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ABSTRACT

Convolution plays a crucial role in various applications in signal and image pro-
cessing, analysis and recognition. It is also the main building block of convolu-
tion neural networks (CNNs). Designing appropriate convolution neural networks
on manifold-structured point clouds can inherit and empower recent advances of
CNNs to analyzing and processing point cloud data. However, one of the major
challenges is to define a proper way to ”sweep” filters through the point cloud as
a natural generalization of the planar convolution and to reflect the point cloud’s
geometry at the same time. In this paper, we consider generalizing convolution
by adapting parallel transport on the point cloud. Inspired by a triangulated sur-
face based method Schonsheck et al. (2018), we propose the Narrow-Band Par-
allel Transport Convolution (NPTC) using a specifically defined connection on a
voxelized narrow-band approximation of point cloud data. With that, we further
propose a deep convolutional neural network based on NPTC (called NPTC-net)
for point cloud classification and segmentation. Comprehensive experiments show
that the proposed NPTC-net achieves similar or better results than current state-
of-the-art methods on point clouds classification and segmentation.

1 INTRODUCTION

Convolution is one of the most widely used operators in applied mathematics, computer science
and engineering. It is also the most important building block of Convolutional Neural Netowrks
(CNNs) which are the main driven force in the recent success of deep learning LeCun et al. (2015);
Goodfellow et al. (2016).

In the Euclidean space Rn, the convolution of function f with a kernel (or filter) k is defined as

(f ∗ k)(x) :=

∫
Rn
k(x− y)f(y)dy. (1)

This operation can be easily calculated in Euclidean spaces due to the shift-invariance of the space so
that the translates of the filter k, i.e. k(x−y) is naturally defined. With the rapid development of data
science, more and more non-Euclidean data emerged in various fields including network data from
social science, 3D shapes from medical images and computer graphics, data from recommending
systems, etc. Therefore, geometric deep learning, i.e. deep learning of non-Euclidean data, is now a
rapidly growing branch of deep learning Bronstein et al. (2017). In this paper, we will discuss how
we can generalize the definition of convolution to (manifold-structured) point clouds in a way that it
inherits desirable properties of the planar convolution, thus it enables to design convolutional neural
networks on point clouds.

One of the main challenges of defining convolution on manifolds and point clouds (a discrete form
of manifolds) is to define translation x− y on the non-Euclidean domain. Other than convolutions,
we also need to properly define pooling to enable networks to extract global features and to save
memory during training. Multiple types of generalization of convolutions on manifolds, graphs and
point clouds have been proposed in recent years. We shall recall some of them and discuss the re-
lation between existing definitions of convolutions and the proposed narrow-band parallel transport
convolution.
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1.1 RELATED WORK OF CONVOLUTIONS ON NON-EUCLIDEAN DOMAINS

Spectral methods avoid the direct definition of translation x− y by utilizing the convolution theo-
rem: for any two functions f and g, f̂ ∗ g = f̂ · ĝ. Therefore, we have f ∗ g = (f̂ · ĝ)∨, where ∧ and
∨ represent generalized Fourier transform and inverse Fourier transform provided through the asso-
ciated Laplace-Beltrami (LB) eigensystem on manifolds. To avoid computing convolution through
full eigenvalue decomposition, polynomial approximation is proposed and yields convolution as ac-
tion of polynomials of the LB operator Hammond et al. (2011); Dong (2017). Thus, convolutional
neural networks can be designed Bruna et al. (2014); Defferrard et al. (2016); Levie et al. (2019).
Spectral methods, however, suffer two major drawbacks. First, these methods define convolution in
the frequency domain. As a result, the learned filters are not spatially localized. Secondly, spectral
convolutions are domain-dependent as deformation of the ground manifold will change the corre-
sponding LB eigensystem. This obstructs the use of learning networks from one training domain to
a new testing domain Schonsheck et al. (2018).

Spatial mesh-based methods are more intuitive and similar to the Euclidean case, and this is one
of the reasons why most of the existing works fall into this category. The philosophy behind these
methods is that the tangent plane of a 2-dimensional manifold is embedded to a 2-dimensional
Euclidean domain where convolution can be easily defined. In this paper, we make the first attempt
to interpret some of the existing mesh-based methods in a unified framework. We claim that most
of the spatial mesh-based methods can be formulated as

(f ∗ k)(x) :=

∫
Tx,εM

k(φ(x, v))f(v)dv, x ∈M. (2)

Here, k : R2 → R is a convolution kernel and Tx,εM = {v ∈ TxM : 〈v, v〉gx ≤ ε2} with ε > 0

being the size of the kernel. The mapping φ(x, v) :M×TxM→ R2 is defined as

φ(x, v) = (α1, α2) =
(〈
v, ~u1

x

〉
gx
,
〈
v, ~u2

x

〉
gx

)
, (3)

where ~ujx ∈ TxM, j = 1, 2. For simplicity, we will denote ~ux = (~u1
x, ~u

2
x). Most of the designs

of the existing manifold convolutions focused on the designs of ~ux. We remark that possible singu-
larities will lead to no convolution operation at those points. These are isolated points on a closed
manifold and do not effect experiment results. In addition, singularities from a given vector field
can be overcome using several pairs of vector fields and pooling Schonsheck et al. (2018).

For example, GCNN Masci et al. (2015) and ACNN Boscaini et al. (2016) construct a local geodesic
polar coordinate system on a manifold, formulating the convolution as

(f ∗ k)(x) =

∫
k ((φ ◦ ψ)(θ, r)) (Qxf)(r, θ)drdθ,

whereQ is a local interpolation function with interpolation domain an isotropic disc for GCNN and
an anisotropic ellipse for ACNN. A local geodesic polar coordinate system on a manifold can also be
transformed to a 2-dimensional planar coordinate system on its tangent plane. Such transformation
is the mapping ψ which is defined by the inverse exponential map: v = exp−1(z(θ, r)) with z(θ, r)
being a point in the local geodesic polar coordinate system at x ∈ M with coordinates (θ, r).
With this, we can easily interpret ACNN within the framework of (2). Indeed, ACNN essentially
chooses ~ux as the directions of the principal curvature at point x. For GCNN, on the other hand, it
avoids choosing a specific vector field on the manifold by taking max-pooling among all possible
directions of ~u1

x at each point. Such definition of convolution, however, ignores the correspondence
of the convolution kernels at different locations.

The newly proposed PTC Schonsheck et al. (2018) defines convolution directly on the manifold,
while uses tangent planes to transport kernels by a properly chosen parallel transport. PTC can be
equivalently cast into the form of (2) using the inverse exponential map, and implementation of the
proposed parallel transported is realized through choosing specific vector fields {~ujx}x∈M, j = 1, 2
guided by a Eikonal equation for transforming vectors along geodesic curves on manifolds.

Spatial point-based methods have wider applications due to their weaker assumptions on the data
structure, a point cloud P = {xi ∈ R3 : i = 1, . . . , N} ⊂ R3 consists of points in a 3-dimensional
Euclidean space with the coordinates of the points as the only available information. Manifolds
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can be approximated by point clouds via sampling. Computing k-nearest neighborhoods of x or
neighbors within a fixed radius can easily convert a point cloud to a local graph or mesh. This is
why point cloud is simple, flexible and attracts much attentions lately.

There are mainly two types of point-based convolution. The first type is to combine the information
of points directly. These methods can be formulated as

(f ∗ k)(xi) :=
∑

xj∈N (xi)

k(xi, xj)f(xj), (4)

where N (xi) ⊂ P is a neighborhood of xi and kernel k takes different forms in different methods.
PointNet Qi et al. (2017a) is an early attempt to extract features on point cloud. PointNet is a
network structure without convolution, or alternatively we can interpret the convolution defined by
PointNet has the simplest kernel k(xi, xj) = δ(xi, xj) where δ is the Kronecker-Delta. Various
later works attempt to improve PointNet by choosing different forms of the kernel k. For example,
PointNet++ Qi et al. (2017b) introduces a max pooling among local points, i.e. choosing kernel k
as an indicator function: k(xi, xj) = Ixj=arg maxz∈N(xi)

f(z). Pointcnn Li et al. (2018b) chooses
k(xi, ·) = β′Axi where β ∈ RK and Axi ∈ RK×K are trainable variables with K = |N (xi)|.
DGCNN Wang et al. (2018c) proposes an ”edge convolution” that can be viewed as fixing f(xj) ≡ 1
and k(xi, xj) =MLP(f(xi), f(xi)− f(xj)), where MLP means the Multi-Layer Perceptron.

The second type of convolution is defined by first projecting the point cloud locally on an Euclidean
domain and then employ regular convolution. This type of methods can also be formulate as (2).
For example, Tangent convolutions Tatarchenko et al. (2018) define kernels on the tangent plane,
and use 2 principal directions of a local PCA as ~ux. Pointconv Wu et al. (2018) constructs local
kernels by interpolation in R3, i.e. letting φ(x, v) = x − v which is essentially a local Euclidean
convolution.

1.2 THE PROPOSED CONVOLUTION: NPTC

Figure 1: Narrow-band parallel transport convo-
lution on point cloud: black and blue points are
sample points of the surface (blue). Each kernel
(colored dots) is defined on the tangent plane (yel-
low). The vectors on the tangent planes that are of
the same color are in parallel.

In this paper, we propose Narrow-Band Parallel
Transport Convolution (NPTC), which is a ge-
ometric convolution based on point cloud dis-
cretization of a manifold parallel transport de-
fined in a specific way. As we observed in the
previous section, convolutions in many meth-
ods can be written in the form of (2) and (3),
while the differences mostly lie in the choices
of the vector field {~ux}x∈M. As observed by
Schonsheck et al. (2018) that choosing the vec-
tor field properly, the associated convolution
can be interpreted as parallel transporting the
kernels using the parallel transport associated
to the prescribed vector field. The formal defi-
nition of parallel transport and connection will
presented in Section 2 and detailed descriptions
on NPTC will be given in Section 3.

We attempt to define geometric convolutions that can be viewed as translating kernels on the point
cloud in a parallel fashion. One naive approach to extend mesh based methods to point cloud is to
generate a triangulated surface based on the point cloud. However, this is not as convenient as work-
ing directly with the point cloud since in practice not every point cloud corresponds to a legitimate
parameterized surface and pooling is not as easy to implement on triangulated surfaces as on point
clouds. In addition, it is time-consuming to construct meshes on point clouds. When applied in
practice, mesh construction time may be much longer than inference time of some methods directly
applied on the point cloud. To avoid mesh constuction and to handle point clouds data directly, we
propose to define convolution on point clouds by combining voxelization and geometric convolution.

Now, we describe how NPTC is computed on point clouds. Firstly, point clouds are approximated by
voxelization with appropriate resolution, and the vector field {~ux}x∈M is defined as the projections
of the gradient field of a narrow-band-based distance function on the approximated tangent plane
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of the point cloud. Such definition of the vector field is robust to noise, since if the distortion of
the coordinates of the points by noise does not exceed the width of the narrowband, the computed
gradient field of the distance function in the narrowband remains unchanged. After the vector field
{~ux}x∈M, we use local PCA to estimate normal vectors on the point cloud following Xu et al.
(2018). Finally, geometric convolution is applied.

Note that we prefer to use geometric convolution in NPTC because compared with methods that
translate kernels in the ambient space of the manifold, NPTC translates kernels on the tangent planes
which effectively avoids having convolution kernels defined away from the underlying manifold
of the point cloud. In other words, NPTC can well reflect point cloud geometry and is a natural
generalization of planar convolution in the sense that when the point cloud reduces to planar grids,
the NPTC reduces to the planar convolution.

1.3 CONTRIBUTIONS

• We introduce a new point cloud convolution, NPTC, based on parallel transport defined
by a narrow-band approximation of the point cloud. The proposed NPTC is a natural
generalization of planar convolution.

• The proposed NPTC combines voxelization and geometric convolution. Voxelization with
appropriate resolution brings robustness and geometric convolution can better reflect point
cloud’s geometry.

• Based on NPTC, we designed convolutional neural networks, called NPTC-net, for point
clouds classification and segmentation with state-of-the-art performance.

2 BACKGROUND

2.1 MANIFOLD AND PARALLEL TRANSPORT

LetM be a 2 dimensional differential manifold embed in R3 and TxM be the tangent plane at point
x ∈ M. TxM can be defined as the 2-dimensional linear space formed by the span of 2 tangent
vectors. The disjoint union of the tangent planes at each point on the manifold defines the tangent
bundle TM. A vector field X is a smooth assignment:M→ TM. Collection of all smooth vector
fields X(x) ∈ TxM,∀x ∈M is denoted as Γ(TM).

An affine connection is a bilinear mapping ∇: Γ(TM) × Γ(TM) → Γ(TM), such that for all
smooth functions f and g in C∞(M) and all vector fields X,Y and z on M :{ ∇fX+gY Z = f∇XZ + g∇Y Z,

∇X(aY + bZ) = a∇XY + b∇XZ, a, b ∈ R,
∇X(fY ) = df(X)Y + f∇XY.

(5)

A section of a vector field is called parallel along a curve γ if ∇γ̇X = 0 for t ∈ I . Suppose we are
given an vector ~e ∈ Tx0

at x0 = γ(0) ∈M. The parallel transport of ~e along γ is the extension of
~e to a parallel section X on γ. More precisely, X is the unique section of Γ(TM) along γ satisfying
the ordinary differential equation∇γ̇(t)X(t) = 0 with the initial value X(0) = ~e.

In differential geometry, a geodesic is a curve representing in some sense the shortest path between
two points on a surface, or more generally on a Riemannian manifold. It is a generalization of the
notion of a ”straight line”. Formally, a geodesic is γ : [0, l]→M if ∇γ̇(t)γ̇(t) = 0.

For any two points x0 and x1 onM, there will be a geodesic connecting x0 and x1. A geodesic on
a smooth manifoldM with an affine connection∇ is a curve γ(t) such that parallel transport along
the curve preserves the tangent vector to the curve. That is to say, all tangential directions of one
geodesic form a parallel vector field.

For convenience, instead of transporting the kernel on the manifold, we can locally construct the
parallel transported kernel at every point x by formulating k as k(φ(x, ·)), where φ(x, v) is defined
in (3). It is known in differential geometry that transporting the kernel to every point on the manifold
is the same as locally reconstructing the kernel in the aforementioned way.
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2.2 THE EIKONAL EQUATION

The proposed NPTC relies on the computation of a distance function on a narrow-band voxel-based
approximation of the given point cloud. Therefore, we review how a distance functions are calcu-
lated.

Distance functions can be easliy computed by solving the Eikonal equation. The Eikonal equation
is a non-linear partial differential equation describing wave propagation:

|∇ρ| = 1/h(x), x ∈ Ω, ρ|Λ = 0, (6)

where Λ ⊂ Ω ⊂ Rn and f(x) is a strictly positive function. The solution ρ(x) of (6) can be viewed
as the shortest time needed to travel from x to Λ with h(x) being the speed of the wave at x. For
the special case when h = 1, the solution ρ(x) represents the distance from x to Λ limited in the Ω.
The Eikonal equation can be solved by the fast marching method Sethian (1996).

3 NARROWBAND PARALLEL TRANSPORT CONVOLUTION (NPTC) AND
NETWORK DESIGN

Generalization of convolution defined by parallel transport on triangulated surfaces has already been
proposed in Schonsheck et al. (2018). In this section, we discuss how to transport kernels on point
clouds in a similar fashion.

3.1 NARROWBAND PARALLEL TRANSPORT CONVOLUTION (NPTC)

Given a function f : P → R, the NPTC of f with kernel k takes the same form as (2). Under
such formulation, the key to design a convolution is to design vector fields {~ujx}x∈M, j,= 1, 2. In
this subsection, we discuss the general idea of NPTC and the interpretation of it in terms of parallel
transport.

3.1.1 GENERAL IDEA OF NPTC

To select a suitable vector field, we first recall the choice of the vector fields of PTC which defines
convolution on triangulated surfaces via parallel transport with respect to the Levi-Civita connection
Schonsheck et al. (2018). Geodesic curve represents, in some sense, the shortest path between two
points on a Riemannian manifold. Given a geodesic connecting two points x and y, the tangential
direction at x corresponds to the ascend direction of geodesic distance from y. PTC chooses such
direction as ~u1

x and defines ~u2
x = ~u1

x × ~nx with ~nx the normal vector at x.

If we want to construct a vector field on point cloud, gradients of some sort of distance function can
be a good choice. However, unlike triangulated surfaces, distance function is not easily defined on
point clouds due to the lack of connectivity. It is then natural to approximate the point cloud with
another data structure with connectivity, so that distance function can be easily calculated. We use
voxelization Wu et al. (2015) to approximate the point cloud in a narrow-band in R3 covering the
point cloud. We denote such distance function as ρ : R3 → R+. We will elaborate how ρ can be
calculated in later parts of this subsection.

Note that if the point cloud is sampled from a plane, the narrow-band is flat as well. Then, by a
proper choice of the distance function, the vector fields {~ujx}x∈M, j = 1, 2, can be reduced to the
global coordinate {~ej}, j = 1, 2 on the plane. This means that NPTC is reduced to the traditional
planar convolution.

Once the distance function ρ is computed, we choose ~u1
x = ∇Pρ(x), where∇Pρ(x) is a projection

of ∇ρ(x) on an approximated tangent plane at x. Then, ~u2
x can be calculated by the outer product

~u2
x = ~u1

x × ~nx with ~nx the normal vector at x. The value f(v) is computed by f(v) = f(z) where
z ∈ P is the closest point to v. Note that one may use a more sophisticated method to compute f(v)
rather than using the closest point interpolation. We choose the closest point interpolation because
of its simplicity.

We finally note that NPTC defined by the aforementioned way indeed defines certain parallel trans-
port convolution. In fact, by given smooth vector fields {~u1, ~u2}, we can define linear transforma-
tion among tangent planes L(γ)ts : Tγ(s)M → Tγ(t)M, then the corresponding parallel transport
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through the associated infinitesimal connection ∇γ̇V = limh→0
1
h (L(γ)h0 (Vγ(0)) − Vγ(0)) can be

induced Knebelman (1951). Therefore, convolution defined by NPTC can be viewed as parallel
transporting the kernels on the manifold with respect to the connection that is reconstructed from
the vector field {~u1

x}x∈M.

3.1.2 COMPUTING DISTANCE FUNCTION ON POINT CLOUDS

(a) narrow-band (b) cross section (c) Distance function ρ (d) {~u1
x}

Figure 2: Illustration of a point cloud P sampled from the unit sphere. (a) shows the narrow-band
approximation (blue boxes) of part of P (in red). (b) is a cross section of (a). (c), (d) show the
distance function ρ and vector field {~u1

x} ({∇Pρ(x)}) on the point cloud. We can see that distance
propagates from the bottom center to the top center reflecting the geometry of the sphere.

For simplicity, we consider point clouds in R3 in this subsection, though the arguments is also valid
in Rn. A point cloud is entirely discrete without inherent connectivity. Therefore, it is not straight-
forwardly compute distance function on point clouds although the local mesh method Lai et al.
(2013) can be applied to solve the Eikonal equation. For simplicity, we use voxels to approximate
point clouds and to compute distance functions on the voxels using the well-known fast marching
method based on regular grid provided by the voxelization Sethian (1996). Note that, using voxels
to compute distance functions is fast and robust to noise and local deformations.

The solution ρ(x) of the Eikonal equation |∇ρ(x)| = 1 presents the distance form Λ to x limited
inside the narrow-band. Here Λ is chosen as certain point on the point cloud.

Although generating multiple vector fields by selecting different starting points is helpful to elimi-
nate singularities, experiments show that the directly selecting one point already provides satisfac-
tory results. Finally, we interpolate the distance function from the voxels to point cloud.

3.1.3 COMPUTING THE VECTOR FIELDS ON POINT CLOUDS

We first compute the tangent plane on each point. Tangent planes are important features of manifolds
and have been well-studied in the literature Lai et al. (2013). In this paper, we use local principal
component analysis (LPCA) to estimate the tangent plane. We estimate the local linear structure
near x ∈ P using the covariance matrix∑

xk∈N (x)

(xk − c)>(xk − c), c =
1

k

∑
xk∈N (x)

xk,

where N (x) is the set of neighboring points of x. The eigenvectors of the covariance matrix form
an orthogonal basis. If the point cloud is sampled from a two dimensional manifold, and the local
sampling is dense enough to resolve local features, the eigenvectors corresponding to the largest two
eigenvalues provide the two orthogonal directions of the tangent plane, and the remaining vector
represents the normal direction at x ∈ P . Here, we denote the space spanned by the two eigenvectors
of the covariance matrix at x as TxP ⊂ R3.

With the computed distance function ρ(x), it is nature to define the vector field by projecting∇ρ on
the approximated tangent planes of the point cloud. Given a point xk ∈ P close enough to x ∈ P ,
we have

〈∇ρ, xk − x〉 ≈ ρ(xk)− ρ(x),

where ρ(xk) and ρ(x) are known. If we consider k-nearest neighbors of x, we have k− 1 equations
with 3 unknowns that are the three components of∇ρ. We can use least squares to find∇ρ. We then
project the vector∇ρ(x) onto the tangent plane at x. We denote the projected vector∇Pρ, which is
the vector we eventually need to define NPTC as described in Section 3.1.1.

6



Under review as a conference paper at ICLR 2020

3.2 NPTC-NET: ARCHITECTURE DESIGN FOR CLASSIFICATION AND SEGMENTATION

This section, we present how to use NPTC to design convolutional neural networks on point clouds
for classification and segmentation tasks. For that, other than the NPTC, we need to define some
other operations that are frequently used in neural networks. Note that, some point-wise operations
like MLP and ReLu are the same on point cloud as the Euclidean case. Here, we only focus on the
operations that are not readily defined on point clouds.

Down-sampling: In our implement, the sub-sampled set of points of the next layer is generated by
the farthest point sampling Eldar et al. (1997).

Convolution layer: Our k-th convolution layer takes points Pk ∈ RNk×3 and their corresponding
feature maps Fk ∈ RNk×ck as input, where Nk is the number of the points and ck is the number
of channels at layer k. The corresponding output is Fk+1 ∈ RNk+1×ck+1

living on the points
Pk+1 ∈ RNk+1×3. The NPTC-net have encoding and decoding stages. Normally, Nk+1 < Nk

during encoding and Nk < Nk+1 during decoding. Convolution at the k-th layer is only performed
on the point set Pk+1, which resembles convolution with stride > 1 for planar convolutions.

Residual block: One residual block takes the feature maps F ∈ RN×c on the point set P ∈ RN×3

as input and same number of points and same number of channels of features as output. One residual
layer consists of three components: MLP from c channels to c

2 channels, convolution layer from c
2

channels to c
2 channels, MLP from c

2 channels to c channels plus the feature maps from the bypass
connection. A residual block consists of several residual layers.

NPTC-net consists of the aforementioned operations and its architecture is given by Figure 3. The
left half of the NPTC-net is the encoder part of the network for feature extraction. For classification,
features at the bottom of the network are directly attached to a classification network; while for seg-
mentation, features are decoded using the right half of the NPTC-net (decoder part of the network)
to output the segmentation map.

Figure 3: Architecture of NPTC-net. Top 2 max pooling means taking the maximum two values
among all the points in each channel and then concatenate into one vector representing global fea-
ture. ”Tile” means repeating the global feature and concatenating to each point as extra channels.

4 EXPERIMENTS

In order to evaluate our new NPTC-nets, we conduct experiments on three widely used 3D datasets,
ModelNet Wu et al. (2015), ShapeNet Yi et al. (2016), S3DIS Armeni et al. (2016). We implement
the model on a GTX TITAN Xp GPU. For more implementation details, please refer to Appendix.

4.1 3D SHAPE CLASSIFICATION AND SEGMENTATION

We test the NPTC-net on ModelNet40 for classification tasks. ModelNet40 contains 12,311 CAD
models from 40 categories with 9,842 samples for training and 2,468 samples for testing. For com-
parison, we use the data provided by Qi et al. (2017a) sampling 2,048 points uniformly and com-
puting the normal vectors from the mesh. As shown on Tabel 1, our networks outperform other
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state-of-art methods. (If a compared method has results on both 2048 (or 1024) and 5000 points, we
only compare with the former.).

We also evaluate the NPTC-net on ShapeNet Part for segmentation tasks. ShapeNet Part contains
16,680 models from 16 shape categories with 14,006 for training and 2,874 for testing, each anno-
tated with 2 to 6 parts and there are 50 different parts in total. We follow the experiment setup
of previous works, putting object category into networks as known information. We use point
intersection-over-union (IoU) to evaluate our NPTC-net. Table 1 shows that our model ranks second
on this dataset and is fairly close to the best known result.

Table 1: Comparisons of overall accuracy (OA) and mean per-class accuracy (mA) on ModelNet40
as well as comparisons in instance average IoU (mIoU) and class average IoU (mcIoU) on ShapeNet
Part. Models ranking first is colored in red and second in blue.

Modelnet40 ShapeNet part
Method OA(%) mA(%) mIoU mcIoU

kd-net Klokov & Lempitsky (2017) 91.8 88.5 82.3 77.4
pointnet Qi et al. (2017a) 89.2 86.2 83.7 80.4
SO-Net Li et al. (2018a) 90.9 87.3 84.9 81.0

pointnet++ Qi et al. (2017b) 90.7 - 85.1 81.9
SpecGCN Wang et al. (2018a) 92.1 - 85.4 -
SpiderCNN Xu et al. (2018) 92.4 - 85.3 81.7

pointcnn Li et al. (2018b) 92.2 88.1 86.1 84.6
DGCNN Wang et al. (2018c) 92.2 90.2 85.1 82.3

Ours 92.7 90.2 85.8 83.3

4.2 RUBOSTNESS TEST

As pointed out earlier, using voxelization can bring rubustness to the definition of geometric con-
volution. In order to show the robustness of our model for real data, we tested scene semantics
segmentation on the ”Stanford Large-Scale 3D Indoor Spaces Dataset” (S3DIS). S3DIS covers six
large-scale indoor areas from 3 different buildings for a total of 273 million points annotated with
13 classes. This is a real-word scanned dataset without normal and with noise. Following Tchapmi
et al. (2017), we advocate the use of Area-5 as test scene to better measure the generalization ability
of our method. Table 2 shows that geometric convolution methods are close to the methods which do
not need normal estimation. NPTC-net outperforms the best known geometric convolution method
TangentConvXu et al. (2018).

Table 2: Comparisons of overall accuracy (OA) and mean per-class IoU (mIoU) on S3DIS. Models
ranking first is colored in red and second in blue.

Convolution Type Method OA(%) mIoU(%)
no convolution pointnet Qi et al. (2017a) 78.8 41.3

3-d convolution
SegCloud Tchapmi et al. (2017) - 48.9
Eff3DConvZhang et al. (2018) 69.3 51.8
ParamConvWang et al. (2018b) - 58.3

geometric convolution TangentConv Xu et al. (2018) 82.5 52.8
Ours 83.7 54.0

5 CONCLUSION

This paper proposed a new way of defining convolution on point clouds, called the narrow-band
parallel transport convolution (NPTC), based on a point cloud discretization of a manifold parallel
transport. The parallel transport was defined specifically by a vector field generated by the gra-
dient field of a distance function on a narrow-band approximation of the point cloud. The NPTC
was used to design a convolutional neural network (NPTC-net) for point cloud classification and
segmentation. Comparisons with state-of-the-art methods indicated that the proposed NPTC-net is
competitive with the best existing methods.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

We implement the model with Tensorflow using SGD optimizer with an initial learning rate 0.1 for
ModelNet40 and ADAM optimizer with an initial learning rate 0.002 for ShapeNet Part and S3DIS
on a GTX TITAN Xp GPU. During the training procedure of classification, the data is augmented
by random rotation, scaling and Gaussian perturbation on the coordinates of the points. During the
training procedure of segmentation, the data is augmented by scaling and Gaussian perturbation on
the coordinates of the points.

Following Li et al. (2018b), the data of S3DIS is firstly split by room, and then the rooms are sliced
into 1.5m by 1.5m blocks, with 0.3m padding on each side. The points in the padding areas serve as
context of the internal points, and themselves are not linked to loss in the training phase, nor used
for prediction in the testing phase. Each block will be viewed as a point cloud during training and
testing.

We do inferences on the augmented data during testing by voting following Qi et al. (2017b). To
clarify this, let xi be one data from the test set and xij be the augmented data generated from xi.
pij = f(xij) denotes the predict possibility vector after Softmax. The final inference result of xi is
Predict(xi) = arg max

k
(
∑
j

pij)k.

A.2 RUNNING STATISTICS

Table 3: Comparisons of number of parameters and FLOPs for classification.
method Parameters FLOPs(Inference)

pointnet Qi et al. (2017a) 3.48M 14.70B
pointnet++ Qi et al. (2017b) 1.48M 26.94B
DGCNN Wang et al. (2018c) 1.84M 44.27B

pointcnn Li et al. (2018b) 0.6M 25.30B
Ours 1.29M 11.7B

Table 4: Comparisons of training time of networks on ModelNet40
Method Settings Accuracy and Training (+Pre-processing) time

PointNet++ Qi
et al. (2017b)

adam, 1024 points 90.7%, 6 hours
adam, 5000 points 91.9%, 20 hours

ours adam, 2048 points 92.4%, 6h (+1.5h)
SGD, 2048 points 92.7%, 12h (+1.5h)

As shown in Table 3, we summarize our running statistics based with model for ModelNet40 with
batch size 16. In comparison with several other methods, although we use ResNet structure, the
fewer channels, smaller kernels and simpler interpolation (nearest neighboring) make NPTC use
similiar parameters and even fewer FLOPs.

Total pre-processing time mainly depends on the grid’s density. For most cases, the resolution of
1003 is enough to describe the shape of the point cloud, which is what we chose for our experiments.
We also remark that the whole computation cost of constructing convolution is linearly depending
on the resolution of voxel and the size of data. On a PC with Core i7-7700 CPU, the pre-processing
takes about 0.5 seconds per point cloud with Matlab, and the whole dataset of ModelNet40 (12,311
shapes with 10,000 points each) takes only about 1.5 hours. It is negligible compared to the training
of the deep neural networks and acceptable to do inference in practice.
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A.3 VISUALIZATION

(a) low-level features (b) high-level features

Figure 4: Feature Visualization: each feature from low or high level is displayed on 2 point clouds
from different categories. High-level activations are in yellow and low-level activations are in blue.

To visualize the effects of the proposed NPTC in the NPTC-net, we trained the network on ShapeNet
Part and visualize learned features by coloring the points according to their level of activation. In
Figure 4, filters from the the first Convolution layer in the the first Residual block and final Con-
volution layer in the second Residual block are chosen. In order to easily compare the features at
different levels, we interpolate them on the input point cloud. Observe that low-level features mostly
represent simple structures like edges (top of (a)) and planes (bottom of (a)) with low variation in
their magnitudes. In deeper layers, features are richer and more distinct from each other, like bottle-
neck (upper left of (b)), ”big-head”(upper right of (b)), plane base (lower left of (b)), bulge (lower
right of (b)).
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