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ABSTRACT

The integration of a Knowledge Base (KB) into a neural dialogue agent is one
of the key challenges in Conversational AIl. Memory networks has proven to be
effective to encode KB information into an external memory to thus generate more
fluent and informed responses. Unfortunately, such memory becomes full of latent
representations during training, so the most common strategy is to overwrite old
memory entries randomly.

In this paper, we question this approach and provide experimental evidence show-
ing that conventional memory networks generate many redundant latent vectors
resulting in overfitting and the need for larger memories. We introduce memory
dropout as an automatic technique that encourages diversity in the latent space by
1) Aging redundant memories to increase their probability of being overwritten
during training 2) Sampling new memories that summarize the knowledge acquired
by redundant memories. This technique allows us to incorporate Knowledge Bases
to achieve state-of-the-art dialogue generation in the Stanford Multi-Turn Dialogue
dataset. Considering the same architecture, its use provides an improvement of
+2.2 BLEU points for the automatic generation of responses and an increase of
+8.1% in the recognition of named entities.

1 INTRODUCTION

Given the large amount of dialogue data recorded in human-human or human-chatbot interactions,
there is a great need for dialogue systems that infer automatic responses grounded to personal
knowledge bases. This approach has the advantage of integrating semantic information that is
fundamental to achieve dialogue understanding. We want to leverage the contextual information
presentin a KB (e.g., a calendar of events) to answer queries like What time is my dentist appointment?.
This task is challenging because existing neural dialogue agents often assume that the dialogue history
carries the information needed to provide an answer but struggle to interface with the structured data
stored in a KB. This assumption prevents to have an end-to-end differentiable model to maintain the
kind of contextual conversations that people desire.

Memory networks [Miller et al.|(2016) has proven to be effective to encode KB information into an
external memory to generate more fluent and informed responses. However, there is no much work
in regularizing the latent representations stored in the external memory. Unlike the conventional
dropout technique used to regularize deep neural networks |Srivastava et al.| (2014), we propose
memory dropout to attain the same goal (i.e., reduction of overfitting) but with different functionality
and designed for memory networks |Weston et al.[(2015). Given the long-term nature of memory
networks, we do not immediately remove redundant memories with some probability as in the original
dropout algorithm. Instead, we assign them the current maximum age increasing their probability
of being overwritten by more recent latent representations in future training steps. Thus, in contrast
to|Srivastava et al.|(2014)), our memory dropout is a delayed regularization mechanism.

The main contributions of our work are the following:
e We introduce a new regularization method called memory dropout designed for dealing with

overfitting in Memory Augmented Neural Networks. To our best knowledge, ours is the first
work on regularizing memory networks.
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e We build a neural dialogue agent that uses memory dropout to incorporate KB into an
external memory for automatic response generation. Our results show that this technique
can generate more fluent and accurate responses: an improvement of +2.2 BLUE points and
+8.1% Entity F1 score versus not using it in the Stanford Multi-Turn Dialogue dataset.

Figure 1: Learning the (h,y) pair transitions the neighborhood of h (represented as an ellipse) to
a new state in which a memory 4’ is drawn as the distribution of positive memories. Small circles
represent the uncertainty of using a particular memory to model A’. In the new memory configuration,
we age positive keys (now faded in grey) making them more likely of being overwritten by other
training examples.

2  MEMORY DROPOUT

This section describes the memory dropout neural model whose goal is to increase the diversity
of latent representations stored in an external memory. For example, consider a neural encoder
which receives an observation (z,y) and generates the latent representation / in a hidden layer. As
illustrated in Figure|[1} we want to incorporate a normalized & (i.e., ||a|| = 1) in the long-term memory
M. The most similar memory entries to i form a neighborhood in which entries can be positive (+)
or negative (-) depending on whether they share the same class label y or not.

An external memory M augments the capacity of a neural encoder by preserving long-term latent
representations. Figure2]illustrates a memory network which consists of arrays K and V' to store keys
(latent representations) and values (class labels), respectively, as introduced in [Kaiser et al.| (2017).
To support our technique, we extend this definition with arrays A and S to store the age and the
variance of each key, respectively. The final form of the memory module is as follows:

M = (K,V, A,S).

Our main goal is to learn a mathematical space in which the margin between positive and negative
memories is maximum while retaining the minimum number of positive keys. Core to this idea is
the definition of a differentiable Gaussian Mixture Model parameterized by both the location and
covariance matrix of each positive memory. Sampling from this distribution returns a new positive
embedding A’ that characterizes its neighbors. So, given the embedding vector h, the collection of P
positive keys K+ = {k]", ..., k;} is a subpopulation of the memory keys that can be represented as a
linear superposition of P Gaussian components aimed at providing a rich class of a density model in
the form

P
p(kT) = mpN (kT |y, ) (1)
p=1

where each Gaussian is centered at a positive key p,, = k‘z‘f with covariance matrix ¥, = diag(s;).
Note that without the variances stored in the array .S, the uncertainty of each key will be the same and
extreme embedding vectors will dominate the likelihood probability. We shall view = = {7, ..., 7p}
in Equation [T] as a vector of probabilities that quantifies the mixing coefficients of the Gaussian
components and whose values correspond to the similarity between h and the positive keys K+
P
7 = Softmaz(h-K%) suchthat 0<m, <1and pr =1. 2)

p=1
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Figure 2: A memory network consists of a neural encoder and an external memory that augments its
capacity by preserving longer distinct versions of A during training. Some memory entries (in gray)
are positive candidates to correctly answer to the embedding h.

The conditional distribution of a new key &’ given a particular Gaussian is
p(K'[mp=i) = N (K|, %),

so sampling an index ¢ over the P mixture components under the distribution 7 generates the new
key k' as a random variable from p(k’|mp=;). As being sampled from the mixture model, k' is
representative of the subpopulation of positive memories. Then, we incorporate to the external
memory the information encoded by the latent vector h to the new key k', reset its corresponding age,
and compute its variance to account for the observed uncertainty in approximating h with ’.

Kl =K +h|| V[i=y Alil=0 S[]=(h-k)? Ali*]:=maz{A}

Finally, the aging mechanism penalizes redundant keys indexed by 4T as follows, A[iT] = max{A}.

3 USING THE MEMORY DROPOUT

We study the memory dropout neural model in a realistic scenario: As the external memory of a
dialogue system that infers automatic responses grounded to a Knowledge Base (KB). Our goal is to
leverage the contextual information present in a KB (e.g., a calendar of events) to answer queries
like What time is my dentist appointment?. This task is challenging because existing neural dialogue
agents often assume that the dialogue history carries the information needed to provide an answer
but struggle to interface with the structured data stored in a KB. This assumption prevents to have
an end-to-end differentiable model to maintain the kind of flexible conversations that people desire.
Figure |3|illustrates our proposed architecture formed by a Sequence-to-Sequence model to represent
the dialogue history and a Memory Augmented Neural Network (MANN) to encode the KB.

To encode the KB, the addressable memory entries of a Memory Network allows us to generalize
with fewer latent representations of the KB, even if they were present once during training, |Kaiser|
et al.| (2017). Inspired by Miller et al.| (2016), we store the KB of a given dialogue by decomposing it
from its tabular format to a collection of triplets that expresses the following relationship

(subject, relation, object).

For example, an entry in the KB representing a dentist appointment
(event=dentist, date=the 19th, time=5pm, party=Mike)

would be normalized into 12 different triplets:

[(dentist, date, the 19th), (dentist, time, Spm), (dentist, party, Mike), (Mike, time, Spm), (dentist, date,
the 19th), (dentist, time, S5pm), (dentist, party, Mike), (the 19th, event, dentist), (the 19th, party, Mike),
(the 19th, time, 5pm), (Spm, event, dentist), (Spm, date, the 19th), (5pm, party, Mike), (Mike, event,
dentist), (Mike, date, the 19th), (Mike, time, Spm)].
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Figure 3: Architecture of the neural dialogue model that incorporates a KB. Note the i*" decoding
step of the word y; given the attention over the external memory which encodes KB triplets in its
keys and that uses memory dropout for model regularization.

Each triplet feeds the MANN with the following key-value format
(|lo°™ (subject) + ¢°™" (relation)

,object)
where ¢°™ is a trainable embedding function that maps input tokens to a fixed-dimensional vector.

To encode the dialogue, we use an encoder-decoder network architecture [Sutskever et al.| (2014) with
an LSTM encoder that outputs a context-sensitive hidden representation h°*“° based on the dialogue
history and an LSTM decoder that generates the next response ¢. At every timestep of decoding, the
decoder predicts the ' token of the response § by computing its corresponding hidden state h¢¢
applying the recurrence

heco = LSTM (§;—1, h{*).

Instead of directly using the decoder output 29¢°° to predict over the dialogue vocabulary as in Miller
et al.| (2016), we combine h°® with the result of querying the memory module. We compute this
vector, h1*P, as the additive attention score between h9¢° and each key. This operation results into
the unnormalized probabilities of including its corresponding value in the prediction. More formally,

hi*B = Wy tanh(W [h{*’; K1)

deco, KB
0; = [Wuocab_dlg hl 7WUOC(Lb_KB h’z ]

§ = Softmax(o;)

§i = Tlargmaz;3[j]]
where Wi, Wa, Wyocab_dig> and Wyocap_rp are trainable parameters. Here, o; represents the
concatenation of an extended vocabulary 7" formed by the logits over the dialogue tokens and the
logits over the distinct values stored in the value array V. A Softmax induces a probability distribution

over the extended vocabulary and we argmax to obtain the index of the predicted token. Naturally,
the objective function is to minimize the cross entropy between the actual and generated responses:

where N is the number of dialogues, L, is the number of turns in the j* dialogue, m is the length of
the generated response, and y; % is the one-hot encoding of the i*” word in the actual response.

4 EXPERIMENTS

We evaluate our proposed method in the Stanford Multi-Turn Dialogue (SMTD) dataset |Eric et al.
(2017). This dataset consists of 3,031 dialogues in the domain of an in-car assistant, which provides
automatic responses grounded to a personalized KB, known only to the in-car assistant. The entries
of the KB may contain information for satisfying a query formulated by the driver. There are three
types of KBs: a schedule of events, the weekly weather forecast, and information for point-of-interest
navigation.
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MODEL BLEU ENT.F1 NAVIG.ENT.F1 =~ WEATHER ENT.FI = SCHEDUL.ENT.F1
SEQ2SEQ+ATT. 10.2 30.0% 17.9% 42.4% 30.0%
KVRN 13.2 48.0% 41.3% 47.0 % 62.9%
MANN 11.2 50.3% 42.6% 46.8% 51.0%
MANN+MD 13.4 58.4% 49.3% 53.7% 60.6%

Table 1: Averaged and per-domain BLEU and Entity F1 scores for the SMTD dataset.

4.1 BASELINES

We compare our approach Memory Augmented Neural Network with Memory Dropout
(MANN+MD) with the following baseline models:

e Seq2Seq+Attention Bahdanau et al.| (2015): An encoder-decoder architecture that maps
between sequences with minimal assumptions on the sequence structure and attends to parts
of the input to predict the target word. This approach only incorporates information from
the dialogue history.

o Key-Value Retrieval Network+Attention Eric et al.[(2017) (KVRN): A memory network
with not update memory operations, it also computes attention over the keys of each entry in
the KB, and

o Memory Augmented Neural Network (MANN): Our proposed model with no memory
dropout mechanism.

4.2 TRAINING SETTINGS

For all the experiments, we use a word embedding of size 256. The encoders and decoders are
bidirectional LSTMs of 3-layers with state size of 256 for each direction. For the memory network
models, the number of memory entries is 1,000. We train all models with Adam optimizer |Kingma
& Ba(2014) with a learning rate of 0.001 and initialized all weights from a uniform distribution in
[—0.01,0.01]. We also applied dropout |Srivastava et al.| (2014) with keep probability of 95.0% for
input and output of recurrent neural networks. Finally, we split the dataset into partitions with ratios
0.8, 0.1, and 0.1 for generating the training, validation, and testing datasets, respectively.

4.3 RESULTS ON SYSTEM RESPONSE GENERATION

Evaluating dialogue systems is challenging because a trained model can generate free-form responses.
We employ two metrics to quantify the performance of a model grounded to a knowledge base.

e BLEU Papineni et al.| (2002) is a metric of fluency that looks at n-gram precisions for
n = 1,2, 3,4 comparing between exact matches of words between responses provided by a
model and human annotators.

o Entity F1 measures the correct retrieval of entities expected to be present in a generated
response.

We found that memory dropout improves both dialogue fluency and accuracy in recognizing entities
compared to other memory networks that did not use memory dropout. Table[T|reports averaged and
per-domain results on this dataset.

Not attending to the KB seems to have an adverse result in generating automatic responses. For
example, the Seq2Seq+Attention model shows the lowest Entity F1 scores (30.0%), indicating its
inability to infer responses while being agnostic to the KB. The memory network MANN attends
to the KB to predict a response and achieves a BLEU score of 11.2 and an Entity F1 score of
50.3%. With memory dropout, the MANN+MD increases both BLEU and Entity F1 scores to 13.4
and 58.4%, respectively. Note that both MANN and MANN+MD share the same architecture and
hyperparameters and only differ in the use of memory dropout.
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Figure 4: Average Pearson correlation values between pairs of keys at different training steps. The
higher, the more correlation, and the maximum value is 1.0. As training progresses, redundant keys
may be allocated to the external memory.

On the other hand, KVRN also attends to the KB and it is the best performing neural network that
does not use memory dropout. This method achieves a BLEU score of 13.2 and Entity F1 score of
48.0%. Our approach outperforms KVRN by +10.4% in the Entity F1 score and provides slight
positive advantage for the BLEU score +0.2 setting a new SOTA for this dataset. Interestingly,
KVRN only outperforms the other models in the Scheduling Entity F1 domain with 62.9%. This can
be because half of these dialogues are commands to execute a task and thus do not require of a KB
(e.g., Set a meeting reminder at 3pm).

The explicit penalization of redundant keys during training could explain the gains obtained by
MANN-+MD. In order to test this hypothesis, we study now the correlation of keys in Section [4.4]

4.4 RESULTS ON CORRELATED MEMORIES

We found that keys in memory tend to become redundant as training progresses. To observe this effect,
for each training step we compute the Pearson correlation between each pair of keys and average
these values. Figure [d] compare the degree of linear correlations in the memory networks studied in
this paper. Comparing the results, we can see that initially all models show low correlations as keys
are randomly initialized. In following steps, both MANN and KVRN show increasing correlation
values indicating that more redundant keys are stored in memory over time. In contrast, MANN+MD
shows low correlation values which do not increase at the same rate than the other methods and reach
stable values around step 25,000. We conclude that using memory dropout explicitly encourages the
overwriting of redundant keys which lead to diverse representations in the latent space.

4.5 RESULTS ON OVERFITTING REDUCTION

In order to test the advantage of using memory dropout for overfitting reduction, 1) We compare
the Entity F1 scores for the MANN and MANN+MD models during training considering different
neighborhood sizes, and 2) We disable traditional dropout for the inputs and outputs of the encoder
and decoder in an attempt to isolate the contribution of memory dropout.

Figure [5] shows two groups of behavior in each plot. During training, no using memory dropout
(MANN) leads to obtain higher Entity F1 scores, a reasonable outcome considering that not regularizer
is present and the external memory increases memory capacity. During testing, MANN shows lower
Entity F1 scores. This is a sign of a model that overfits to its training dataset and have problems to
generalize in the testing dataset. On the other hand, using memory dropout (MANN+MD) provides a
more conservative performance during training but better Entity F1 scores during testing resulting into
an average improvement of 10%. Testing with different neighborhood sizes (from 5 to 15 elements)
shows in general the same behavior: two groups of well-defined Entity F1 scores grouped by whether
they use the memory dropout technique or not.
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Figure 5: Entity F1 scores considering the use of memory dropout in the MANN model.

4.6 RESULTS ON THE EFFECT OF MEMORY SIZE

To test the usefulness of large memories when encoding a KB with memory dropout, we compare the
models that use an external memory and consider different memory sizes. The task is to compute the
Entity F1 score during the automatic response generation.

Figure [ compares the performance of memory networks. MANN outperforms the KVRN method
across different memory sizes. Both methods show higher scores as we increase the memory size
until generating overfitting at a particular memory size which translates into lower accuracy values.
Adding memory dropout (MANN+MD) increases the Entity F1 scores showing the most accurate
results across all memory sizes.

We found that a side-effect of using an external memory is the need for larger memories to accommo-
date the large number of redundant activations generated during training. As seen in the experiments
of Section@ (memory correlations) and Section@ (memory size), using memory dropout leads to
store diverse keys and therefore we can use smaller memories to obtain higher levels of accuracy in
this dataset.
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Figure 6: Entity F1 score of the testing dataset considering different memory sizes.

5 RELATED WORK

Deep Neural Networks are models to solve classification tasks that involve non-linearly separable
classes. Memory networks consider an external differentiable memory in which a neural encoder
manages the hidden states of the model using attention to address similar content in memory
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et al.[(2014)). Some similar approaches have also studied the problem of few-shot learning as a way
to remember infrequent patters, a problem that we also observed when training with small knowledge
bases. Some representative examples include [Kaiser et al.| (2017) which also uses an external
memory to extend the capacity of the entire architecture. Also, Neural Turing Machines (NTM) ? are
differentiable architectures allowing efficient training with gradient descend and showing important
properties for associative recall for learning different sequential patterns. In this paper, we extend
the key-value architecture introduced in Kaiser et al.|(2017) because of its simplicity and also it has
shown to be effective in learning small datasets in text and visual domains.

Deep models have also been used to train in dialogue agents. Often they model the dialogue state
considering belief tracking and generation components [Rojas-Barahona et al.|(2017)). More recent
architectures consider the use of a knowledge base and an external memory to encode its content Eric
et al.|(2017). Although the key-value architecture of this system allows for incorporating domain-
specific knowledge with no need of dialogue state trackers, it overfits to the training dataset impacting
the accuracy and fluent generation of responses. Our model contrasts with this work on designing a a
memory augmented model that deals directly with overfitting and require smaller memory size, as
shown in our experiments.

The regularization of neural networks is also an important problem which have proven to be effective
to control overfitting and generate sparse activations during training. Recently, [Wang & Niepert
(2019) proposes the regularization of state transitions in a recurrent neural network, but the notion of
memory is still internal and individual memories cannot be addressed. The popular dropout technique
works in hidden layers as a form of model averaging Srivastava et al.|(2014). In contrast to Srivastava
et al.| (2014)), our memory dropout is a delayed (age-sensitive) regularization mechanism that works
at the level of memory entries and not individual activations. To the best of our knowledge, our is
the first work that addresses the regularization of memory networks and prove its effectivity in a
challenging task such as automatic dialogue response.

6 CONCLUSIONS

Memory Dropout is a technique for improving memory augmented neural networks by breaking
co-adaptating memories built during backpropagation. While conventional dropout works at the level
of individual activations, our memory dropout deals with latent representations of the input. These
arrays of activations are stored into an external memory module which resembles areas of the human
brain that are content-addressable and sensitive to semantic information |Wixted et al.| (2018)). Central
to this technique is the idea that age and uncertainty play important roles to regularize the addressable
keys of an external memory module that is persistent across training examples. By doing this, we
obtain higher BLEU and Entity F1 scores when training a task-oriented dialogue agent that decodes
an answer considering the entries of KB stored in the memory module.
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