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ABSTRACT

Recent advances in cross-lingual word embeddings have primarily relied on
mapping-based methods, which project pre-trained word embeddings from dif-
ferent languages into a shared space through a linear transformation. However,
these approaches assume word embedding spaces are isomorphic between dif-
ferent languages, which has been shown not to hold in practice (Søgaard et al.,
2018), and fundamentally limits their performance. This motivates investigating
joint learning methods which can overcome this impediment, by simultaneously
learning embeddings across languages via a cross-lingual term in the training ob-
jective. Given the abundance of parallel data available (Tiedemann, 2012), we
propose a bilingual extension of the CBOW method which leverages sentence-
aligned corpora to obtain robust cross-lingual word and sentence representations.
Our approach significantly improves cross-lingual sentence retrieval performance
over all other approaches, as well as convincingly outscores mapping methods
while maintaining parity with jointly trained methods on word-translation. It also
achieves parity with a deep RNN method on a zero-shot cross-lingual document
classification task, requiring far fewer computational resources for training and
inference. As an additional advantage, our bilingual method also improves the
quality of monolingual word vectors despite training on much smaller datasets.
We make our code and models publicly available.

1 INTRODUCTION

Cross-lingual representations—such as embeddings of words and phrases into a single comparable
feature space—have become a key technique in multilingual natural language processing. They of-
fer strong promise towards the goal of a joint understanding of concepts across languages, as well as
for enabling the transfer of knowledge and machine learning models between different languages.
Therefore, cross-lingual embeddings can serve a variety of downstream tasks such as bilingual lex-
icon induction, cross-lingual information retrieval, machine translation and many applications of
zero-shot transfer learning, which is particularly impactful from resource-rich to low-resource lan-
guages.

Existing methods can be broadly classified into two groups (Ruder et al., 2017): mapping meth-
ods leverage existing monolingual embeddings which are treated as independent, and apply a post-
process step to map the embeddings of each language into a shared space, through a linear transfor-
mation (Mikolov et al., 2013b; Conneau et al., 2017; Joulin et al., 2018). On the other hand, joint
methods learn representations concurrently for multiple languages, by combining monolingual and
cross-lingual training tasks (Luong et al., 2015; Coulmance et al., 2015; Gouws et al., 2015).

While recent work on word embeddings has focused almost exclusively on mapping methods, which
require little to no cross-lingual supervision, (Søgaard et al., 2018) establish that their performance is
hindered by linguistic and domain divergences in general, and for distant language pairs in particular.
Principally, their analysis shows that cross-lingual hubness, where a few words (hubs) in the source
language are nearest cross-lingual neighbours of many words in the target language, and structural
non-isometry between embeddings do impose a fundamental barrier to the performance of linear
mapping methods.

(Ormazabal et al., 2019) propose using joint learning as a means of mitigating these issues. Given
parallel data, such as sentences, a joint model learns to predict either the word or context in both
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source and target languages. As we will demonstrate with results from our algorithm, joint methods
yield compatible embeddings which are closer to isomorphic, less sensitive to hubness, and perform
better on cross-lingual benchmarks.

Contributions. We propose the BI-SENT2VEC algorithm, which extends the SENT2VEC algorithm
(Pagliardini et al., 2018; Gupta et al., 2019) to the cross-lingual setting. We also revisit TRANS-
GRAM Coulmance et al. (2015), another joint learning method, to assess the effectiveness of joint
learning over mapping-based methods. Our contributions are

• On cross-lingual sentence-retrieval and monolingual word representation quality evalua-
tions, BI-SENT2VEC significantly outperforms competing methods, both jointly trained as
well as mapping-based ones while preserving state-of-the-art performance on cross-lingual
word retrieval tasks.

• BI-SENT2VEC performs on par with a multilingual RNN based sentence encoder,
LASER (Artetxe & Schwenk, 2018), on MLDoc (Schwenk & Li, 2018), a zero-shot cross-
lingual transfer task on documents in multiple languages. Compared to LASER, our method
improves computational efficiency by an order of magnitude for both training and infer-
ence, making it suitable for resource or latency-constrained on-device cross-lingual NLP
applications.

• We verify that joint learning methods consistently dominate state-of-the-art mapping meth-
ods on standard benchmarks, i.e., cross-lingual word and sentence retrieval.

• Training on parallel data additionally enriches monolingual representation quality, evident
by the superior performance of BI-SENT2VEC over FASTTEXT embeddings trained on a
100× larger corpus.

We make our models and code publicly available.

2 RELATED WORK

The literature on cross-lingual representation learning is extensive. Most recent advances in the
field pursue unsupervised (Artetxe & Schwenk, 2018; Conneau et al., 2017; Chen & Cardie, 2018;
Hoshen & Wolf, 2018; Grave et al., 2018b) or supervised (Joulin et al., 2018; Conneau et al., 2017)
mapping or alignment-based algorithms. All these methods use existing monolingual word embed-
dings, followed by a cross-lingual alignment procedure as a post-processing step— that is to learn a
simple (typically linear) mapping from the source language embedding space to the target language
embedding space.

Supervised learning of a linear map from a source embedding space to another target embedding
space (Mikolov et al., 2013b) based on a bilingual dictionary was one of the first approaches towards
cross-lingual word embeddings. Additionally enforcing orthogonality constraints on the linear map
results in rotations, and can be formulated as an orthogonal Procrustes problem (Smith et al., 2017).
However, the authors found the translated embeddings to suffer from hubness, which they mitigate
by introducing the inverted softmax as a corrective search metric at inference time. (Artetxe &
Schwenk, 2018) align embedding spaces starting from a parallel seed lexicon such as digits and
iteratively build a larger bilingual dictionary during training.

In their seminal work, (Conneau et al., 2017) propose an adversarial training method to learn a linear
orthogonal map, avoiding bilingual supervision altogether. They further refine the learnt mapping by
applying the Procrustes procedure iteratively with a synthetic dictionary generated through adver-
sarial training. They also introduce the ‘Cross-Domain Similarity Local Scaling’ (CSLS) retrieval
criterion for translating between spaces, which further improves on the word translation accuracy
over nearest-neighbour and inverted softmax metrics. They refer to their work as Multilingual Un-
supervised and Supervised Embeddings (MUSE). In this paper, we will use MUSE to denote the
unsupervised embeddings introduced by them, and “Procrustes + refine” to denote the supervised
embeddings obtained by them. (Chen & Cardie, 2018) similarly use “multilingual adversarial train-
ing” followed by “pseudo-supervised refinement” to obtain unsupervised multilingual word embed-
dings (UMWE), as opposed to bilingual word embeddings by (Conneau et al., 2017). Hoshen &
Wolf (2018) describe an unsupervised approach where they align the second moment of the two
word embedding distributions followed by a further refinement. Building on the success of CSLS in
reducing retrieval sensitivity to hubness, (Joulin et al., 2018) directly optimize a convex relaxation of
the CSLS function (RCSLS) to align existing mono-lingual embeddings using a bilingual dictionary.
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While none of the methods described above require parallel corpora, all assume structural isomor-
phism between existing embeddings for each language (Mikolov et al., 2013b), i.e. there exists a
simple (typically linear) mapping function which aligns all existing embeddings. However, this is
not always a realistic assumption (Søgaard et al., 2018)—even in small toy-examples it is clear that
many geometric configurations of points can not be linearly mapped to their targets.

Joint learning algorithms such as TRANSGRAM (Coulmance et al., 2015) and Cr5 (Josifoski et al.,
2019) , circumvent this restriction by simultaneously learning embeddings as well as their alignment.
TRANSGRAM, for example, extends the Skipgram (Mikolov et al., 2013a) method to jointly train
bilingual embeddings in the same space, on a corpus composed of parallel sentences. In addition to
the monolingual Skipgram loss for both languages, they introduce a similar cross-lingual loss where
a word from a sentence in one language is trained to predict the word-contents of the sentence
in the other. Cr5, on the other hand, uses document-aligned corpora to achieve state-of-the-art
results for cross-lingual document retrieval while staying competitive at cross-lingual sentence and
word retrieval. TRANSGRAM embeddings have been absent from discussion in most of the recent
work. However, the growing abundance of sentence-aligned parallel data (Tiedemann, 2012) merits
a reappraisal of their performance.

(Ormazabal et al., 2019) use BiVec (Luong et al., 2015), another bilingual extension of Skipgram,
which uses a bilingual dictionary in addition to parallel sentences to obtain word-alignments. Our
experiments show this extra level of supervision is redundant in obtaining state-of-the-art perfor-
mance.

3 MODEL

Proposed Model. Our BI-SENT2VEC model is a cross-lingual extension of SENT2VEC proposed
by (Pagliardini et al., 2018), which in turn is an extension of the C-BOW embedding method
(Mikolov et al., 2013a). SENT2VEC is trained on sentence contexts, with the word and higher-order
word n-gram embeddings specifically optimized toward obtaining robust sentence embeddings using
additive composition. Formally, SENT2VEC obtains representation vs of a sentence S by averaging
the word-ngram embeddings (including unigrams) as vs := 1

R(S)

∑
w∈R(S) vwwhere R(S) is the

set of word n-grams in the sentence S.

The SENT2VEC training objective aims to predict a masked word token wt in the sentence S using
the rest of the sentence representation vS\{wt}. To formulate the training objective, we use logistic
loss ` : x 7→ log (1 + e−x) in conjunction with negative sampling. More precisely, for a raw text
corpus C, the monolingual training objective for SENT2VEC is given by

min
U ,V

∑
S∈C

∑
wt∈S

(
`
(
u>wt

vS\{wt}
)
+
∑

w′∈Nwt

`
(
− u>w′vS\{wt}

))
(1)

where wt is the target word and, V and U are the source n-gram and target word embedding matrices
respectively. Here, the set of negative words Nwt

is sampled from a multinomial distribution where
the probability of picking a word is directly proportional to the square root of its frequency in the
corpus. Each target word wt is sampled with probability min{1,

√
(t/fwt

) + t/fwt
} where fwt

is
the frequency of the word in the corpus.

We adapt the SENT2VEC model to bilingual corpora by introducing a cross-lingual loss in addition
to the monolingual loss in equation (1). Given a sentence pair S = (Sl1 , Sl2) where Sl1 and Sl2 are
translations of each other in languages l1 and l2, the cross-lingual loss for a target word wt in l1 is
given by

`
(
u>wt

vSl2

)
+
∑

w′∈Nwt

`
(
− uw′

t
vSl2

)
(2)

Thus, we use the sentence Sl1 to predict the constituent words of Sl2 and vice-versa in a similar
fashion to the monolingual SENT2VEC, shown in Figure 1. This ensures that the word and n-gram
embeddings of both languages lie in the same space.
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Crosslingual Prediction

The EN La FR voiture FR arrive FR

La FR voiture FR arrive FR
car EN

car EN

is EN arriving EN

The EN is EN arriving EN
[SPLIT]

Bilingual Dataset

Monolingual Prediction

predict pred
ict

Figure 1: An illustration of the BI-SENT2VEC training process. A word from a sentence pair is
chosen as a target and the algorithm learns to predict it using the rest of the sentence(monolingual
training component) and the translation of the sentence(cross-lingual component).

Assuming C to be a sentence aligned bilingual corpus and combining equations (1) and (2), our
BI-SENT2VEC model objective function is formulated as

min
U ,V

∑
S∈C

l,l′∈{l1,l2}
l 6=l′

∑
wt∈Sl

(
`
(
u>wt

vSl\{wt}
)
+
∑

w′∈Nwt

`
(
− uw′

t
vSl\{wt}

)
︸ ︷︷ ︸

monolingual loss

+ `
(
u>wt

vSl′

)
+
∑

w′∈Nwt

`
(
− uw′

t
vSl′

)
︸ ︷︷ ︸

cross-lingual loss

)

(3)
Implementation Details. We build our C++ implementation on the top of the FASTTEXT li-
brary (Bojanowski et al., 2016; Joulin et al., 2016). Model parameters are updated by asynchronous
SGD with a linearly decaying learning rate.

Our model is trained on the ParaCrawl (Esplà-Gomis, 2019) v4.0 datasets for the English-Italian,
English-German, English-French and the English-Spanish language pairs. For the English-Russian
language pair, we concatenate the OpenSubtitle corpus1(Lison & Tiedemann, 2016) and the Tanzil
project2(Quran translations) corpus. The number of parallel sentence pairs in the corpora used by us
range from 17-32 Million. Exact statistics regarding the different corpora can be found in the Table 6
in the Appendix. All the sentences were tokenized using Spacy tokenizers3 for their respective
languages.

For each dataset, we trained two different models: one with unigram embeddings only, and the
other additionally augmented with bigrams. The earlier TRANSGRAM models (Coulmance et al.,
2015) were trained on a small amount of data (Europarl Corpus (Koehn, 2005)). To facilitate a fair
comparison, we train new TRANSGRAM embeddings on the same data used for BI-SENT2VEC.

Given that TRANSGRAM and BI-SENT2VEC are a cross-lingual extension of Skipgram and
SENT2VEC respectively, we use the same parameters as (Bojanowski et al., 2016) and (Gupta et al.,
2019), except increasing the number of epochs for TRANSGRAM to 8, and decreasing the same for
BI-SENT2VEC to 5. Additionally, a preliminary hyperparameter search (except changing the num-
ber of epochs) on BI-SENT2VEC and TRANSGRAM did not improve the results. All parameters for
training the TRANSGRAM and BI-SENT2VEC models can be found in the Table 5 in the Appendix.

4 EVALUATION

To assess the quality of the word and sentence embeddings obtained as well as their cross-lingual
alignment quality, we compare our results using the following four benchmarks

• Cross-lingual word retrieval
• Monolingual word representation quality
• Cross-lingual sentence retrieval
• Zero-shot cross-lingual transfer of document classifiers

where benchmarks are presented in order of increasing linguistic granularity, i.e. word, sentence,
and document level. We also analyze the effect of training data by studying the relationship between
representation quality and corpus size.

1http://www.opensubtitles.org/
2http://tanzil.net/
3https://spacy.io/
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Method en-es en-fr en-de en-ru en-it avg.→ ← → ← → ← → ← → ←
MUSE(Conneau et al., 2017) 81.7 83.3 82.3 82.1 74.0 72.2 44.0 59.1 78.6 77.9 73.5
UMWE(Chen & Cardie, 2018) 82.5 83.1 82.5 82.1 74.6 72.5 49.5 61.7 78.3 77.0 74.4

Procrustes + refine(Conneau et al., 2017) 82.4 83.9 82.3 83.2 75.3 73.2 50.1 63.5 77.5 77.6 74.9
RCSLS(Joulin et al., 2018) 83.7 87.1 84.1 84.7 79.2 77.5 60.9 70.2 81.1 82.7 79.1

TRANSGRAM (Coulmance et al., 2015) 91.6 88.6 89.1 90.1 87.5 87.2 65.6 73.7 88.6 89.5 85.2

BiVec NN (Ormazabal et al., 2019) – 92.4 – – – 89.2 – – – 90.0 –
BiVec CSLS (Ormazabal et al., 2019) – 91.9 – – – 90.1 – – – 90.6 –

BI-SENT2VEC uni. NN 86.9 91.6 86.9 91.0 86.0 88.7 58.0 72.8 88.3 92.4 84.3
BI-SENT2VEC uni. + bi. NN 89.4 92.9 89.3 92.8 86.7 89.3 59.0 70.2 89.5 91.8 85.1
BI-SENT2VEC uni. CSLS 86.0 91.7 86.4 91.4 84.6 88.8 60.5 73.0 88.2 91.8 84.2
BI-SENT2VEC uni. + bi. CSLS 89.0 92.1 88.9 92.4 86.5 89.0 61.0 73.5 89.6 91.4 85.3

Table 1: Word translation retrieval P@1 for various language pairs of MUSE evaluation dic-
tionary (Conneau et al., 2017). NN: nearest neighbours. CSLS: Cross-Domain Similarity Local
Scaling. (‘en’ is English, ‘fr’ is French, ‘de’ is German, ‘ru’ is Russian, ‘it’ is Italian) (‘uni.’ and
‘bi.’ denote unigrams and bigrams respectively) (→ denotes translation from the first language to
the second and← the other way around.)

We use the code available in the MUSE library4 (Conneau et al., 2017) for all evaluations except the
zero-shot classifier transfer, which is tested on the MLDoc task (Schwenk & Li, 2018)5.

4.1 WORD TRANSLATION

The task involves retrieving correct translation(s) of a word in a source language from a target lan-
guage. To evaluate translation accuracy, we use the bilingual dictionaries constructed by (Conneau
et al., 2017). We consider 1500 source-test queries and 200k target words for each language pair and
report P@1 scores for the supervised and unsupervised baselines as well as our models in Table 1.
We also include the source language to English word translation results obtained on BiVec models
trained by (Ormazabal et al., 2019). It is worth noting that they use ParaCrawl v3.0 corpora which
is substantially larger than the ParaCrawl v4.0 corpora used by us, and apply a bilingual dictionary
to produce word-aligned parallel sentences, unlike TRANSGRAM and BI-SENT2VEC which train
exclusively on parallel sentences without word-alignment.

4.2 MONOLINGUAL WORD REPRESENTATION QUALITY

We assess the monolingual quality improvement of our proposed cross-lingual training by evaluating
performance on monolingual word similarity tasks. To disentangle the specific contribution of the
cross-lingual loss, we train the monolingual counterpart of BI-SENT2VEC, SENT2VEC on the same
corpora as our method.

Performance on monolingual word-similarity tasks is evaluated using the English SimLex-999 (Hill
et al., 2014) and its Italian and German translations, English WS-353 (Finkelstein et al., 2001) and its
German, Italian and Spanish translations. For French, we use a translation of the RG-65 (Joubarne &
Inkpen, 2011) dataset. Pearson scores are used to measure the correlation between human-annotated
word similarities and predicted cosine similarities. We also include FASTTEXT monolingual vectors
trained on CommonCrawl data (Grave et al., 2018a) which is comprised of 600 billion, 68 billion, 66
billion, 72 billion and 36 billion words of English, French, German, Spanish and Italian respectively
and is at least 100× larger than the corpora on which we trained BI-SENT2VEC. We report Pearson
correlation scores on different word-similarity datasets for En-It pair in Table 2. Evaluation results
on other language pairs are similar and can be found in the appendix in Tables 7, 8, and 9.

4.3 CROSS-LINGUAL SENTENCE RETRIEVAL

The primary contribution of our work is to deliver improved cross-lingual sentence representations.
We test sentence embeddings for each method obtained by bag-of-words composition for sentence

4https://github.com/facebookresearch/MUSE
5https://github.com/facebookresearch/MLDoc
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Method\Dataset SimLex-999 WS-353
en it en it

MUSE 0.38 0.30 0.74 0.64
RCSLS 0.38 0.30 0.74 0.64
FASTTEXT- Common Crawl 0.49 0.32 0.75 0.57

TRANSGRAM 0.43 0.37 0.73 0.63

SENT2VEC uni. 0.49 0.38 0.73 0.60

BI-SENT2VEC uni. 0.57 0.47 0.79 0.65
BI-SENT2VEC uni. + bi. 0.58 0.50 0.80 0.69

Table 2: Monolingual word similarity task performance of our methods when trained on en-it
ParaCrawl data. We report Pearson correlation scores.

retrieval across different languages on the Europarl corpus. In particular, the tf-idf weighted average
is used to construct sentence embeddings from word embeddings. We consider 2000 sentences in the
source language dataset and retrieve their translation among 200K sentences in the target language
dataset. The other 300K sentences in the Europarl corpus are used to calculate tf-idf weights. Results
for P@1 of unsupervised and supervised benchmarks vs our models are included in Table 3.

Method en-es en-fr en-de en-it avg.→ ← → ← → ← → ←
MUSE 72.7 71.5 69.2 68.8 53.3 53.4 66.1 64.3 64.9

RCSLS 26.9 26.7 19.3 21.2 8.8 11.3 15.1 17.6 18.4

TRANSGRAM 83.5 81.4 80.4 81.6 64.8 69.9 77.2 77.9 77.1

BI-SENT2VEC uni. NN 87.8 86.4 85.2 83.4 82.3 80.2 85.9 85.8 84.6
BI-SENT2VEC uni. + bi. NN 87.9 87.8 86.1 83.9 79.5 79.7 85.1 85.3 84.4
BI-SENT2VEC uni. CSLS 89.5 88.5 87.1 86.4 84.4 83.0 88.2 87.5 86.8
BI-SENT2VEC uni. + bi. CSLS 89.7 89.6 87.8 87.4 84.2 84.0 87.9 87.6 87.3
Reduction in error 37.5% 44.1% 37.8% 31.5% 55.1% 46.8% 46.9% 43.9% –

Table 3: Cross-lingual Sentence retrieval. We report P@1 scores for 2000 source queries searching
over 200 000 target sentences. Reduction in error is calculated with respect to BI-SENT2VEC uni.
+ bi. CSLS and the best non-BI-SENT2VEC method.

4.4 ZERO-SHOT CROSS-LINGUAL TRANSFER OF DOCUMENT CLASSIFIERS

The MLDoc multilingual document classification task (Schwenk & Li, 2018) consists of news
documents given in 8 different languages, which need to be classified into 4 different categories.
To demonstrate the ability to transfer trained classifiers in a robust fashion between languages, we
use a zero-shot setting, i.e., we train a classifier on embeddings in the source language, and report
the accuracy of the same classifier applied to the target language. As the classifier, we use a simple
feed-forward neural network with two hidden layers of size 10 and 8 respectively, optimized using
the Adam optimizer. Each document is represented using the sum of its sentence embeddings.

Method en-es en-fr en-de en-it avg.→ ← → ← → ← → ←
LASER 79.3 69.6 78.0 80.1 86.3 80.8 70.2 74.2 77.3
BI-SENT2VEC 74.0 71.5 81.6 82.2 86.5 79.2 75.0 72.6 77.8

Table 4: MLDoc Benchmark results (Schwenk & Li, 2018). A document classifier was trained on
one language and tested on another without additional training/fine-tuning. We report % accuracy.

We compare the performance of BI-SENT2VEC with the LASER sentence embeddings (Artetxe &
Schwenk, 2018) in Table 4. LASER sentence embedding model is a multi-lingual sentence embed-
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ding model which is composed of a biLSTM encoder and an LSTM decoder. It uses a shared byte
pair encoding based vocabulary of 50k words. The LASER model which we compare to was trained
on 223M sentences for 93 languages and requires 5 days to train on 16 V100 GPUs compared to our
model which takes 1-2.5 hours for each language pair on 30 CPU threads.

4.5 EFFECT OF CORPUS SIZE ON REPRESENTATION QUALITY

We conduct an ablation study on how BI-SENT2VEC embeddings’ performance depends on the
size of the training corpus. We uniformly sample smaller subsets of the En-Fr ParaCrawl dataset
and train a BI-SENT2VEC model on them. We test word/sentence translation performance with the
CSLS retrieval criterion, and monolingual embedding quality for En-Fr with increasing ParaCrawl
corpus size. The results are illustrated in Figures 2 and 3.

Figure 2: Effect of corpus size on cross-lingual word/sentence retrieval performance.

Figure 3: Effect of corpus size on monolingual word quality. We use SimLex-999, WS-353, and
FR-RG datasets for measuring monolingual word embedding quality.

5 DISCUSSION

In the following section, we discuss the results on monolingual and cross-lingual benchmarks, pre-
sented in Tables 1 - 4, and a data ablation study for how the model behaves with increasing parallel
corpus size in Figure 2 - 3. The most impressive outcome of our experiments is improved cross-
lingual sentence retrieval performance, which we elaborate on along with word translation in the
next subsection.
Cross-lingual evaluations For cross-lingual tasks, we observe in Table 1 that jointly trained
embeddings produce much better results on cross-lingual word and sentence retrieval tasks. BI-
SENT2VEC’s performance on word-retrieval tasks is uniformly superior to mapping methods,
achieving up to 11.5% more in P@1 than RCSLS for the English to German language pair, consistent
with the results from (Ormazabal et al., 2019). It is also on-par with, or better than competing joint
methods except on translation from Russian to English, where TRANSGRAM receives a significantly
better score. For word retrieval tasks, there is no discernible difference between CSLS/NN criteria
for BI-SENT2VEC, suggesting the relative absence of the hubness phenomenon which significantly
hinders the performance of cross-lingual word embedding methods.
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Our principal contribution is in improving cross-lingual sentence retrieval. Table 3 shows BI-
SENT2VEC decisively outperforms all other methods by a wide margin, reducing the relative P@1
error anywhere from 31.5% to 55.1%. Our model displays considerably less variance than others
in quality across language pairs, with at most a ≈ 5% deficit between best and worst, and nearly
symmetric accuracy within a language pair.

TRANSGRAM also outperforms the mapping-based methods, but still falls significantly short of BI-
SENT2VEC’s. These results can be attributed to the fact that BI-SENT2VEC directly optimizes for
obtaining robust sentence embeddings using additive composition of its word embeddings. Since
BI-SENT2VEC’s learning objective is closest to a sentence retrieval task amongst current state-of-
the-art methods, it can surpass them without sacrificing performance on other tasks.

It is also evident from Table 3 that RCSLS-aligned embeddings perform poorly on sentence retrieval,
with an average P@1 score of 18.4%. This can be attributed to the fact that both source and target
embeddings are normalized before learning the linear map (Joulin et al., 2018). This results in the
RCSLS embeddings losing a significant amount of word importance (weight) information when
aggregated as sentence vectors.

Monolingual word quality For the monolingual word similarity tasks, we observe large gains
over existing methods. SENT2VEC is trained on the same corpora as us, and FASTTEXT vectors are
trained on the CommonCrawl corpora which are more than 100 times larger than ParaCrawl v4.0. In
Table 2, we see that BI-SENT2VEC outperforms them by a significant margin on SimLex-999 and
WS-353, two important monolingual word quality benchmarks. This reveals that bilingual contexts
can be surprisingly effective for learning monolingual word representations. While the advantages
of using monolingual parallel corpora (paraphrases) for learning word embeddings have already
been illustrated in the work of (Wieting et al., 2016), our evaluations confirm it for the bilingual case
as well.
BI-SENT2VEC also outperforms TRANSGRAM trained on the same corpora, again hinting at the
superiority of the sentence level loss function over a fixed context window loss.

Effect of n-grams (Gupta et al., 2019) report improved results on monolingual word representa-
tion evaluation tasks for SENT2VEC and FASTTEXT word vectors by training them alongside word
n-grams. Our method incorporates their results based on the observation that unigram vectors trained
alongside with bigrams significantly outperform unigrams alone on the majority of the evaluation
tasks. We can see from Tables 1 - 3 that this holds for the bilingual case as well.

Effect of corpus size Considering the cross-lingual performance curve exhibited by BI-
SENT2VEC in Figure 2, increasing corpus size for the English-French datasets up to 1-3.1M lines
appears to saturate the performance of the model on cross-lingual word/sentence retrieval, after
which it either plateaus or degrades slightly. This is an encouraging result, indicating that joint
methods can use significantly less data to obtain promising performance. This implies that joint
methods may not necessarily be constrained to high-resource language pairs as previously assumed,
though further experimentation is needed to verify this claim.
It should be noted from Figure 3 that the monolingual quality does keep improving with an increase
in the size of the corpus. A potential way to overcome this issue of plateauing cross-lingual perfor-
mance is to give different weights to the monolingual and cross-lingual component of the loss with
the weights possibly being dependent on other factors such as training progress.

Comparison with a cross-lingual sentence embedding model and performance on document
level task On the MLDoc classifier transfer task (Schwenk & Li, 2018) where we evaluate a clas-
sifier learned on documents in one language on documents in another, Table 4 shows we achieve
parity with the performance of the LASER model for language pairs involving English, where BI-
SENT2VEC’s average accuracy of 77.8% is slightly higher than LASER’s 77.3%. While the com-
parison is not completely justified as LASER is multilingual in nature and is trained on a different
dataset, one must emphasize that BI-SENT2VEC is a bag-of-words method as compared to LASER
which uses a multi-layered biLSTM sentence encoder. Since our method only requires to average a
set of vectors to encode sentences, its computational footprint is significantly lower. This makes our
model an ideal candidate for on-device computationally efficient cross-lingual NLP, unlike LASER
which has a huge computational overhead and specialized hardware requirement for encoding sen-
tences. The robust performance of our model on this task demonstrates the suitability of our model
for cross-lingual downstream tasks as well.
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6 CONCLUSION AND FUTURE WORK

We introduce a cross-lingual extension of an existing monolingual word and sentence embedding
method. The proposed model is tested at three levels of linguistic granularity: words, sentences
and documents. The model outperforms all other methods by a wide margin on the cross-lingual
sentence retrieval task while maintaining parity with the best-performing methods on word transla-
tion tasks. Our method achieves parity with LASER on zero-shot document classification, despite
being a much simpler model. We also demonstrate that training on parallel data yields a significant
improvement in the monolingual word representation quality.

The success of our model on the bilingual level calls for its extension to the multilingual level espe-
cially for pairs which have little or no parallel corpora. While the amount of bilingual/multilingual
parallel data has grown in abundance, the amount of monolingual data available is practically limit-
less. Consequently, we would like to explore training cross-lingual embeddings with a large amount
of raw text combined with a smaller amount of parallel data.
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A APPENDIX

A.1 DATASET STATISTICS

Dataset Number of sentences Number of tokens
(English tokens if bilingual)

En-De ParaCrawl v4.0 17 Million 308 Million
En-Fr ParaCrawl v4.0 32 Million 665 Million
En-De ParaCrawl v3.0 32 Million 503 Million
En-It ParaCrawl v4.0 13 Million 261 Million
En-It ParaCrawl v3.0 15 Million 309 Million
En-Es ParaCrawl v4.0 22 Million 477 Million
En-Es ParaCrawl v3.0 31 Million 492 Million
En-Ru OpenSubtitles + Tanzil 27 Million 363 Million
Wikipedia - En 70 Million 1792 Million
Wikipedia - De – 1384 Million
Wikipedia - Fr – 1108 Million
Wikipedia - Es – 797 Million
Wikipedia - It – 702 Million
Wikipedia - Ru – 824 Million
Common Crawl - En – 600 Billion
Common Crawl - De – 66 Billion
Common Crawl - Fr – 68 Billion
Common Crawl - It – 36 Billion
Common Crawl - Es – 72 Billion

Table 5: Dataset Sizes. ‘En’,‘De’,‘Fr’,‘It’,‘Es’ and ‘Ru’ stand for English, German, French, Italian,
Spanish and Russian respectively.

We used ParaCrawl v4.0 corpora for training BI-SENT2VEC, SENT2VEC and TRANSGRAM em-
beddings except for En-Ru pair for which we used OpenSubtitles and Tanzil corpora combined.
(Ormazabal et al., 2019) use ParaCrawl v3.0 corpora. MUSE and RCSLS vectors were trained from
FASTTEXT vectors obtained from Wikipedia dumps(Grave et al., 2018a).
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A.2 TRAINING PARAMETERS FOR TRAINED MODELS

Model BI-SENT2VEC
uni.

BI-SENT2VEC
uni. + bi.

SENT2VEC
uni. TRANSGRAM

Embedding dimension 300 300 300 300
Max vocabulary size 750k 750k 750k 750k
Minimum word count 5 8 5 5
Initial Learning Rate 0.2 0.2 0.2 0.025
Epochs 5 5 5 8
Subsampling hyper-parameter 1 · 10−5 5 · 10−6 1 · 10−5 1 · 10−4
Word-Ngrams Bucket Size – 2M – –
Word-Ngrams dropped per context – 4 – –
Window size 5
Number of negatives sampled 10 10 10 5

Table 6: Hyperparameters for the trained models
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A.3 ADDITIONAL MONOLINGUAL QUALITY TABLES

Method\Dataset SimLex-999 WS-353
en en es

MUSE 0.38 0.74 0.61
RCSLS 0.38 0.74 0.62
FASTTEXT- Common Crawl 0.49 0.75 0.54

TRANSGRAM 0.42 0.74 0.59

SENT2VEC uni. 0.49 0.58 0.51

BI-SENT2VEC uni. 0.57 0.78 0.60
BI-SENT2VEC uni. + bi. 0.60 0.82 0.66

Table 7: Monolingual word similarity task performance of our methods when trained on en-es
ParaCrawl data. We report Pearson correlation scores.

Method\Dataset SimLex-999 WS-353 RG-65
en en fr

MUSE 0.38 0.74 0.72
RCSLS 0.38 0.74 0.70
FASTTEXT- Common Crawl 0.49 0.75 0.76

TRANSGRAM 0.39 0.72 0.74

SENT2VEC uni. 0.46 0.75 0.71

BI-SENT2VEC uni. 0.55 0.78 0.74
BI-SENT2VEC uni. + bi. 0.59 0.79 0.78

Table 8: Monolingual word similarity task performance of our methods when trained on en-fr
ParaCrawl data. We report Pearson correlation scores.

Method\Dataset SimLex-999 WS-353
en de en de

MUSE 0.38 0.41 0.74 0.68
RCSLS 0.38 0.43 0.74 0.70
FASTTEXT- Common Crawl 0.49 0.39 0.75 0.64

TRANSGRAM 0.42 0.42 0.74 0.66

SENT2VEC uni. 0.48 0.38 0.70 0.63

BI-SENT2VEC uni. 0.56 0.47 0.76 0.68
BI-SENT2VEC uni. + bi. 0.59 0.53 0.75 0.70

Table 9: Monolingual word similarity task performance of our methods when trained on en-de
ParaCrawl data. We report Pearson correlation scores.
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