
recognizing novel classes sampled from the same domain as in the training stage (e.g., , both train-
ing and testing are on mini-ImageNet classes), Chen et al. (Chen et al., 2019a) recently raise the
issue that existing metric-based approaches often do not generalize well to categories from different
domains. The generalization ability to unseen domains, however, is of critical importance due to
the difficulty to construct large training datasets for rare classes (e.g., , recognizing rare bird species
in a fine-grained classification setting). As a result, understanding and addressing the domain shift
problem for few-shot classification is of great interest.

To alleviate the domain shift issue, numerous unsupervised domain adaptation techniques have been
proposed (Pan & Yang, 2010; Chen et al., 2018; Tzeng et al., 2017). These methods focus on
adapting the classifier of the same category from the source to the target domain. Building upon
the domain adaptation formulation, Dong and Xing (Dong & Xing, 2018) relax the constraint and
transfer knowledge across domains for recognizing novel category in the one-shot setting. However,
unsupervised domain adaptation approaches assume that numerous unlabeled images are available
in the target domain during training. In many cases, this assumption may not be realistic. For

1



Under review as a conference paper at ICLR 2020

C
U

B

? ? ?

(c) Testing on unseen domains

…

C
ar

s

? ? ?

?
?

?

?
?

?

m
in

i-I
m

ag
eN

et

? ? ?

m
in

i-I
m

ag
eN

et
! "

#$%
? ? ?

(a) Training

Support set & = {)%, $%}

Query set , = {)-, $-}

?

?
?

?
?

?

. (Eqn. 2)

! "

#$-

Support set &

Query set ,

(b) Testing on seen domain

Support set &

Query set ,

Support set &

Query set ,

Feature 
encoder Metric 

function

"

#$-

"

#$-

!

!

Figure 1: Problem formulation and motivation. Metric-based meta-learning models usually con-
sist of a feature encoder E and metric function M . We aim to improve the generalization ability
of the models training from seen domains to arbitrary unseen domains. The key observation is that
the distributions of the image features extracted from tasks in the unseen domains are significantly
different from those in the seen domains.

example, the cost and efforts of collecting numerous images of rare bird species can be prohibitively
high. On the other hand, domain generalization methods have been developed (Blanchard et al.,
2011; Li et al., 2019) to learn classifiers that generalize well to multiple unseen domains without
requiring the access to data from those domains. Yet, existing domain generalization approaches
aim at recognizing instance from the same category in the training stage.

In this paper, we tackle the domain generalization problem for recognizing novel category in the
few-shot classification setting. As shown in Figure 1(c), our key observation is that the distributions
of the image features extracted from the tasks in different domains are significantly different. As a
result, during the training stage, the metric function may overfit to the feature distributions encoded
only from the seen domains and thus fail to generalize to unseen domains. To address the issue, we
propose to integrate feature-wise transformation layer to modulate the feature activations with affine
transformations into the feature encoder. The use of these feature-wise transformation layers allows
us to simulate various distributions of image features during the training stage, and thus improve the
generalization ability of the metric function in the testing phase. Nevertheless, the hyper-parameters
of the feature-wise transformation layers may require meticulous hand-tuning due to the difficulty
to model the complex variation of the image feature distributions across various domains. In light of
this, we develop a learning-to-learn algorithm to optimize the proposed feature-wise transformation
layers. The core idea is to optimize the feature-wise transformation layers so that the model can
work well on the unseen domains after training the model using the seen domains.

We make the following three contributions in this work:

• We propose to use feature-wise transformation layers to simulate various image feature dis-
tributions extracted from the tasks in different domains. Our feature-wise transformation
layers are method-agnostic and can be applied to various metric-based few-shot classifica-
tion approaches for improving their generalization to unseen domains.

• We develop a learning-to-learn method to optimize the hyper-parameters of the feature-
wise transformation layers. In contrast to the exhaustive parameter hand-tuning process,
the proposed learning-to-learn algorithm is capable of finding the hyper-parameters for the
feature-wise transformation layers to capture the variation of image feature distribution
across various domains.

• We evaluate the performance of three metric-based few-shot classification models (includ-
ing MatchingNet (Vinyals et al., 2016), RelationNet (Sung et al., 2018), and Graph Neural
Networks (Garcia & Bruna, 2018)) with extensive experiments under the domain general-
ization setting. We show that the proposed feature-wise transformation layers can effec-
tively improve the generalization ability of metric-based models to unseen domains. We
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also demonstrate further performance improvement with our learning-to-learn scheme for
learning the feature-wise transformation layers.

2 RELATED WORK

Few-shot classification. Few-shot classification aims to learn to recognize novel categories with
a limited number of labeled examples in each class. Significant progress has been made using
the meta-learning based formulation. There are three main classes of meta-learning approaches
for addressing the few-shot classification problem. First, recurrent-based frameworks (Rezende
et al., 2016; Santoro et al., 2016) sequentially process and encode the few labeled images of novel
categories. Second, optimization-based schemes (Finn et al., 2017; Rusu et al., 2019) learn to fine-
tune the model with the few example images by integrating the fine-tuning process in the meta-
training stage. Third, metric-based methods (Koch et al., 2015; Vinyals et al., 2016; Snell et al.,
2017; Oreshkin et al., 2018; Sung et al., 2018; Lifchitz et al., 2019) classify the query images by
computing the similarity between the query image and few labeled images of novel categories.

Among these three classes, metric-based methods have attracted considerable attention due to their
simplicity and effectiveness. Metric-based few-shot classification approaches consist of 1) a feature
encoder to extract features from both the labeled and unlabeled images and 2) a metric function
that takes image features as input and predict the category of unlabeled images. For example,
MatchingNet (Vinyals et al., 2016) applies cosine similarity along with a recurrent network, Pro-
toNet (Snell et al., 2017) utilizes euclidean distance, RelationNet (Sung et al., 2018) uses CNN
modules, GNN (Garcia & Bruna, 2018) employs graph convolution modules as the metric func-
tions. However, these metric functions may fail to generalize to unseen domains since the distribu-
tions of the image features extracted from the task in various domains can be drastically different.
Chen et al. (Chen et al., 2019a) recently show that the performance of existing few-shot classifi-
cation methods degrades significantly under domain shifts. Our work focuses on improving the
generalization ability of metric-based few-shot classification models to unseen domains.

Domain adaptation. Domain adaptation methods (Pan & Yang, 2010) aim to reduce the domain
shift between the source and target domains. Since the emergence of domain adversarial neural net-
works (DANN) (Ganin et al., 2016), numerous frameworks have been proposed to apply adversarial
training to align the source and target distributions on the feature-level (Chen et al., 2018; Tzeng
et al., 2017) or on the pixel-level (Tsai et al., 2018; Hoffman et al., 2018; Bousmalis et al., 2017;
Chen et al., 2019b; Lee et al., 2019a). Most domain frameworks, however, target at adapting knowl-
edge of the same category learned from the source to target domain and thus are less effective to
handle novel category as in the few-shot classification scenarios. One exception is the work by Dong
and Xing (Dong & Xing, 2018) that address the domain shift issue in the one-shot learning setting.
Nevertheless, these domain adaptation methods require access to the unlabeled images in the target
domain during the training. Such an assumption may not be feasible in many applications due to the
difficulty of collecting abundant examples of rare categories (e.g., rare bird species).

Domain generalization. In contrast to the domain adaptation frameworks, domain generaliza-
tion (Blanchard et al., 2011) methods aim at generalizing from a set of seen domains to the un-
seen domain without accessing instances from the unseen domain during the training stage. Before
the emerging of learning-to-learn (i.e., meta-learning) (Ravi & Larochelle, 2017; Finn et al., 2017)
approaches, several methods have been proposed for tackling the domain generalization problem.
Examples include extracting domain-invariant features from various seen domains (Blanchard et al.,
2011; Li et al., 2018b; Muandet et al., 2013), improving the classifiers by fusing classifiers learned
from seen domains (Niu et al., 2015a;b), and decomposing the classifiers into domain-specific and
domain-invariant components (Khosla et al., 2012; Li et al., 2017a). Another stream of work learns
to augment the input data with adversarial learning (Shankar et al., 2018; Volpi et al., 2018). Most
recently, a number of methods apply the learning-to-learn strategy to simulate the generalization
process in the training stage (Balaji et al., 2018; Li et al., 2018a; 2019). Our method adopts a similar
approach to train the proposed feature-wise transformation layers. The application context, however,
differs from prior work as we focus on recognizing novel category from unseen domains in few-shot
classification. The goal of this work is to make few-shot classification algorithms robust to domain
shifts.
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Learning-based data augmentation. Data augmentation methods are designed to increase the
diversity of data for the training process. Unlike the hand-crafted approaches such as horizontal flip-
ping and random cropping, several recent approaches have been proposed to learn the data augmen-
tation (Cubuk et al., 2019; DeVries & Taylor, 2017a; Lemley et al., 2017; Perez & Wang, 2017; Sixt
et al., 2018; Tran et al., 2017). For instance, the SmartAugmentation (Lemley et al., 2017) scheme
trains a network that combines multiple images from the same category. The Bayesian DA (Tran
et al., 2017) method augments the data according to the distribution learned from the training set,
and the RenderGAN (Sixt et al., 2018) model simulates realistic images using generative adversarial
networks. In addition, the AutoAugment (Cubuk et al., 2019) algorithm learns the augmentation via
reinforcement learning. Two recent frameworks (Shankar et al., 2018; Volpi et al., 2018) target at
augmenting the data by modeling to the variation across different domains with adversarial learn-
ing. Similar to these approaches for capturing the variations across multiple domains, we develop a
learning-to-learn process to optimize the proposed feature-wise transformation layers for simulating
various distributions of image features encoded from different domains.

Conditional normalization. Conditional normalization aims to modulate the activation via a
learned affine transformation conditioned on external data (e.g., an image of an artwork for cap-
turing a specific style). Conditional normalization methods, including Conditional Batch Normal-
ization (Dumoulin et al., 2017), Adaptive Instance Normalization (Huang & Belongie, 2017), and
SPADE (Park et al., 2019), are widely used in the style transfer and image synthesis (Karras et al.,
2019) tasks. In addition to image stylization and generation, conditional normalization has also been
applied to align different data distributions for domain adaptation (Cariucci et al., 2017; Li et al.,
2017b). In particular, the TADAM method (Oreshkin et al., 2018) applies conditional batch nor-
malization to metric-based models for the few-shot classification task. The TADAM method aims
to model the training task distribution under the same domain. In contrast, we focus on simulating
various features distributions from different domains.

Regularization for neural networks. Adding some form of randomness in the training stage is
an effective way to improve generalization (Srivastava et al., 2014; Wan et al., 2013; Larsson et al.,
2017; DeVries & Taylor, 2017b; Zhang et al., 2018; Ghiasi et al., 2018). The proposed feature-
wise transformation layer for modulating the feature activations of intermediate layers (by applying
random affine transformations) can also be viewed as a way to regularize network training.

3 METHODOLOGY

3.1 PRELIMINARIES

Few-shot classification and metric-based method. The few-shot classification problem is typ-
ically characterized as Nw way (number of categories) and Ns shot (number of labeled examples
for each category). Figure 1 shows an example of how the metric-based frameworks operate in the
3-way 3-shot few shot classification task. A metric-based algorithm generally contains a feature
encoder E and a metric function M . For each iteration during the training stage, the algorithm ran-
domly samples Nw categories and constructs a task T . We denote the collection of input images as
X = {x1,x2, · · · ,xn} and the corresponding categorical labels as and Y = {y1, y2, · · · , yn}. A
task T consists of a support set S = {(Xs,Ys)} and a query set Q = {(Xq,Yq)}. The support set S
and query set Q are respectively formed by randomly selecting Ns and Nq samples for each of the
Nw categories.

The feature encoderE first extracts the features from both the support and query images. The metric
function M then predicts the categories of the query images Xq according to the label of support
images Ys, the encoded query image E(xq), and the encoded support images E(Xs). The process
can be formulated as

Ŷq =M(Ys, E(Xs), E(Xq)). (1)
Finally, the training objective of a metric-based framework is the classification loss of the images in
the query set,

L = Lcls(Yq, Ŷq). (2)

The main difference between various metric-based algorithms lies in the design choice for the metric
function M . For instance, the MatchingNet (Vinyals et al., 2016) method utilizes long-short-term
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Figure 2: Method overview. (a) We propose a feature-wise transformation layer to modulate in-
termediate feature activation z in the feature encoder E with the scaling and bias terms sampled
from the Gaussian distributions parameterized by the hyper-parameters θγ and θβ . During the train-
ing phase, we insert a collection of feature-wise transformation layers into the feature encoder to
simulate feature distributions extracted from the tasks in various domains. (b) We design a learning-
to-learn algorithm to optimize the hyper-parameters θγ and θβ of feature-wise transformation layers
by maximizing the performance of the applied metric-based model on the pseudo-unseen domain
(bottom) after it is optimized on the pseudo-seen domain (top).

memories (LSTM), the RelationNet (Sung et al., 2018) model applies convolutional neural net-
works (CNN), and the GNN (Garcia & Bruna, 2018) scheme uses graph convolutional networks.

Problem setting. In this work, we address the few-shot classification problem under the domain
generalization setting. We denote a domain consisting of a collection of few-shot classification tasks
as T = {T1, T2, · · · , Tn}. We assume N seen domains {T seen

1 , T seen
2 , · · · , T seen

N } available in the
training phase. The goal is to learn a metric-based few-show classification model using the seen
domains, such that the model can generalize well to an unseen domain T unseen. For example, one
can train the model with the mini-ImageNet (Ravi & Larochelle, 2017) dataset as well as some
public available fine-grained few-shot classification domains, e.g., CUB (Welinder et al., 2010), and
then evaluate the generalization ability of the model on an unseen plants domain. Note that our
problem formulation does not access images in the unseen domain at the training stage.

3.2 FEATURE-WISE TRANSFORMATION LAYER

Our focus in this work is to improve the generalization ability of metric-based few-shot classification
models to arbitrary unseen domains. As shown in Figure 1, due to the discrepancy between the
feature distributions extracted from the task in the seen and unseen domains, the metric function M
may overfit to the seen domains and fail to generalize to the unseen domains. To address the problem,
we propose to integrate a feature-wise transformation to augment the intermediate feature activations
with affine transformations into the feature encoder E. Intuitively, the feature encoder E integrated
with the feature-wise transformation layers can produce more diverse feature distributions which
improve the generalization ability of the metric function M . As shown in Figure 2(b), we insert
the feature-wise transformation layer after the batch normalization layer in the feature encoder E.
The hyper-parameters θγ ∈ RC×1×1 and θβ ∈ RC×1×1 indicate the standard deviations of the
Gaussian distributions for sampling the affine transformation parameters. Given an intermediate
feature activation map z in the feature encoder with the dimension of C ×H ×W , we first sample
the scaling term γ and bias term β from Gaussian distributions,

γ ∼ N(1, softplus(θγ)) β ∼ N(0, softplus(θβ)). (3)
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We then compute the modulated activation ẑ as

ẑc,h,w = γc × zc,h,w + βc, (4)

where ẑc,h,w ∈ ẑ and zc,h,w ∈ z. In practice, we insert the feature-wise transformation layers to the
feature encoder E at multiple levels.

3.3 LEARNING THE FEATURE-WISE TRANSFORMATION LAYERS

While we can empirically determine hyper-parameters θf = {θγ , θβ} of the feature-wise transfor-
mation layer, it remains challenging to hand-tune a generic set of parameters which are effective
on different settings (i.e., different metric-based frameworks and different seen domains). To ad-
dress this problem, we design a learning-to-learn algorithm to optimize the hyper-parameters of the
feature-wise transformation layer. The core idea is that training the metric-based model integrated
with the proposed layers on the seen domains should improve the performance of the model on the
unseen domains.

We illustrate the process in Figure 2(b) and Algorithm 1. In each training iteration t, we sam-
ple a pseudo-seen domain T ps and a pseudo-unseen domain T pu from a set of seen domains
{T seen

1 , T seen
2 , · · · , T seen

N }. Given a metric-based model with feature encoder Eθte and metric func-
tion Mθtm

, we first integrate the proposed layers with hyper-parameters θtf = {θtγ , θtβ} into the
feature encoder (i.e., Eθte,θtf ). We then use the loss in equation 2 to update the parameters in the
metric-based model with the pseudo-seen task T ps = {(X ps

s ,Yps
s ), (X ps

q ,Yps
q )} ∈ T ps, namely

(θt+1
e , θt+1

m ) = (θte, θ
t
m)− α5θte,θtm Lcls(Yps

q ,Mθtm
(Yps
s , Eθte,θtf (X

ps
s ), Eθte,θtf (X

ps
q ))), (5)

where α is the learning rate. We then measure the generalization ability of the updated
metric-based model by 1) removing the feature-wise transformation layers from the model and
2) computing the classification loss of the updated model on the pseudo-unseen task T pu =
{(X pu

s ,Ypu
s ), (X pu

q ,Ypu
q )} ∈ T pu, namely

Lpu = Lcls(Ypu
q ,Mθt+1

m
(Ypu
s , Eθt+1

e
(X pu

s ), Eθt+1
e

(X pu
q ))). (6)

Finally, as the loss Lpu reflects the effectiveness of the feature-wise transformation layers, we opti-
mize the hyper-parameters θf by

θt+1
f = θtf − α5θtf L

pu. (7)

Note that the metric-based model and feature-wise transformation layers are jointly optimized in the
training stage.

Algorithm 1: Learning-to-Learn Feature-Wise Transformation.
1 Require: Seen domains {T seen

1 , T seen
2 , · · · , T seen

n }, learning rate α
2 Randomly initialize θe, θm and θf
3 while training do
4 Randomly sample non-overlapping pseudo-seen T ps and psuedo-unseen T pu domains from

the seen domains
5 Sample a pesudo-seen task T ps ∈ T ps and a pseudo-unseen task T pu ∈ T pu

6 // Update metric-based model with pseudo-seen task:
7 Obtain θt+1

e , θt+1
m using equation 5

8 // Update feature-wise transformation layers with pseudo-unseen task:
9 Obtain θt+1

f using equation 6 and equation 7

10 end
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4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETUPS

We validate the efficacy of the proposed feature-wise transformation layer with three existing metric-
based algorithms (Vinyals et al., 2016; Sung et al., 2018; Garcia & Bruna, 2018) under two ex-
perimental settings.1 First, we empirically determine the hyper-parameters θf = {θγ , θβ} of the
feature-wise transformation layers and analyze the impact of the feature-wise transformation layers.
We train the few-shot classification model on the mini-ImageNet (Bousmalis et al., 2017) domain
and evaluate the trained model on four different domains: CUB (Welinder et al., 2010), Cars (Krause
et al., 2013), Places (Zhou et al., 2017), and Plantae (Van Horn et al., 2018). Second, we demon-
strate the importance of the proposed learning-to-learn scheme for optimizing the hyper-parameters
of feature-wise transformation layers. We adopt the leave-one-out setting by selecting an unseen
domain from CUB, Cars, Places, and Plantae domains. The mini-ImageNet (Bousmalis et al., 2017)
and the remaining domains then serve as the seen domains for training both the metric-based model
and feature-wise transformation layers using Algorithm 1. After the training, we evaluate the trained
model on the selected unseen domain.

Datasets. We conduct experiments using five datasets: mini-ImageNet (Ravi & Larochelle, 2017),
CUB (Welinder et al., 2010), Cars (Krause et al., 2013), Places (Zhou et al., 2017), and Plan-
tae (Van Horn et al., 2018). Since the mini-ImageNet dataset serves as the seen domain for all
experiments, we select the training iterations with the best accuracy on the validation set of the mini-
ImageNet dataset for evaluation. More details of dataset processing are presented in Appendix A.1.

Implementation details. We apply the feature-wise transformation layers to three metric-based
frameworks: MatchingNet (Vinyals et al., 2016), RelationNet (Sung et al., 2018), and GNN (Garcia
& Bruna, 2018). We use the public implementation from Chen et al. (Chen et al., 2019a) to train
both the MatchingNet and RelationNet model.2 For the GNN approach, we integrate the official
implementation for graph convolutional network into Chen’s implementation.3 In all experiments,
we adopt the ResNet-10 (He et al., 2016) model as the backbone network for our feature encoder E.

We present the average results over 1, 000 trials for all the experiments. In each trial, we randomly
sample Nw categories (e.g., 5 classes for 5-way classification). For each category, we randomly
select Ns images (e.g., 1-shot or 5-shot) for the support set Xs and 16 images for the query set Xq .
We discuss the implementation details in Appendix A.2. We will release the source code and the
pre-trained models for reproducible research.

Pre-trained feature encoder. Prior to the few-shot classification training stage, we first pre-train
the feature encoderE by minimizing the standard cross-entropy classification loss on the 64 training
categories in the mini-ImageNet dataset. This strategy can significantly improve the performance of
metric-based models and is widely adopted in several recent frameworks (Rusu et al., 2019; Gidaris
& Komodakis, 2018; Lifchitz et al., 2019).

4.2 FEATURE-WISE TRANSFORMATION WITH MANUAL PARAMETER TUNING

We train the model using the mini-ImageNet dataset and evaluate the trained model with four other
unseen domains: CUB, Cars, Places, and Plantae. We add the proposed feature-wise transformation
layers after the last batch normalization layer of all the residual blocks in the feature encoder E
during the training stage. We empirically set θγ and θβ in all feature-wise transformation layers
to be 0.3 and 0.5, respectively. Table 1 shows the metric-based model trained with the feature-
wise transformation layers performs favorably against the individual baselines. We attribute the
improvement of generalization to the use of the proposed layers for making the feature encoder E
produce more diverse feature distributions in the training stage. As a by-product, we also observe

1We were unable to experiment with recent methods such as Lifchitz et al. (2019) due to the lack of open-
source implementation.

2https://github.com/wyharveychen/CloserLookFewShot
3https://github.com/vgsatorras/few-shot-gnn
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Table 1: Few-shot classification results trained with the mini-ImageNet dataset. We train the
model on the mini-ImageNet domain and evaluate the trained model on another domain. FT in-
dicates that we apply the feature-wise transformation layers with empirically determined hyper-
parameters to train the model.

5-way 1-Shot FT mini-ImageNet CUB Cars Places Plantae

MatchingNet - 59.10 ± 0.64% 35.89 ± 0.51% 30.77 ± 0.47% 49.86 ± 0.79% 32.70 ± 0.60%
X 58.76 ± 0.61% 36.61 ± 0.53% 29.82 ± 0.44% 51.07 ± 0.68% 34.48 ± 0.50%

RelationNet - 57.80 ± 0.88% 42.44 ± 0.77% 29.11 ± 0.60% 48.64 ± 0.85% 33.17 ± 0.64%
X 58.64 ± 0.85% 44.07 ± 0.77% 28.63 ± 0.59% 50.68 ± 0.87% 33.14 ± 0.62%

GNN - 60.77 ± 0.75% 45.69 ± 0.68% 31.79 ± 0.51% 53.10 ± 0.80% 35.60 ± 0.56%
X 66.32 ± 0.80% 47.47 ± 0.75% 31.61 ± 0.53% 55.77 ± 0.79% 35.95 ± 0.58%

5-way 5-Shot FT mini-ImageNet CUB Cars Places Plantae

MatchingNet - 70.96 ± 0.65% 51.37 ± 0.77% 38.99 ± 0.64% 63.16 ± 0.77% 46.53 ± 0.68%
X 72.53 ± 0.69% 55.23 ± 0.83% 41.24 ± 0.65% 64.55 ± 0.75% 41.69 ± 0.63%

RelationNet - 71.00 ± 0.69% 57.77 ± 0.69% 37.33 ± 0.68% 63.32 ± 0.76% 44.00 ± 0.60%
X 73.78 ± 0.64% 59.46 ± 0.71% 39.91 ± 0.69% 66.28 ± 0.72% 45.08 ± 0.59%

GNN - 80.87 ± 0.56% 62.25 ± 0.65% 44.28 ± 0.63% 70.84 ± 0.65% 52.53 ± 0.59%
X 81.98 ± 0.55% 66.98 ± 0.68% 44.90 ± 0.64% 73.94 ± 0.67% 53.85 ± 0.62%

Table 2: Few-shot classification results trained with multiple datasets. We use the leave-one-out
setting to select the unseen domain and train the model as well as the feature-wise transformation
layers using Algorithm 1. FT and LFT indicate applying the pre-determined and learning-to-learned
feature-wise transformation, respectively.

5-way 1-Shot CUB Cars Places Plantae

MatchingNet - 37.90± 0.55% 28.96± 0.45% 49.01± 0.65% 33.21± 0.51%
FT 41.74± 0.59% 28.30± 0.44% 48.77± 0.65% 32.15± 0.50%
LFT 43.29± 0.59% 30.62± 0.48% 52.51± 0.67% 35.12± 0.54%

RelationNet - 44.33± 0.59% 29.53± 0.45% 47.76± 0.63% 33.76± 0.52%
FT 44.67± 0.58% 30.38± 0.47% 48.40± 0.64% 35.40± 0.53%
LFT 48.38± 0.63% 32.21± 0.51% 50.74± 0.66% 35.00± 0.52%

GNN - 49.46± 0.73% 32.95± 0.56% 51.39± 0.80% 37.15± 0.60%
FT 48.24± 0.75% 33.26± 0.56% 54.81± 0.81% 37.54± 0.62%
LFT 51.51± 0.80% 34.12± 0.63% 56.31± 0.80% 42.09± 0.68%

5-way 5-Shot CUB Cars Places Plantae

MatchingNet - 51.92± 0.80% 39.87± 0.51% 61.82± 0.57% 47.29± 0.51%
FT 56.29± 0.80% 39.58± 0.54% 62.32± 0.58% 46.48± 0.52%
LFT 61.41± 0.57% 43.08± 0.55% 64.99± 0.59% 48.32± 0.57%

RelationNet - 62.13± 0.74% 40.64± 0.54% 64.34± 0.57% 46.29± 0.56%
FT 63.64± 0.77% 42.24± 0.57% 65.42± 0.58% 47.81± 0.51%
LFT 64.99± 0.54% 43.44± 0.59% 67.35± 0.54% 50.39± 0.52%

GNN - 69.26± 0.68% 48.91± 0.67% 72.59± 0.67% 58.36± 0.68%
FT 70.37± 0.68% 47.68± 0.63% 74.48± 0.70% 57.85± 0.68%
LFT 73.11± 0.68% 49.88± 0.67% 77.05± 0.65% 58.84± 0.66%

the improvement on the seen domain (i.e., mini-ImageNet) since there is still a slight discrepancy
between the feature distributions extracted from the training and testing sets of the same domain.

4.3 GENERALIZATION FROM MULTIPLE DOMAINS

Here we validate the effectiveness of the proposed learning-to-learn algorithm for optimizing the
hyper-parameters of the feature-wise transformation layers. We compare the metric-model trained
with the proposed learning procedure to the model trained with the pre-determined feature-wise
transformation layers. The leave-one-out setting is used to select one domain from the CUB, Cars,
Places, and Plantae as the unseen domain for the evaluation. The mini-ImageNet and the remaining
domains serve as the seen domains for training the model. Since we select the training iteration
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mini-ImageNet
Cars
Places
Plantae

Seen domains

CUB

Unseen domain

(a) RelationNet (b) RelationNet + FT (c) RelationNet + LFT

Figure 3: T-SNE visualization of the image features extracted from tasks in different domains.
We show the t-SNE visualization of the features extracted by the (a) original feature encoder E,
(b) feature encoder with pre-determined feature-wise transformation layers, and (c) feature encoder
with learning-to-learned feature-wise transformation.
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Figure 4: Visualization of the feature-wise transformation layers. We show the quartile visual-
ization of the activations softplus(θγ) and softplus(θβ) from each feature-wise transformation layer
that are optimized by the proposed learning-to-learn algorithm.

according to the validation performance on the mini-ImageNet domain for evaluation, we do not
consider the mini-ImageNet as the unseen domain. We present the results in Table 2. We denote FT
and LFT as applying pre-determined feature-wise transformation layers and those layers optimized
with the proposed learning-to-learn algorithm, respectively. The models optimized with proposed
learning scheme outperforms those trained with the pre-determined feature-wise transformation lay-
ers since the optimized feature-wise transformation layers can better capture the variation of feature
distributions across different domains. Table 1 and Table 2 show that the proposed feature-wise
transformation layers together with the learning-to-learn algorithm effectively mitigate the domain
shift problem for metric-based frameworks.

Visualizing feature-wise transformed features. To demonstrate that the proposed feature-wise
transformation layers can simulate various feature distributions extracted from the task in different
domains, we show the t-SNE visualizations of the image features extracted by the feature encoder
in the RelationNet (Sung et al., 2018) model in Figure 3. The model is trained with 5-way 5-shot
classification setting on the mini-ImageNet, Cars, Places, and Plantae domains (i.e., corresponding
to the fifth block of the second column in Table 2). We observe that the distance between features ex-
tracted from different domains becomes smaller with the help of feature-wise transformation layers.
Furthermore, the proposed learning-to-learn scheme can further help the feature-wise transforma-
tion layers capture the variation of feature distributions from various domains, thus close the domain
gap and improve the generalization ability of metric-based models.

Visualizing feature-wise transformation layers. To better understand how the learned feature-
wise transformation layers operate, we show the values of the softplus(θγ) and softplus(θγ) in the
feature-wise transformation layer. Figure 4 presents the visualization. The values of scaling terms
softplus(θγ) tend to become smaller in the deeper layers, particularly for those in the last residual
block. On the other hand, the depth of the layer does not seem to have an apparent impact on the
distributions of the bias terms softplus(θβ). The distributions are also different across different
metric-based classification methods. These results suggest the importance of the proposed learning-
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to-learn algorithm because there does not exist a set of optimal hyper-parameters of the feature-wise
transformation layers which work well with all metric-based approaches.

5 CONCLUSIONS

We propose a method to effectively enhance metric-based few-shot classification frameworks under
domain shifts. The core idea of our method lies in using the feature-wise transformation layer to
simulate various feature distributions extracted from the tasks in different domains. We develop
a learning-to-learn approach for optimizing the hyper-parameters of the feature-wise transforma-
tion layers by simulating the generalization process using multiple seen domains. From extensive
experiments, we demonstrate that our technique is applicable to different metric-based few-shot
classification algorithms and show consistent improvement over the baselines.
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A APPENDIX

A.1 DATASET COLLECTION

We use five few-shot classification datasets in all of our experiments: mini-ImageNet, CUB, Cars,
Places, and Plantae. We follow the setting in Ravi & Larochelle (2017) and Hilliard et al. (2018)
to process mini-ImageNet and CUB datasets. As for the other datasets, we manually process the
dataset by random splitting the classes. The number of training, validation, testing categories for
each dataset are summarized in Table 3.

Table 3: Summarization of the datasets (domains). We additionally collect and split the Cars,
Places, and Plantae datasets.

Datasets mini-ImageNet CUB Cars Places Plantae

Source Deng et al. (2009) Welinder et al. (2010) Krause et al. (2013) Zhou et al. (2017) Van Horn et al. (2018)
# Training categories 64 100 98 183 100
# Validation categories 16 50 49 91 50
# Testing categories 20 50 49 91 50
Split setting Ravi & Larochelle (2017) Hilliard et al. (2018) randomly split randomly split randomly split

A.2 ADDITIONAL IMPLEMENTATION DETAILS

We use the implementation and adopt the setting of hyper-parameters from Chen et al. (Chen et al.,
2019a).4 We train the metric-based model and feature-wise transformation layers with a learning rate
of 0.001 and 40, 000 iterations. For feature-wise transformation layers, we apply L2 regularization
with a weight of 10−8. The number of inner iterations adopted in the learning-to-learn scheme is set
to be 1. We will release the source code to stimulate future research.

Matching Network. We cannot utilize the MatchingNet implementation from Chen et al. (Chen
et al., 2019a) since they applied the Pytorch built-in LSTM module, which does not support second-
order backpropagation. Without the second-order backpropagation, we are unable to optimize the
feature augmentation layers using the proposed learning-to-learn algorithm. As a result, we re-
implement the LSTM module for the MatchingNet model. To verify the correctness of our imple-
mentation, we evaluate the 5-way 5-shot performance with the ResNet-10 (He et al., 2016) back-
bone network on the mini-ImageNet dataset (Ravi & Larochelle, 2017). Our implementation re-
ports 68.88 ± 0.69% accuracy, which is similar to the result (i.e., 68.82 ± 0.65%) reported by
Chen et al. (Chen et al., 2019a).

A.3 ADDITIONAL EXPERIMENTAL RESULTS

Ablation study on pre-trained metric encoder. As described in Section 4.1, we pre-trained the
metric encoder E by minimizing the cross-entropy classification loss using the 64 training cate-
gories from the mini-ImageNet dataset. To understand the impact of the pre-training, we conduct an
ablation study using the leave-one-out experiment illustrated in Section 4.3. As shown in Table 4,
pre-training the metric encoder E substantially improve the few-shot classification performance of
metric-based frameworks. Note that such a pre-training process is also adopted by several recent
frameworks (Rusu et al., 2019; Gidaris & Komodakis, 2018; Lifchitz et al., 2019) to boost the few-
shot classification performance.

Number of ways in testing stage. In this experiment, we consider a practical scenario that the
number of ways Nw in the testing phase is different from that in the training stage. Since the
GNN (Garcia & Bruna, 2018) framework requires the numbers of ways to be consistent in the train-
ing and testing, we evaluate the MatchingNet (Vinyals et al., 2016) and RelationNet (Sung et al.,
2018) model with this setting. Table 5 reports the performances of the models trained on the mini-
ImageNet, Cars, Places, and Plantae domains under the 5-way 5-shot setting (i.e., corresponding
to the fourth and fifth block of the second column in Table 2). Our proposed learning-to-learned
feature-wise transformation layers are capable of improving the generalization of metric-based mod-
els to the unseen domain under various numbers of ways in the testing stage.

4https://github.com/wyharveychen/CloserLookFewShot
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Table 4: Ablation study on pre-trained metric encoder. We conduct leave-one-out setting to
select the unseen domain to study the effectiveness of pre-training the feature encoder E on the
mini-ImageNet dataset.
1-Shot Pre-trained CUB Cars Places Plantae

MatchingNet - 37.37± 0.55% 30.60± 0.51% 41.42± 0.59% 31.93± 0.51%
X 37.90± 0.55% 28.96± 0.45% 49.01± 0.65% 33.21± 0.51%

RelationNet - 38.46± 0.56% 30.77± 0.51% 37.49± 0.58% 32.86± 0.53%
X 44.33± 0.59% 29.53± 0.45% 47.76± 0.63% 33.76± 0.52%

GNN - 37.21± 0.63% 29.01± 0.56% 36.06± 0.62% 34.99± 0.63%
X 49.46± 0.73% 32.95± 0.56% 51.39± 0.80% 37.15± 0.60%

5-Shot Pre-trained CUB Cars Places Plantae

MatchingNet - 49.83± 0.55% 39.41± 0.53% 59.18± 0.60% 43.53± 0.53%
X 51.92± 0.80% 39.87± 0.51% 61.82± 0.57% 47.29± 0.51%

RelationNet - 55.85± 0.55% 42.55± 0.58% 59.85± 0.54% 45.24± 0.55%
X 62.13± 0.74% 40.64± 0.54% 64.34± 0.57% 46.29± 0.56%

GNN - 60.13± 0.64% 43.60± 0.67% 56.67± 0.64% 49.17± 0.62%
X 69.26± 0.68% 48.91± 0.67% 72.59± 0.67% 58.36± 0.68%

Table 5: Few-shot classification results under various numbers of ways in testing stage. We
compare the 5-shot performance under various number of ways in the testing phase. The CUB
dataset is select as the testing (unseen) domain. All the models are trained with 5-way 5-shot setting.

5-Shot CUB 2-way CUB 5-way CUB 10-way CUB 20-way

MatchingNet - 78.46± 0.78% 51.92± 0.80% 38.22± 0.38% 26.17± 0.24%
FT 80.74± 0.77% 56.29± 0.80% 41.09± 0.39% 29.19± 0.24%
LFT 83.88± 0.72% 61.41± 0.57% 45.69± 0.39% 32.81± 0.23%

RelationNet - 84.25± 0.72% 62.13± 0.74% 47.15± 0.40% 34.52± 0.24%
FT 85.48± 0.69% 63.64± 0.77% 48.35± 0.38% 35.30± 0.24%
LFT 85.44± 0.72% 64.99± 0.54% 49.90± 0.40% 37.20± 0.25%

Pre-determined hyper-parameters of feature-wise transformation layers. We demonstrate the
difficulty to hand-tune the hyper-parameters of the proposed feature-wise transformation layers in
this experiment. Different from the setting described in Section 4.2, we set the hyper-parameters
θγ and θβ in all feature-wise transformation layers to be 1. The model is trained under 5-way
setting using the mini-ImageNet domain, and evaluate it on the other domains. We report the 1-
shot and 5-shot performance in Table 6. We denote applying feature-wise transformation layers
with {θγ , θβ} = {0.3, 0.5} as FT and those with {θγ , θβ} = {1, 1} as FT*. We observe that
the metric-based models applied with FT perform favorably against to those applied with FT*. In
several cases, applying FT* even yields inferior results compared to the original training without the
feature-wise transformation layers. This suggests the difficulty of hand-tuning the hyper-parameters
and the importance of the proposed learning-to-learn scheme for optimizing the hyper-parameters
of the feature-wise transformation layers.

Comparison to the state-of-the-art few-shot classification on mini-ImageNet. We compare the
metric-based frameworks applied with the proposed feature-wise transformation layers to the state-
of-the-art few-shot classification methods in Table 7. In this experiment, we train the model with
the pre-determined hyper-parameters of feature-wise transformation layers on the training set of the
mini-ImageNet (Ravi & Larochelle, 2017) dataset. Note that we do not use the learned version
of the feature-wise transformation layers in the training to ensure fair comparison. Combining Ta-
ble 4 and Table 7, we observe that the metric-based frameworks train with 1) pre-trained feature
encoder, and 2) feature-wise transformation layers with carefully hand-tuned hyper-parameters can
demonstrate competitive performance.
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Table 6: Few-shot classification results by applying different pre-determined hyper-parameters
of feature-wise transformation layers. We train the model on the mini-ImageNet with a different
set of pre-determined hyper-parameters of feature-wise transformation layers. FT and FT* indicate
that we apply the feature-wise transformation layers with hyper-parameters {θγ , θβ} to be {0.3, 0.5}
and {1, 1}, respectively.

1-Shot mini-ImageNet CUB Cars Places Plantae

MatchingNet FT 58.76 ± 0.61% 36.61 ± 0.53% 29.82 ± 0.44% 51.07 ± 0.68% 33.48 ± 0.50%
FT* 51.66 ± 0.64% 31.74 ± 0.51% 27.08 ± 0.41% 45.04 ± 0.64% 28.73 ± 0.42%

RelationNet FT 58.64 ± 0.85% 44.07 ± 0.77% 28.63 ± 0.59% 50.68 ± 0.87% 33.14 ± 0.62%
FT* 57.45 ± 0.66% 40.20 ± 0.53% 29.15 ± 0.45% 49.40 ± 0.64% 33.21 ± 0.47%

GNN FT 66.32 ± 0.80% 47.47 ± 0.75% 31.61 ± 0.53% 55.77 ± 0.79% 35.95 ± 0.58%
FT* 62.63 ± 0.76% 44.61 ± 0.66% 31.56 ± 0.52% 53.39 ± 0.74% 36.73 ± 0.57%

5-Shot mini-ImageNet CUB Cars Places Plantae

MatchingNet FT 72.53 ± 0.69% 55.23 ± 0.83% 41.24 ± 0.65% 64.55 ± 0.75% 41.69 ± 0.63%
FT* 64.93 ± 0.60% 42.83 ± 0.61% 32.19 ± 0.48% 59.47 ± 0.63% 39.61 ± 0.49%

RelationNet FT 73.78 ± 0.64% 59.46 ± 0.71% 39.91 ± 0.69% 66.28 ± 0.72% 45.08 ± 0.59%
FT* 72.79 ± 0.64% 59.18 ± 0.57% 40.54 ± 0.54% 65.73 ± 0.52% 43.64 ± 0.49%

GNN FT 81.98 ± 0.55% 66.98 ± 0.68% 44.90 ± 0.64% 73.94 ± 0.67% 53.85 ± 0.62%
FT* 82.40 ± 0.58% 66.33 ± 0.73% 47.63 ± 0.64% 75.48 ± 0.65% 51.92 ± 0.59%

Table 7: Comparison to the state-of-the-art few-shot classification algorithms. We compare the
metric-based frameworks applied with the proposed feature-wise transformation layers using pre-
determined hyper-parameter {θγ , θβ} = {0.3, 0.5} (denoted as FT) to other state-of-the-art few-shot
classification methods. Note that all the methods are trained only on the mini-ImageNet dataset. To
ensure fair comparisons with other methods, we are unable to use the learned version of the feature-
wise transformation layers described in Section 3.3. By augmenting existing metric-based few-shot
classification models with the proposed feature-wise transformation layer, we obtain competitive
performance when compared with many recent and more complicated methods. The best results in
each block are highlighted in bold.

backbone method 5-way 1-shot 5-way 5-shot

ResNet-12 TADAM (Oreshkin et al., 2018) 58.50± 0.30% 76.70± 0.30%
DC (Lifchitz et al., 2019) 62.53± 0.19% 78.95± 0.13%
DC + IMP (Lifchitz et al., 2019) - 79.77± 0.19%
MetaOptNet-SVM-trainval (Lee et al., 2019b) 64.09± 0.62% 80.00± 0.45%

WRN-28 Qiao et al. (2018) 59.60± 0.41% 77.74± 0.19%
LEO (Rusu et al., 2019) 61.76± 0.08% 77.59± 0.12%

ResNet-10 MatchingNet - 59.10± 0.64% 70.96± 0.65%
FT 58.76± 0.61% 72.53± 0.69%

RelationNet - 57.80± 0.88% 71.00± 0.69%
FT 58.64± 0.85% 73.78± 0.64%

GNN - 60.77± 0.75% 80.87± 0.56%
FT 66.32± 0.80% 81.98± 0.55%
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