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ABSTRACT

Sequential Neural Processes (SNP) is a new class of models that can meta-learn
a temporal stochastic process of stochastic processes by modeling temporal tran-
sition between Neural Processes. As Neural Processes (NP) suffers from under-
fitting, SNP is also prone to the same problem, even more severely due to its
temporal context compression. Applying attention which resolves the problem
of NP, however, is a challenge in SNP, because it cannot store the past contexts
over which it is supposed to apply attention. In this paper, we propose the Atten-
tive Sequential Neural Processes (ASNP) that resolve the underfitting in SNP by
introducing a novel imaginary context as a latent variable and by applying atten-
tion over the imaginary context. We evaluate our model on 1D Gaussian Process
regression and 2D moving MNIST/CelebA regression. We apply ASNP to imple-
ment Attentive Temporal GQN and evaluate on the moving-CelebA task.

1 INTRODUCTION

Neural Processes (NP) combine the strengths of neural networks and Gaussian processes (GP) such
that, like Gaussian processes, it can flexibly learn a new stochastic process while at test time still
providing fastO(1) prediction speed like neural networks. Learning from small datasets from differ-
ent tasks (i.e., different stochastic processes), NP can also be seen as a probabilistic latent variable
framework for meta-learning. Sequential Neural Processes (SNP) (Singh et al., 2019) are a class of
sequential latent generative models that extend the power of neural processes (NP) to a sequence
of stochastic processes. SNP targets problems where the sequence of stochastic processes are gov-
erned by an underlying transition dynamics and thus learning to transfer this temporal trend between
stochastic processes are useful. Combining the meta-learning aspect of NP with temporal transfer,
SNP can be seen as a meta-transfer learning model (i.e., transfer learning of meta learning) or (tem-
poral) stochastic process of stochastic processes.

A well-known problem of NP is underfitting: summarizing all context data into a single latent vector
by a permutation-invariant encoding, it is quite easy to lose the details of the individual datapoint
in the context. To resolve this problem, Kim et al. (2019a) proposed Attentive Neural Processes
(ANP). In ANP, a query-dependent representation is obtained by applying an attention mechanism
to the context data points with a query data as the key. Therefore, when making a prediction on a
query, the model utilizes not only the global summary of the NP latent but also is informed by the
query-sensitive representation in which the details of individual data points are provided through
attention, mitigating the underfitting problem.

Providing a single global latent for all the past and current context, SNP is also subject to the un-
derfitting problem, perhaps more severely. One may consider applying attention to SNP in a similar
way as ANP does. However, as a sequential model which, unlike ANP, does not store any of the
past context but compresses them into a single encoding through an RNN, it is quite unclear how to
realize an attention mechanism in SNP. Although we can still apply attention limitedly to the con-
text of the current time step, in SNP we assume this context is a very small amount and even empty.
Therefore, at first glance, augmenting SNP with an attention mechanism may seem somewhat an
ill-posed problem.

In this paper, we propose to resolve this problem by introducing imaginary context that augments the
context set, as latent variables, and then apply attention on the union of the real context and inferred
latent context. We call the proposed model as Attentive Sequential Neural Processes (ASNP). ASNP
consists of four modules: (i) context imagination, (ii) global context-encoding without attention,
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(iii) local attentive context-encoding, and (iv) prediction. ASNP uses attention at two-levels. It first
obtain the imaginary observations using self-attention and then make the prediction using attention
over the imaginary context given a query. In experiments, we demonstrate the effectiveness of
applying this attention mechanism into SNP for several scenarios of a variety of tasks: 1D Gaussian
Process Regression, 2D moving MNIST/CelebA Regression and 2D moving CelebA rendering.

The contributions of the paper are as follows. We first introduce a new model, Attentive Sequential
Neural Processes, that resolves the problem of augmenting attention mechanism on SNP. Then,
we demonstrate that the proposed model can resolve the underfitting problem in SNP in various
scenarios and tasks.

2 BACKGROUND

Neural Processes (NP) (Garnelo et al., 2018b) learns the process of learning a stochastic process,
mapping an input x ∈ Rdx to a random variable y ∈ Rdy , using a set of context samples C =
(XC , YC) = {xi, yi}i∈I(C). Here, (C) is the set of indices for the elements in set C. Specifically,
to learn a stochastic process from a context, NP uses the conditional prior P (z|C) and then it can
use the representation z ∼ P (z|C) of the inferred stochastic process to make prediction y on query
x. This is modeled by p(y|x, z). The full generative process of NP can be written as:

P (Y |X,C) =

∫
P (Y |X, z)P (z|C)dz (1)

where P (Y |X, z) =
∏
i∈(D) P (yi|xi, z) and D is the target observations D = (X,Y ) =

{xi, yi}i∈I(D). The training data for NP is obtained by iterating sampling a stochastic process and
then sampling (C,D) from the sampled stochastic process. Thus, considering a stochastic process
as a task, NP can be seen a probabilistic meta-learning framework.

The Generative Query Networks (GQN) (Eslami et al., 2018) are an application of NP to the
problem of learning representation and rendering of 3D scenes from a set of partial 2D observations.
In GQN, a query x becomes a camera viewpoint in a 3D environment and an output y corresponds
to an image taken from the viewpoint x. The scene representation of the original GQN is query-
dependent and thus can make inconsistent generations across queries and thus in the following we
use Consistent GQN (CGQN) (Kumar et al., 2018) that resolves this problem by making the scene
representation query-independent. For simplicity, in the following our use of the term GQN actually
refers CGQN.

The Attentive Neural Processes (ANP) are proposed to resolve the underfitting problem of NP by
(Kim et al., 2019b). To this end, ANP has two context-encoding paths. One path is the same as the
scene representation of NP summarizing all context information independently to the target query
x. The other path is attentive encoding of the context which is dependent to the target query x due to
its usage as the attention query. Because the detail information of specific contexts can be preserved
with attention, this results in mitigating the underfitting problem of NP.

Sequential Neural Processes (SNP) proposed by (Singh et al., 2019) introduce temporal transition
of underlying stochastic processes. Thus, SNP can be seen as a stochastic process of stochastic
processes or meta-transfer learning. This transition modeling is done by introducing temporal prior
P (zt|z<t, Ct) that depends on (i) the progress of the past stochastic processes from which we learn
the general temporal trend and (ii) the context of the current time step which provides a quick meta-
learning ability for the current stochastic process. Then, given the updated representation zt, we can
make predictions in the same way as in NP, i.e., P (yt|xt, zt). Combining these and extending to a
time-horizon, we have the following generative model of SNP:

P (Y,Z|X,C) =

T∏
t=1

p(yt|xt, zt)p(zt|z<t, Ct). (2)

Applying SNP to the problem of GQN, Singh et al. (2019) also proposes Temporal Generative
Query Networks (TGQN). As an extension of NP toward temporal modeling, SNP is also prone to
the underfit the context as does NP. Therefore, it can be seen as a natural direction to apply attention
to SNP to resolve the underfitting problem.
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3 ATTENTIVE SEQUENTIAL NEURAL PROCESSES

How can we augment SNP with an attention mechanism? This problem might look simple at first
glance, provided that there is already the ANP model available, is actually not quite straightforward.
This is because, unlike the ANP which assumes all context points are stored in a memory, SNP
assumes that it cannot store the past context as it is. This means that, in SNP the entities to apply
attention on is severely limited only to the context of the current time step. This is problematic
because we assume that the context per step is small or even empty. In such a setting, attention is
not effective in general.

To resolve this problem, we introduce the imaginary context, and thereby augment the entities on
which attention can be applied. This imaginary (or pseudo) context observations are treated as latent
variables and are generated by an RNN that encodes all of the past context, both the real and the
imaginary. Thus, the role of the imaginary context is to infer “which data points other than the real
context would be helpful if we were able to refer to those for attention and prediction?” Similarly, it
can also be seen as a dynamic and conditional restoration (decoding) process of context after sum-
marizing (encoding) the past through an RNN. After this restoration, we can apply attention on the
extended context set. In the following, we now describe the proposed model ASNP with particular
focus on (i) how to generate the imaginary context and (ii) how to apply attention thereafter.

3.1 GENERATIVE PROCESS
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Figure 1: Illustration about imaginary con-
text. Conditioned real context Cr

t , imagi-
nary context is generated. Here, the imagi-
nary queries locates high uncertainty region
based on the previous knowledge. It makes
lower uncertainty on representation and bet-
ter prediction for target.

The generative process of ASNP can be decomposed
into four modules: (i) context imagination, (ii) global
context-encoding, (iii) local (attentive) context-encoding,
and (iv) prediction. The purpose of context-imagination
at each step t is to generate an imaginary context set
Cit = (Xi

t , U
i
t ) which consists of imaginary queries

Xi
t = {xit,k}Kk=1 and its corresponding observations (or

its representation) U it = {uit,k}Kk=1. That is, we treat
these imaginary context as latent variables. The genera-
tion is conditioned on the real context Crt and all the past
contextsC<t (whereCt is the combined contextCrt ∪Cit )
through an RNN encoding. That is, it uses the current
real context as a query to generate an imaginary context.
The generation of imaginary observation is conditioned
on the imaginary query, and attention over the real con-
text is used. We explain this attention in more detail in the
next section. Then, the whole context-imagination model
can be written as:

P (Cit |C<t, Crt ) =

K∏
k=1

P (xit,k, u
i
t,k|C<t, Crt ) =

K∏
k=1

P (uit,k|xit,k, C<t, Crt )P (xit,k|C<t, Crt ). (3)

An interesting interpretation on this modeling can be observed in comparison to the memory retrieval
process in the human brain (Eichenbaum, 2017). As it is well-known in neuroscience, “human
memory is not a literal reproduction of the past, but instead relies on constructive processes that
are sometimes prone to error and distortion” (Schacter, 2012). Our model resembles this process in
the sense that it (i) compresses the past observation and importantly what it has imagined in the past
through an RNN (which can be considered as lossy memory consolidation), and then after observing
current context, (ii) recalls from the compressed memory not a simple copy of the past experiences
but a constructive recreation of representations that is directed to help prediction.

In global context-encoding, we obtain the global representation zt which provides the representa-
tion of underlying stochastic process independently to queries. This module can be considered the
prior in the standard SNP where we do not use attention and can be written as P (zt|z<t, Ct). Note
that it is a design choice whether to choose Ct or Crt for the conditioning context of this module. If
we use Crt , zt becomes global context-encoding of real contexts. Otherwise, it becomes encoding of
the combined contexts. The local context-encoding is a query-dependent encoding using attention
over the combined context. Here, we use the query xt as the attention query, and the (x, y) ∈ Ct
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pairs in the combined context as the key-value slot to attend. This is a deterministic function that
gives us the attention encoding rxt = fattend(xt, Ct) which we describe in more detail in the next
section. Lastly, the prediction model P (yt|xt, zt, rxt) can be implemented simply by providing
additional vector rxt to the likelihood function SNP. Combining all, we can write the full generation
process of ASNP as follows:

P (Y,Z,Ci|X,Cr) =

T∏
t=1

P (yt|xt, zt, Ct)P (zt|z<t, Ct)P (Cit |C<t, Crt ). (4)

3.2 ATTENTION WITH IMAGINATION

Algorithm 1 Attention with Imagination

hXt = RNNX((Xi
t−1, v

r
t ), h

X
t−1)

Xi
t ∼ N (fXµ (hXt ), fXσ (hXt ))

hut,k = RNNu((xit,k, u
i
t−1,k), hut−1,k)

ait,k = fattend(xit,k, S
i
t)

uit,k ∼ N (fuµ (ait,k), fuσ (ait,k))

rxt = fattend(xt, Ct)

In ASNP, we use attention in two modules. The first at-
tention is to obtain the imaginary output Cit . For this,
we first generate Xi

t from an RNN that takes the pre-
vious imaginary inputs Xi

t−1 and the context encoding
vrt = forder-inv(Crt ) as the input and updates its state
to hXt . Then, Xi

t is sampled from hXt , implement-
ing
∏K
k=1 P (xit,k|C<t, Crt ). Given this generated imag-

inary input Xi
t , the imaginary output-encoding uit,k is

generated as follows. First, for each imagination k ∈
{1, . . . ,K}, we maintain an imagination-tracker RNN,
which is denoted by hut,k and takes (xit,k, u

i
t−1,k) as in-

put. Using the union of the imaginary context-pairs and
the real context-pairs, Sit = {(xit,k, hut,k)}∪ {(xrt , fy→u(yrt ))}, as the key-value set, we apply atten-
tion on the set Sit with xit,k as the attention query, and obtain the attention encoding ait,k. Then, we
sample uit,k ∼ N (fuµ (ait,k), fuσ (ait,k)) and complete the module P (uit,k|xit,k, C<t, Crt ).

The second attention is implemented in the prediction module P (yt|xt, zt, Ct). Given xt as the at-
tention query, we useCt, the union of the realCrt and imaginedCit context, as the key-value set (after
encoding each output context y ∈ Y rt using fy→u). The attention encoding rxt = fattend(xt, Ct) is
then concatenated with the global encoding zt to make an input for the prediction yt. Algorithm 1
describes an algorithm about the imagination update and attention encoding.

3.3 LEARNING AND INFERENCE

Due to the intractability of the true posterior, ASNP is trained via variational approximation with
the following posterior approximation:

P (Z,Ci|Cr, D) ≈
T∏
t=1

Q(zt|z<t, Cit , Cr, D)Q(Cit |Ci<t, Cr, D) (5)

where Q(Cit |Ci<t, Cr, D) = Q(U it |Xi
t , C

i
<t, C

r, D)Q(Xi
t |Ci<t, Cr, D) and D = (X,Y ). For

training, the following evidence lower bound (ELBO) is maximized w.r.t. θ and φ:

LASNP(θ, φ) =

T∑
t=1

EQφ(zt,Cit |Cr,D)

[
logPθ(yt|xt, zt, Cit , Crt )

]
− EQφ(z<t,Ci<t)

[
KL

(
Qφ(zt, C

i
t |Cr, D) ‖ Pθ(zt, Cit |z<t, Ci<t, Crt )

)]
. (6)

For backpropagation, we use reparameterization trick (Kingma & Welling, 2013) for continuous
variables. Derivation of eq. 3.3 is in Appendix A.

4 RELATED WORKS

Modeling stochastic process on few data set is attractive recently related with meta-learning. Condi-
tional Neural Processes (CNP) (Garnelo et al., 2018a) models a regression function without global
latent, which causes inconsistency between queries. NP (Garnelo et al., 2018b) resolves it by
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Figure 2: Negative log-likelihood (NLL) for target points at each time-step for 1D regression.

Figure 3: Sample for 1D regression task (c) at t=33. Dot line is groundtruth, and blue line is the mean of
prediction. Sky-blue area means uncertainty. Black dot is context at t=33 and more dense blue dot is more
recent context.

proposing an explicit global latent. While CNP and NP are designed for more simple task, GQN
(Eslami et al., 2018) develops it to render 3D scene. like CNP, GQN is also inconsistency between
queries due to absent of a global latent. CGQN (Kumar et al., 2018) resolves it with a global latent.
In a line to enhance performance on more natural tasks, ANP (Kim et al., 2019b) resolves the un-
derfitting with attention for queries. Similarly, Rosenbaum et al. (2018) applies attention on GQN
model by attention for images to render complex 3D scene (i.e. Minecraft). Singh et al. (2019) pro-
poses a generalized model for sequential stochastic processes, Sequential Neural Processes (SNP)
with Temporal GQN (TGQN) as SNP of GQN version. In another aspect, Functional Neural Pro-
cesses (FNP) (Louizos et al., 2019) is proposed to learn a graph of dependencies between reference
sets (pre-selected points) and training points to better model distributions over functions.

In aspect that the imaginary context is few number of trainable representative points, it is related
to inducing points of Set Transformer (Lee et al., 2019) which is based on inducing points used in
sparse GPs (Snelson & Ghahramani, 2006; Titsias, 2009). VampPrior (Tomczak & Welling, 2017)
also uses few trainable pseudo-inputs to resolve overfitting, over-regularization and high computa-
tional complexity. The reference set of FNP to model a graph of small number of points is also
motivated from inducing points of sparse GPs. In aspect of using trainable memory, the differential
neural dictionary (Pritzel et al., 2017) stores and updates the previous trajectories as (key, value) pair
to learn fast a variety of environments.

5 EXPERIMENTS

We evaluate ASNP on the following selection of tasks: a) 1D Gaussian Process (GP) regression b)
2D moving MNIST (LeCun et al., 1998) and 2D moving CelebA (Liu et al., 2015). On these tasks,
we evaluate and compare the proposed model against NP, ANP, SNP as the baselines. Each task
is evaluated with three scenarios, which is used in (Singh et al., 2019) for 1D GP regression: (a)
To evaluate the model’s ability to extrapolate the future, we provide high-amount of context in the
first 10 time-steps out of the 20. (b) To test the model on its ability to track the dynamics using
intermittently arriving context, we provide high-amount of context in 10 randomly chosen time-
steps out of the 20. (c) To test the model’s ability to gather and make use of low amount of context
received over long segments of time, we provide low amount of context in 45 randomly chosen
time-steps out of the 50. In each setting, the remaining time-steps are used for prediction.

To test the benefits of attention in the 2D setting, we used moving CelebA because it has higher
uncertainty when given partial knowledge in comparison to an alternative data set such as moving

5



Under review as a conference paper at ICLR 2020

1 4 7 10 13 16 19

−1.2

−1.1

−1

−0.9

−0.8

Time

Ta
rg

et
N

L
L

2D Moving MNIST regression task (a)

1 4 7 10 13 16 19

−1.2

−1.1

−1

−0.9

−0.8

Time

2D Moving MNIST regression task (b)

1 6 11 16 21 26 31 36 41 46

−1.1

−1

−0.9

−0.8

−0.7

Time

2D Moving MNIST regression task (c)

NP
ANP
SNP

ASNP (k=9)
ASNP (k=25)
ASNP (k=100)

1 4 7 10 13 16 19

−3.5

−3

−2.5

−2

−1.5

−1

Time

Ta
rg

et
N

L
L

2D Moving CelebA regression task (a)

1 4 7 10 13 16 19

−3

−2.5

−2

−1.5

−1

Time

2D Moving CelebA regression task (b)

1 6 11 16 21 26 31 36 41 46

−3

−2.5

−2

−1.5

−1

Time

2D Moving CelebA regression task (c)

NP
ANP
SNP

ASNP

Figure 4: Target NLL at each time-step for 2D moving MNIST (Top) and CelebA (Bottom) regression.

simple shapes (e.g. circle). We test on the scenario (c) as described above, but with shorter sequence
lengths and smaller context sizes. More details are explained in the section on 2d rendering.

1D regression: We first evaluated our method on sequential 1D Gaussian Process data set. This is an
extension of the GP data set through the addition of linear dynamics on the kernel hyper-parameters
as used in (Singh et al., 2019). In each transition, we add a small Gaussian noise to introduce
stochasticity. For scenarios (a) and (b), the number of context observations n is randomly selected
in [5, 50] or an empty set. The number of target observations m is randomly selected in [1, 51− n].
For scenario (c), n is 1 or 0, and m is chosen from [1, 11− n]. The target set subsumes the context.
The more details about this task is described in Appendix C.

In Fig 2, SNP outperforms NP as reported in (Singh et al., 2019). On the other hand, in scenario
(a), the performance of ANP degrades steeply after the context are removed since it does not model
the dynamics explicitly. Even though it appears to outperform NP and SNP, this can be credited to
the attention in ANP that prevents underfitting (Kim et al., 2019b). ASNP shows better performance
for all the scenarios, outperforming ANP with a greater gap in task (c). We hypothesize that when
dense context is given at each time-step in (a) and (b), ANP can fit well as it does not need to rely
on the dynamics much. But in task (c), the context is low in each time-step and the model must
capture dynamics to make best use of the context seen thus far. In Fig 3, we attach a sample of
validation set in task (c) with predictions by ASNP and baselines. As shown, ASNP predicts better
than the baselines with lower uncertainty even for the points not shown recently. ANP and SNP fails
to predict those points well. This shows that the update of imaginary queries and representations
is more helpful to predict than sequential update of global representation or the entire past context
knowledge with time information. More qualitative results are in Appendix E.1.

2D regression: We take a step further to evaluate our model on 2D query and natural view regres-
sion. QueryX is 2D location of pixel Y ∈ R1 for MNIST and Y ∈ R3 for CelebA. Digit of MNIST
and cropped face image of CelebA are moving in random direction selected at t = 0 with 3 pixels
per each time-step speed. The initial position of digit or face is randomly chose at t = 0. The canvas
size is 42×42, MNIST digit size is 28×28 and face of CelebA is resized 32×32. Like GP, A small
Gaussian noise is added on the dynamics. When encountering the wall of canvas, perfectly bounced.
Training sets of each data set is used to train and the rest is tested as validation. For scenarios (a)
and (b), n is in [5, 500] or 0 and m is picked in [1, 501− n]. For scenario (c), n is 30 or 0 and m is
in [1, 31− n]. The target includes context.

Quantitative results for 2D regression tasks are presented in Fig. 4. One of noticeable points is SNP
shows better performance than ANP except scenario (a) early time-steps. The reason is the digits or
cropped face images have brief sketch (e.g. digit is one of [0-9] and many faces are looking front.),
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Figure 5: 2D moving MNIST regression samples from scenario (c). White pixels at contexts (first rows) are
drawn as red to visualization.

Figure 6: 2D moving CelebA regression samples from task (c).

which causes lower performance degradation by underfitting of NP and SNP. On the other hand,
moving on 2D canvas is more complex than 1D, which causes comparatively better performance of
ASNP and SNP than NP and ANP. In two data sets, for moving CelebA, ANP and ASNP shows
comparatively better performance than NP and SNP, because complexity of CelebA image is higher
than MNIST digits. On this different property of data sets from 1D regression, ASNP outperforms
for all scenarios of two data sets. Another interesting point is negative jump of ASNP on scenario
(a). It is due to relatively bigger number of context than 1D regression. The plenty of context
cause well predictions only with current context (see ANP performance) and the performance gap
between when plenty of context is given and when predicting only with imaginary context. Even
though ASNP shows better performance than baselines.

We also evaluate a variety of the imaginary context size for Moving MNIST scenario (a) and (b).
Large k shows better results, but the difference is not large even between 9 and 100. It shows the
imaginary context can represent stochastic process only with few points. We presents our qualitative
results about scenario (c) for two data sets in Fig. 5 and Fig. 6. In the moving MNIST sample, NP
and ANP find a location of digit but cannot estimate a number. SNP captures the location and which
number is moving, but not clearly. ASNP is also confused at early time-steps but over 10, it captures
the location and digit, and over 20, it recognizes the details of digit. For the moving CelebA sample,
ASNP outperforms similarly. More samples for scenario (a), (b) and (c) are included in Appendix
E.2.

2D scene rendering: We also evaluate ASNP to moving CelebA rendering task by applying ASNP
to a GQN framework. We call it as Attentive TGQN (ATGQN). To design, we use Temporal-
ConvDRAW of TGQN (Singh et al., 2019) for encoding a global latent. For encoding a query
dependent representation, We apply the attention encoding with imagination of ASNP thereby, en-
code to a scene-wise matrix. Decoder is same to TGQN. While it is a limited solution working on the
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Figure 7: Right: Target NLL on moving CelebA 2D scene rendering task for scenario (c) and Left: examples.

task where yt can be divided as points with queries, it resolves the underfitting for overlapped pixels
between context and target. Different to NPs, partial overlap exists, which is difficult to predict by
scene-wise attention. More details about model architectures is described in Appendix B.2.

The canvas size of data set is 80 × 80 and cropped face image size is 64 × 64. The direction of
dynamics and initial position are randomly selected at t = 0 with 13 pixels per time-step speed. The
image size of view Y is 32×32. For scenario (c), The sequence length T is 25. One context is given
at randomly chosen 20 time-steps and an empty set is given at the rest 5 time-steps. The target size
m is in [1, 11− n].

Fig. 7 shows quantitative and qualitative results for scenario (c). ATGQN outperforms TGQN be-
cause ATGQN resolves the underfitting for overlapped region. However, performance gap between
TGQN and ATGQN is smaller. It is similarly happened for scenario (a) in Appendix D.1. The
reason is low uncertainty due to plenty knowledge in context and lower underffiting from smaller
context size. In this experiment, we can get a hint about the underfitting that is more critical when
the context is more partial on the entire. More examples are in Appendix E.3.

6 CONCLUSION

In this paper, we addressed the problem of underfitting that plagues the Neural Processes and the
Sequential Neural Processes. Although this is resolved in the former by ANP, it is not possible to
resolve it in SNP with direct application of attention since SNP cannot store the past context. We
introduced Attentive Sequential Neural Processes which comprises a novel memory mechanism of
imaginary context to resolve the underfitting. It not only compresses the past knowledge but does it
in a way that is geared towards making good predictions with low uncertainty. In the experiements,
the proposed model shows superior performance on various tasks for a number of sequential scenar-
ios.

Since ASNP is a model based on attention, its limitations include those of any attention-based model.
One such case is the scene-wise attention. Scene-wise attention cannot fit properly for partial over-
lapped region between context and target. Although we partially solve it with pixel-wise attention,
it would still be interesting to encode query dependent representation for scene observation.
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APPENDIX A ELBO DERIVATIONS
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APPENDIX B MODEL DETAILS
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Figure 8: Model architecture for Attentive Sequential Neural Processes (ASNP) imaginary context update
(left) and encoder/decoder (right)

B.1 NPS

Every models share a basic architecture (e.g. context encoder and decoder). They have two encoders.
One of them is for a global latent. It consists of 3 layers MLP with ReLU (Nair & Hinton, 2010) is
used as encoder and 2 layers MLP is used to encode and sample a latent. Another encoder is used
for a deterministic representations on baselines and query dependent representations on ASNP. It is
consisted of 6 layers MLP with ReLU activation function. Decoder is consisted of 4 layers MLP
with ReLU activation function and 1 layer MLP is used to sample ŷ with uncertainty.

For non sequential models (NP and ANP), time is encoded as a normalized float scalar, et = 0.25 +
0.5(t/T ), where T is the length of sequence of data. After encoding, it is appended in query as
x′ = (x, et).

For attention models (ANP and ASNP), Multihead attention is used because it showed the best
performance in a variety of attention methods (Kim et al., 2019b). Furthermore, ASNP has two
attention modules, which shares parameters.

For sequential models (SNP and ASNP), they uses same temporal architecture for a global latent.
LSTM with a default setting of TensorFlow (Abadi et al., 2016) is used and the dimension of hidden
unit of LSTM is dr where dr is the dimension of representations.

For ASNP, two RNN modules for the imaginary queries and representations is LSTM with a default
setting of Tensorflow. The dimension of hidden unit of LSTM for queries is k+dr where k is the
number of imaginary context. The dimension of hidden unit of LSTM for representations is dr. The
number of state of LSTM for representations is k×batch size.

The diagram for ASNP architecture is in Fig. 8.

The dimension of representation dr is 128 and the dimension of query dq is 1 for 1D regression
and 2 for 2D regression. Note that for non sequential model, it is 2 and 3 with encoded time et.
The number of imaginary context is 25. The initial imaginary context Ci0 is trainable parameters.
Learning rate is 0.0001 and batch size is 16 for 1D regression and 8 for 2D regression.

B.2 GQNS

An encoder is tower representation used in (Eslami et al., 2018). A decoder is similar between
models (GQN, TGQN and ATGQN) based on the decoder of CGQN (Kumar et al., 2018) that is a
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deterministic generative model working on auto-regressive manner. The different is inputs that is
described in bellows.

For GQN, time is encoded and appended in query as NP and ANP. To sample zt, we apply a convo-
lutional DRAW(ConvDRAW) (Gregor et al., 2015; 2016) like GQN (Kumar et al., 2018). To render
ŷ, the decoder inputs zt, Xt and vrt that is an output of the decoder. vrt is averaged representation
used for every target queries.

For TGQN, Temporal-ConvDRAW (Singh et al., 2019) is applied to sample zt with RNN state. We
take RSSM to implement as (Singh et al., 2019). The decoder input is a set of the global latent zt
and the target queries Xt and RNN state ht, in which, zt and ht are independent to target queries.

For ATGQN, a global latent is sampled as TGQN and a query dependent representation of ASNP is
used. To make a pixel-wise path, we split scene view as pixel view with queries per each pixel. When
many context are given, overlapped between context exists. We leave it to optimize batch operation.
We encode the pixel-wise representation with 2 convolution layers to make same dimension with
scene-wise, the dimension of which is [scene height/4, scene height/4, 3]. The input of decoder are
zt, Xt and rt = {rti}i∈(D) that is query dependent representations for each target query xti.

The dimension of representation is 128. The number of steps for (Temporal)ConvDRAW to sam-
ple zt is 3 and the dimension of z is 4. Note that zt is the output of the last roll-out of (Tempo-
ral)ConvDRAW. For TGQN and ATGQN, the number of hidden unit for SSM is 40. The dimension
of hidden unit on the decoder is 32 and the number of steps for auto-regressive decoding is 6 and
output is cultivated. The query size is 2 (for GQN, it is 3 with et). The number of pseudo context is
100. Learning rate and batch size is 0.0001 and 4.

APPENDIX C GAUSSIAN PROCESS DATA SET

The kernel hyper-parameters, length-scale l and kernel-scale σ are selected randomly at t = 0 in
[0.7, 1.2] and [1.0, 1.6] for scenarios (a) and (b). For scenario (c), l and σ are selected randomly in
[1.2, 1.9] and [1.6, 3.1]. The true underlying dynamics of the kernel hyper-parameters ∆l and ∆σ
are in [−0.03, 0.03] and [−0.05, 0.05] chosen at t = 0.

APPENDIX D ADDITIONAL EXPERIMENTAL RESULTS

D.1 2D RENDERING TASK FOR SCENARIO (A)
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Figure 9: Right: Target NLL on moving CelebA 2D scene rendering task for scenario (a) and Left: examples.

Additionally, we evaluate our model on moving CelebA 2D rendering task for scenario (a). The
sequence length T sets as 15 and the context is given to t = 7. The context size n is randomly
selected in [1, 10] or 0. The target size m is randomly chosen in [1, 11 − n]. Other environment
setting is same to scenario (c).

Fig. 9 shows quantitative and qualitative results. Target NLL value of GQN is very high. On the
other hand, the generation performance is not poor like the value. The reason is failure to predict
the position of complex face image. ATGQN outperforms TGQN when context is given because
ATGQN resolves the underfitting for overlapped region. However, from t = 8 on prediction without
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context, ATGQN shows similar performance to TGQN. The reason is lower uncertainty due to plenty
information from context.

D.2 LEARNING CURVE ON GP TASK
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Figure 10: Target NLL for iteration.
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Figure 11: Target NLL for wall clock time.

In this section, we show target NLL for iterations (Figs. 10) and wall clock time (Figs. 11) for 1D
GP data set. ASNP and ANP computation complexity is bigger than NP O(1) due to attention.
ANP needs O(m

∑T
t nt) where nt is the context size at time-step t. Because it needs to attention

to entire context in current. ASNP computation complexity is O((n + k)m) for generating rt and
O((n + k)k) for updating the pseudo context. When the sequence of data T is not long, ANP
computation complexity is smaller than the complexity of ASNP. However, Fig. 11 shows ASNP
quickly saturates on lower loss in same time.
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APPENDIX E QUALITATIVE RESULTS

E.1 1D REGRESSION

Figure 12: 1D GP regression examples for scenario (c). Columns are NP, ANP, SNP and ASNP. Each row
is examples at each time-step. Due to space limitations, every 5th time-step is shown here instead of every
time-step.
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E.2 2D REGRESSION

Figure 13: 2D moving MNIST regression examples for scenario (a). Columns are Context, Target, NP, ANP,
SNP and ASNP. Each row is examples at each time-step. Due to space limitations, every 2th time-step is shown
here instead of every time-step.
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Figure 14: 2D moving MNIST regression examples for scenario (b). Columns are Context, Target, NP, ANP,
SNP and ASNP. Each row is examples at each time-step. Due to space limitations, every 2th time-step is shown
here instead of every time-step. It is shown as less than 5 time-steps have context because it doesn’t show every
time-steps.
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Figure 15: 2D moving MNIST regression examples for scenario (c). Columns are Context, Target, NP, ANP,
SNP and ASNP. Each row is examples at each time-step. Due to space limitations, every 5th time-step is shown
here instead of every time-step.
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Figure 16: 2D moving CelebA regression examples for scenario (a). Columns are Context, Target, NP, ANP,
SNP and ASNP. Each row is examples at each time-step. Due to space limitations, every 2th time-step is shown
here instead of every time-step.

18



Under review as a conference paper at ICLR 2020

Figure 17: 2D moving CelebA regression examples for scenario (b). Columns are Context, Target, NP, ANP,
SNP and ASNP. Each row is examples at each time-step. Due to space limitations, every 2th time-step is shown
here instead of every time-step. It is shown as less than 5 time-steps have context because it doesn’t show every
time-steps.
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Figure 18: 2D moving CelebA regression examples for scenario (c). Columns are Context, Target, NP, ANP,
SNP and ASNP. Each row is examples at each time-step. Due to space limitations, every 5th time-step is shown
here instead of every time-step.
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E.3 2D SCENE RENDERING

Figure 19: moving CelebA 2D scene rendering task examples for scenario (c). Columns are Image (I), Con-
text (C), Target, GQN, TGQN, ATGQN. Each row is examples at each time-step.
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