Under review as a conference paper at ICLR 2020

A FRAMEWORK FOR ROBUSTNESS CERTIFICATION OF
SMOOTHED CLASSIFIERS USING F-DIVERGENCES

Anonymous authors
Paper under double-blind review

ABSTRACT

Formal verification techniques that compute provable guarantees on properties of
machine learning models, like robustness to norm-bounded adversarial perturba-
tions, have yielded impressive results. Although most techniques developed so far
requires knowledge of the architecture of the machine learning model and remains
hard to scale to complex prediction pipelines, the method of randomized smoothing
has been shown to overcome many of these obstacles. By requiring only black-box
access to the underlying model, randomized smoothing scales to large architectures
and is agnostic to the internals of the network. However, past work on randomized
smoothing has focused on restricted classes of smoothing measures or perturbations
(like Gaussian or discrete) and has only been able to prove robustness with respect
to simple norm bounds. In this paper we introduce a general framework for proving
robustness properties of smoothed machine learning models in the black-box set-
ting. Specifically, we extend randomized smoothing procedures to handle arbitrary
smoothing measures and prove robustness of the smoothed classifier by using
f-divergences. Our methodology achieves state-of-the-art certified robustness on
MNIST, CIFAR-10 and ImageNet and also audio classification task, Librispeech,
with respect to several classes of adversarial perturbations.

1 INTRODUCTION

Predictors obtained from machine learning algorithms have been shown to be vulnerable to making
errors when the inputs are perturbed by carefully chosen small but imperceptible amounts (Szegedy:
et al., 2014; Biggio et al., [2013)). This has motivated significant amount of research in improving
adversarial robustness of a machine learning model such as Madry et al.|(2018); |Goodfellow et al.
(2015). While significant advances have been made, it has been shown that models that were estimated
to be robust have later been broken by stronger attacks (Athalye et al.| 2018 [Uesato et al.| 2018).
This has led to the need for methods that offer provable guarantees that the predictor cannot be forced
to misclassify an example by any attack algorithm restricted to produce perturbations within a certain
set (for example, within an £, norm ball). While progress has been made leading to methods that
are able to compute provable guarantees for several image and text classification tasks (Wong &
Kolter, |2018; [Wong et al.l 2018; Raghunathan et al., 2018};|Dvijotham et al., 2018} |[Katz et al., 2017
Huang et al., 2019; Jia et al., 2019), these methods require extensive knowledge of the architecture
of the predictor and are not easy to extend to new models or architectures, requiring specialized
algorithms for each new class of models. Further, the computational complexity of these methods
grows significantly with input dimension and model size.

Consequently, to deal with these obstacles, recent work has proposed the randomized smoothing
strategy for verifying the robustness of classifiers. Specifically, |[Lecuyer et al. (2018);|/Cohen et al.
(2019) have shown that robustness properties can be more easily verified for the smoothed version of
a base classifier h:

hs(z) =argmax P [h(X)=1y], (1)

yey X ~p(x)

where the labels returned by the smoothed classifier h ¢ are obtained by taking a “majority vote” over
the predictions of the original classifier & on random inputs drawn from a probability distribution
wu(x), called the smoothing measure (here ) denotes the set of classes in the problem). [Lecuyer
et al.|(2018) showed that verifying the robustness of this smoothed classifier is significantly simpler
than verifying the original classifier h and only requires estimating the distribution of outputs of the
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classifier under random perturbations of the input, but does not require access to the internals of the
classifier h. We refer to this as black-box verification.

In this work, we develop a general framework for black-box verification that recovers prior work as
special cases, and improves upon previous results in various ways.

Contributions Our contributions are summarized as follows:

1. We formulate the general problem of black-box verification via a generalized randomized
smoothing procedure, which extends past approaches to allow for arbitrary smoothing measures.
Specifically, we show that robustness certificates for smoothed classifiers can be obtained by
solving a small convex optimization problem when adversarial perturbations can be characterized
via divergence-based bounds on the smoothing measure. Our certificates generalize previous
results obtained in related work (Lecuyer et al., 2018; |Cohen et al.||2019), and vastly extend the
class of perturbations that randomized smoothing procedures can certify.

2. We evaluate our framework experimentally for several audio and image classification tasks,
obtaining robustness certificates that improve upon other black-box methods. In particular, we
get state-of-the-art results on robustness to ¢y and ¢; norm perturbations on CIFAR-10 and
ImageNet. We also obtain the first, to the best of knowledge, certifiably robust model for an
audio classification task.

2 BLACK-BOX VERIFICATION FOR SMOOTHED CLASSIFIERS

Consider a binary classifier h : X — {41} given to us as a black box, so we can only access the
inputs and outputs of A but not its internals. We are interested in investigating the robustness of
the smoothed classifier i (defined in Eq.|1)) against adversarial perturbations of size at most € with

respect to a given norm ||-||. To determine whether a norm bounded adversarial attack on a fixed input
x € X with hs(z) = +1 could be successful, we can solve the optimization problem
min P [h(X')=+1], )

2/~ ]| <e X' mop(a’)

and check whether the minimum value can be smaller than % This is a non-convex optimization
problem for which we may not even be able to compute gradients since we only have black-box access
to h. While techniques have been developed to address this problem, obtaining provable guarantees
on whether these algorithms actually find the worst-case adversarial perturbation is difficult since we
do not know anything about the nature of h.

Motivated by this difficulty, we take a different approach: Rather than studying the adversarial attack
in the input space X, we study it in the space of probability measures over inputs, denoted by P(X').
Formally, this amounts to rewriting Eq. 2] as
min P [h(X')=+1] . 3

ve{p(a'):||le’' —z||<e} X’Nv[ () =+1] )
This is an infinite dimensional optimization problem over the space of probability measures v € P(X)
subject to the constraint v € D = {u(z") : ||z’ — z|| < €}. While this set is still intractable to
deal with, we can consider relaxations of this set defined by divergence constraints between v and
p = u(x),ie,D C {v:D(|p) < ep} where D denotes some divergence between probability
distributions. We will show in Section 3] that for several commonly used divergences (in fact, for any
f-divergence cf.|Ali & Silveyl, [1966)), the relaxed problem can be solved efficiently.

2.1 A GENERAL FRAMEWORK FOR ROBUST VERIFICATION

In order to make the above setting more general, instead of speaking only about binary classifiers, we
focus on a specification ¢ : X — Z C R: a generic function over the input space that we want to
verify has certain properties. Unless otherwise specified, we will assume that X C R? (we work in a
d dimensional input space).

In the binary classification setting, ¢ could simply be the binary classifier itself, but it can also
cover other settings such as probabilistic classifiers, the multi-class setting, etc. Our framework also
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involves a reference measure p (in the above example we would take p = p(x)) and a collection of
perturbed distributions D (in the above example we would take D = {u(z’) : |2’ — z|| < €}).

Using these ingredients we postulate two closely related certification problems: robust certification
and information-limited robust certification. In the former case, we are given black-box access to a
specification ¢ and are asked to verify that it obeys some property for all probability distributions v
within some class. In the latter case, we are given only knowledge of certain expectations of ¢ under
the reference distribution p, and are asked to verify that any specification ¢ that agrees with these
expectations is robustly certified (in this case we restrict the definition to ternary-valued specifications
for technical convenience). Although the information-limited case may seem more challenging
because we need to provide guarantees that hold simultaneously over a whole class of specifications,
it turns out that, for perturbation sets D specified by an f-divergence bound, both certification tasks
can be solved efficiently using convex optimization.

Definition 2.1 (Robust certification). Let ¢ : X — Z C R be a specification and p € P(X) a
reference distribution such that Ex.,[¢(X)] > 0. Given a collection of perturbed distributions
D C P(X) containing p, we say that ¢ is robustly certified at p with respect to D if for any v € D
we have Ex ., [¢p(X)] > 0.

Verifying that a given specification ¢ is robustly certified is equivalent to checking whether the
optimal value of the optimization problem

PT D):=min E [¢(X 4

OPT(¢,p, D) := min E [6(X]] , €y

satisfies OPT(¢, p, D) > 0. Solving problems of this form is the key workhorse of our general
framework for black-box certification of adversarial robustness for smoothed classifiers.

When faced with Eq. ] a natural question to ask is how much information about ¢, in the sense
of black-box queries, is required to solve the verification problem. This motivates us to consider
an information-limited scenario where a potential verification algorithm only has access to the
distribution of ¢(X) under the reference distribution X ~ p. Specifically, in many cases of practical
interest (including verification of smoothed classifiers, cf. Section[2.2)) it suffices to verify ternary-
valued specifications taking values in {—1,0,+1}, in which case we hope to find solutions to
the verification problem that only depend on the probabilities 8, = Px.,[¢(X) = +1] and 6, =
Px~,[¢(X) = —1]. This motivates the following definition.

Definition 2.2 (Information-limited robust certification). Given a reference distribution p € P(X)
and probabilities 0 < 0, < 0, < 1 (with 8, + 0, < 1), define the class of speciﬁcations{ﬂ

S = {(b : X = {-1,0,+1} such that XIP’ [p(X) =+1] > Ga,X]P’ [p(X)=-1] < Gb} Q)
~p ~p
For any collection of perturbed distributions D C P(X’) containing p we say that S is information-
limited robustly certified at p with respect to D if the following conditions hold:

E[o(X)=0 YweDges .

2.2 ADVERSARIAL SPECIFICATION FOR SMOOTHED CLASSIFIERS

We first note that the definitions above are sufficient to capture the standard usage of randomized
smoothing as it has been used in past work (e.g. Lecuyer et al., 2018} |Cohen et al.,|2019)) to verify
the robustness of smoothed multi-class classifiers. Specifically, consider smoothing a classifier
h: X — Y with a finite set of labels ) using a smoothing measure 4 : X' — P(X). The resulting
randomly smoothed classifier h is defined in Eq. [1] Our goal is to certify that the prediction hs(z) is
robust to perturbations of size at most ¢ measured by distance function’|d : X x X — R, i.e.,

hs(z") = hs(x) Va' suchthatd(z,z’) <e€ . (6)

To pose this question within our framework, we choose the reference distribution p = u(x), the
set of perturbed distributions D, . = {p(2’) : d(z,2") < €}, and the following specifications. Let

"Note that by construction we have Ex~,[¢(X)] > 0 forall ¢ € S.
2d is an arbitrary distance function (not necessarily a metric e.g. £o).
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¢ = hs(z). Forevery ¢’ € Y\ {c}, we define the specification ¢, . : X — {—1,0,+1} as follows:
+1 ifh(x)=c,
Geer(x)=4q -1 ifh(z)=¢ ,
0 otherwise .

Then, Eq. [6| holds if and only if every ¢, . is robustly certified at ;(x) with respect to D, . (see
Appendix [A.1). This can be extended to soft or probabilistic classifiers as well, as shown in

Appendix |A.2]
2.3 CONSTRAINT SETS FROM f-DIVERGENCES

Dealing with the set D, . directly is difficult due to its possibly non-convex geometry. In this section,
we discuss specific relaxations of this set, i.e., choices for sets D such that D, . C D that are easier
to optimize over. In particular, we focus on a general family of constraint sets defined in terms of
f-divergences. These divergences satisfy a number of useful properties and include many well-known
instances (e.g. relative entropy, total variation); see Appendix [A23]for details.

Definition 2.3. (f-divergence constraint set). Given p, v € P(X), their f-divergence is deﬁnetﬂ as

oyl = B |1(%5 )]

where f : Ry — R is a convex function with f(1) = 0. Given a reference distribution p, an
f-divergence Dy and a bound ¢ > 0, we define the f-divergence constraint set to be:

Dy ={v € P(X): Ds(v|p) <es} -

Relaxations using f-divergence This construction immediately allows us to obtain relaxations of
D,.. For example, by choosing f(u) = ulog(u), we have the KL divergence. Using KL-divergence
yields the following relaxation between norm-based and divergence-based constraint sets for Gaussian
smoothing measures, i.e. u(z) = N (z,0%1):

Dy = {u(@') : o —a'lly < e} € {v: KL(v||p(@)) < ¢/(20°)}

Tighter relaxations can be constructed by combining mul- P ( X )
tiple divergence-based constraints. In particular, suppose
F is a collection of convex functions each defining an D &)
f-divergence, and assume each f € F has a bound €y

associated with it. Then we can define the constraint set

containing perturbed distributions where all the bounds

hold simultaneously (Fig.[I):

Dy = ﬂDf:{y:er]: Dy(v|p) < e} .
ferF

Dy

2

Figure 1: Intersecting f-divergence con-

Concrete verification algorithms based on these strategies ~ straints to obtain better relaxations Dz
will be discussed in Section 3 (depicted by the orange region) of D, ..

3 EFFICIENT BLACK-BOX VERIFICATION WITH f—DIVERGENCES

We now show how the black-box verification problem (cf. Eq. ) can be solved efficiently for the
case of f-divergences. This allows us, by extension, to solve the problem for related divergences like
Rényi divergences. Before we state the result, we introduce the notion of a convex conjugate: for any
function f : R} — R, its convex conjugate is defined as

7 (w) = max (wo = f(v)) -

3This definition should technically use the Radon-Nikodym derivative of the measure v with respect to p, but
we ignore measure-theoretic issues in this paper for simplicity of exposition. For continues distributions, v and
p should be treated as densities, and for discrete distributions as probability mass functions.
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The following two theorems provide the main foundation for the verification procedures in the paper.
They show that in the case of a constraint set of the form Dr with F = {f1,..., f;} and €y, = ¢,
we can verify robust certification and information-limited robust certification, respectively, using a
simple optimization procedure.

Theorem 1 (Verifying robust certification). Define fy(u) = Zﬁ1 A fi(u) and denote its convex
conjugate by f}. The specification ¢ is robustly certified at p with respect to D if and only if the
optimal value of the following optimization problem is non-negative:

M
g e = DN = B If3(k = (0] )

We note that the special case where M = 1 reduces to Proposition 1 of Duchi & Namkoong| (2018)),
although the result is used in a completely different context in that work.

Our next main theorem concerns the extension of this verification procedure to the information-limited
setting. Although it may seem more challenging to verify robustness over both all v € Dx and all
specifications ¢ that obey 0, < Px.,[¢(X) = +1] and 6, > Px.,[¢(X) = —1], it turns out that
the latter can also be accomplished via a convex optimization problem:

Theorem 2. The class of specifications S in Definition 2.2]is information-limited robustly certified

at p with respect to Dx if and only if the optimal value of the following three-variable convex
optimization problem is non-negative:

i @ — 8a
(o I e G (82)
Subjectto (, + G+ (=1, Dp(l0)<e i=1,...,M, (8b)

where 8 = (0,,0,,1 — 0, — 6;).

Theorem 2] has an intuitive interpretation: We consider the space of distributions over the possible
values of the specification {—1,0, 41} and search for one which is within a distance of ¢; from 6
with respect to the f;-divergence looking for one that has the smallest expected value. If there exists
one that has a negative expected value, robust certification does not hold. This is a rather surprising
result, since it says that f-divergence constraints over the input space P(X’) can simply be translated
to f-divergence constraints over the outputs P({—1,0,+1}).

The proof of Theorem [I] uses standard duality results to show that the dual of the verification
optimization problem has the desired form. The proof of Theorem 2] rests on the fact that for
this form of optimal solution, it is possible to directly compute the expectation in Eq. [7, and in
fact this expectation only depends on ¢ via the probabilities 8, and 6,. Full proofs are given in
Appendices[A4]and[A3]
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Figure 2: Geometric interpretation of Eq. [8§f We show the intersection of constraints of the form
{Rua(V||p) < €} using several Rényi divergences. For each «, we compute the worst case Rényi
divergence over the set D = {p(z’) : ||z’ — z||, < €} (i.e., the set of smoothing measures from £
perturbations of a nominal point) and choose €, to be this value (we choose p to be discrete smoothing
measure described in appendix [A.10). We then show the set { R (v||p) < €} (@ = 2.5, M = 1)
depicted as the green region, the set set Nae(2.5,3.03{ Ra(V||p) < €0} (M = 2, brown region in the
middle figure) and Nye(2.5,3.0,5.01 { Ra (V]|p) < €} (M = 3, blue region on the right figure). The
dashed line shows (, — (; = 0, so that the first two sets are not certified but the third set is.



Under review as a conference paper at ICLR 2020

Divergence constraint flw) Certificate

Lol < ex vlog(s e < g1~ (V7 — V7))
Rényi divergences (o > 0) ) o R < ~log(l — 0 — 9b1+ 2n)
Ravlp) < cho R i Gy R
Infinite Rényi divergence N/A €roe < —log(1 — (6, — 6y))

Roo(V]p) < €p.0
Hockey-stick divergences (5 > 0)

Duss(vllp) < ensp

[u— 5]4_ —[1- ﬁ]+ €HS,8 = {W]ﬁ’

Table 1: Certificates for various f-divergences. Note that the Rényi divergences are not proper
[f-divergences, but are defined as R, (v||p) = =5 log(1 + Dy(v||p)). The infinite Rényi divergence,
defined as sup,, log(v(z)/u(x)), is obtained by taking the limit @ — oo. All certificates depend on

the gap between ¢, and 6. Notation: [u], = max(u,0).

3.1 APPLICATIONS

Closed-form certificates for hard classifiers To verify the ternary-valued specifications ¢
corresponding to the robustness of p-smoothing a classifier i (cf. Section [2.2)) it suffices to consider
the top two labels ¢ and ¢’ with:

c=argmax P [WM(X)=y], 6O,= P e (X)=+1]= P [W(X)=(,
g XNW_)[( ) =] XNM(I)W, (X) ] XNW)[( ) =

d=argmax P [A(X)=vy], O= P ce(X)=-1= P [A(X)=C].
gmax P WX) =y b= P loce(X)= 1= P (X) =]

We are thus in the limited information setting and the verification reduces to a problem of the form
Eq.[8] For this case, Table[I] provides simple closed-form certificates for several commonly used
f-divergences (i.e. for constraint sets F with M = |F| = 1).

Norm-based smoothing measures Our framework can be used whenever the smoothing measures
are such that: (1) X ~ u(z) can be sampled efficiently, and (2) max{,.q(z 21y <e} Dy (p(2)||p(2))
can be computed or bounded efficiently for one or more f-divergences. In the case where the
distance function is induced by some norm d(z, z') = || — ||, a natural choice is to take smoothing
measures with density p(z)[z] « exp(—||z — z||). Such smoothing measures are additive in the
sense that X ~ p(x) satisfies X = = + Z with Z ~ p(0); this reduces the sampling question to
sampling from 1(0). Furthermore, it can be shown using the triangle inequality that for any such
distribution, we have R (p(z')||u(x)) = ||z’ — z||. Tt is thus straightforward to compute certificates
under infinite Rényi divergences for any such measure.

Lemma [6]in Appendix [A.§]shows that we can also efficiently compute bounds for a large family of
f-divergences under several norms of interest (including ¢1, /5, £, vector norms as well as the matrix
nuclear and spectral norms). The same appendix also outlines efficient procedures to sample from the
corresponding smoothing measures. A similar approach can also deal with discrete perturbations (i.e.
induced by the ¢y pseudo-norm) as shown in Appendix

3.2 INFORMATION-LIMITED ROBUST CERTIFICATION AND TIGHT RELAXATIONS

Ideally, we would like to certify robustness of specifications (e.g. ¢. s for smoothed classifiers)
with respect to sets of the form D, . = {u(z’) : d(z,2") < e}. The following result shows that
the gap between the ideal D, . and the tractable constraint sets Dx can be closed in the context of
information-limited robust certification provided that we can measure hockey-stick divergences of
every non-negative order 3 > 0. The proof is given in Appendix

Theorem 3. Let 6,60, p, D, S be as in Definition Let eg = max,ep Dus g(v|p) for 5 > 0
and define the constraint set Dyg = Ng>o{r € P(X) : Dus g(v||p) < €s}. Then, S is information-
limited robustly certified at p with respect to D if and only if S is information-limited robustly
certified at p with respect to Dys.
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4 CONNECTIONS WITH PRIOR WORK

Connection with prior work on information-limited black-box verification Cohen et al.[(2019)
study the problem of verifying hard classifiers smoothed by Gaussian noise, and derive optimal
certificates with respect to {5 perturbations of the input. Their results can be recovered as a special
case of our framework when applied to sets defined via constraints on hockey-stick divergences (which
can be computed efficiently for Gaussian measures). More concretely, in Corollary [5] (Appendix [A.7),
we show that the results of (Cohen et al.|(2019) can be recovered as a special case of our framework
by applying the theorem [3|to a Gaussian smoothing measure. [Lee et al| (2019) study the problem of
strict black-box verification with general smoothing measures. However, they are only able to derive
certificates under the assumption that the likelihood ratio between measures % only takes a finite
set of values. This is a restrictive assumption that prevents the authors from accommodating natural
smoothing measures like Gaussian or Laplacian measures. Further, the complexity of computing the
certificates in their framework is often significant — they require an O(d?) computation (where d is
the input dimension) to certify smoothness to ¢, perturbations (in addition to the cost of estimating
0., 0y, by sampling). On the other hand, our formulation provides a straightforward method to
compute certificates for £y perturbations using Table[I} Finally, these works are both restricted to the
information-limited black-box verification setting where only 6, 8, are known. On the other hand,
our formulation can compute improved certificates when more information about ¢ is available (see

Section [5.1).

Connections with pixel differential privacy |Lecuyer et al.|(2018) introduced the notion of pixel
differential privacy (pixelDP) to study robustness of smoothed classifiers: a distribution-valued
function G : R? — P(Z) satisfies (g, 7)-pixelDP with respect to {, perturbations if for any
|z —a'[|, < Litholds that Dpp - (G(z)||G(z")) < 7, where

Dpp o (G(z z')) = su P [XeEl—-e P [X'e€F

e GGG =sw (B IXeEl-¢ B X)) O
and the supremum is over all (measurable) subsets I/ of Z. In particular, [Lecuyer et al.| show that
using a smoothing measure p satisfying pixelDP with respect to a certain type of perturbations leads
to adversarially robust classifiers. Since Dgg (< is in fact equal to the hockey-stick divergence of
order 8 = e° (Barthe & Olmedo, [2013)), their results can be directly expressed in our framework as
follows. Take p = p(x) and for fixed € > 0 and 7 € [0, 1] define the set of perturbed distributionsﬂ

De.r ={v: Dpp e (v||p) < 7and Dpp - (p|lv) < 7} . (10)
It immediately follows that if x satisfies (¢, 7)-pixelDP with respect to ¢, perturbations, then we
have the relaxation condition {y(z') : |z — /||, < 1} C D, . From this point of view, the main

result from (Lecuyer et al.,|2018) applied to smoothed hard classiﬁersﬂ yields the information-limited
black-box certificate

(9(1 — 625 Qb

_ 11

TS e +1 (b

For comparison, the certificate obtained by our method (HS certificate in Table[T)) for the relaxation
{v : Dpp e (v||p) < 7} of D, , already improves on the certificate by [Lecuyer et al.| whenever
0o — 0y > (e° — 1)(1 — 0, — 0), which, for example, is always true in the binary classification case.
Since Theorem 2| provides optimal certificates for the full constraint set D -, we have the following.
Corollary 4. The optimal certificates for the constraint set D  (cf. Eq.[I0) obtained from Theorem[2]
are stronger than those obtained from Eq. [T}

5 EXPERIMENTS

5.1 INFORMATION-LIMITED VS FULL-INFORMATION

For ImageNet we trained a classifier using ResNet-152 (He et al., 2016) and tested our full-information
certificate methodology on 50 randomly selected examples from the test set. We compare using our

“Closure of f-divergences under reversal implies that D, , can be written in the form D (cf. Section .
3 Although [Lecuyer et al. (2018) state their main result for soft classifiers, the extension to hard classifiers is
straightforward.
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Figure 3: Comparison between full-information vs. information-limited certificates, and one vs. many
f-divergences in Dx for ImageNet.

full-information methodology vs. limited-information for ¢5 perturbations. The results are shown in
Figure[3al Our full-information certificate can be provided for significantly larger perturbation radii
compared to using the information-limited certificate from (Cohen et al.,[2019)). In particular, we
are able to provide a certificate for perturbation radius € = 9.42 in the full-information case whilst
the limited-information certificate can only be provided for perturbation radius € = 2.69. This is a
substantial difference demonstrating the significance of using full-information.

52 M=1vs.M >1

Another advantage of our framework is the ability to consider several f-divergences simultaneously.
We plot the results comparing the certificate derived from just the KL divergence (o = 1) vs. using
several Rényi divergences (« € [1.1,80]) in Figure Here we show that when we increase the
number of Rényi divergences to M = 50, we can maintain a certifiable accuracy of 52.8‘7¢E| for an 4
radius of € = 5.0. In contrast, when we use only KL divergence the certified accuracy quickly drops
to 0% around € = 2.0.

5.3 EXPERIMENTS ON CERTIFIABLE ACCURACY

Our experimental protocol closely follows (Cohen et al.,|2019). First, a classifier is trained using
data augmentation by including samples from the smoothing measure on each original training point.
Then, at prediction time, we use the same smoothing measure to create a smoothed classifier for
which we compute robustness certificates. We then compute the fraction of test examples that are
correctly classified and certified to be robust to a given value of e. We show results for several values
of the smoothing parameter controlling the amount of noise added while smoothing; this induces a
natural trade-off between accuracy and robustness. For the £y we use the discrete smoothing measure
from appendix [A-T0]and for /1, we use the Laplacian smoothing measure.

SThe constant line at a certified accuracy of 52.8% is an artifact of the design of the certification procedure.
During certification, our certificate is specified by only two numbers, (1) the number of times our guess for
the true label appeared as the top-class, (2) the number of times our guess for the second-most likely class
appeared as the top-class. If, given two inputs, these numbers are identical, they will produce the same certificate.
A large number of inputs during certification have identical values for (1) and (2). For example, at small
smoothing values it is the case that the guess for the true label was predicted as the top-class in all queries used
for certification.
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We report the certificates computed using the “Best of Rényi” approach: We compute the certificate
from Table|l|for Rényi divergences over a rang of values of « and pick the best one. The proba-
bilities 6, and 6}, are estimated using 100K samples from the smoothing measure for LibriSpeech
and ImageNet, 1 million for CIFAR10, and 10 million for MNIST. The confidence bound, i.e. the
probability the certificate does not fail, is set to 0.99 (Lecuyer et al.[| (2018) use a value of 0.95).
For MNIST, the results are summarized in Table[2] where our results significantly outperform those
reported in (Lee et al.,[2019).

Table 2: MNIST

Certificate Norm Certified Accuracy
e=1 €=2 e€=3 e€=4 €e€=5 €=6 =7
Lee et al.|(2019) Lo 0921 0.774 0.539 0524 0357 0.202 0.097
Ours lo 0.954 0905 0.856 0.808 0.772 0.738 0.699
Lecuyer et al.|(2018) 4y 0.772 0.548 0.424 0.061 0 0 0
Ours 0y 0.860 0.716 0.584 0.447 0.325 0.201 0.017
1.0 1.0 1.0
— ResNet 152 — Ours — Smoothing: 0.5
a‘ Lee et al., 2019 L>; Lecuyer et al., 2018 a Smoothing: 0.7
® 0.8 ResNet 50 (0] 0.8 © 0.8 \, —— Smoothing: 0.9
— — —
> > =1
] ] U]
Q06 O 0.6f O 0.6
< < <
© © ©
CLJ 0.4 G_.) 0.4 G_) 0.4
= = =
£ = E=
Q0.2 QL 0.2 QL o.2
O ] @]
0.0 0.0 0.0 j
0 2 4 6 8 10 0.0 05 10 15 20 25 3.0 35 0 2 4 6 8 10 12 14
€ € €
(a) ImageNet: £, robustness. (b) ImageNet: ¢; robustness (c) Librispeech: £y robustness

Figure 4: Certified accuracy on ImageNet & Librispeech. ¢, ImageNet results from (Lee et al.,2019)
are taken from their paper.

The results for ImageNet are plotted in Figure 4al For the ¢y norm, our results are not as strong as
the ones from (Lee et al.} 2019). However, the certification algorithm used there has a significant
computational cost that scales cubically in the input dimension, while our certification procedure is
constant time (after the values 6, and 6, have been estimated).

We also obtain results on an audio classification task, Librispeech (Panayotov et al.|[2015), where the
task is to learn identify the speaker given a dataset of recordings from ten speakers. We created ¢
perturbations by replacing part of the audio signal with silence (with the ¢, perturbation controlling
the fraction of time-stamps at which the signal is zeroed out). The results are plotted in Figure

6 CONCLUSION

We have introduced a general framework for black-box verification that utilizes multiple f-divergences
and provides state-of-the-art results on both image classification and audio tasks by a significant
margin. We theoretically demonstrate that with a sufficient number of f-divergences we can obtain
tight relaxation for arbitrary perturbation sets in an information-limited setting. Empirically, we have
also show the advantages of being able to bound multiple f-divergences and using full-information
certificate.

"We use 50 values o € [1.1, 80] for £y robustness and 25 values o € [2, 10] for £; robustness.
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A APPENDIX

A.1 ADVERSARIAL SPECIFICATION FOR SMOOTHED CLASSIFIERS

Note that for any v € D, . we have

- — —
E [beo(X)] = P [h(X)=d~ P [h(X)=¢] .
Therefore, Ex~,[¢ee(X)] > 0 for all ¢ € Y \ {c} is equivalent to ¢ €
arg max, ¢y Px ., [7(X) = y]. For v = p(z'), this means that h,(z') = c (assuming the argmax is
unique). In other words, Ex ., [¢¢. (X)] > 0forall ¢ € Y\ {c} and all u(z') € D, . if and only if
hs(z') = cfor all ’ such that d(x, ") < e, proving the required robustness certificate.

A.2 SPECIFICATIONS FOR ROBUSTNESS OF SOFT CLASSIFIERS

Consider a soft classifier H : X — P()) that for each input x returns a probability distribution H ()
over the set of potential labels ) (e.g. H might represent the outputs of the soft-max layer of a neural
network). As in the case of hard classifiers, our methodology can be used to provide robustness
guarantees for smoothed soft classifiers obtained by applying a smoothing measure p(z) to the input.
In this case, the smoothed classifier is again a soft classifier given by H(z) = Exp(2) [H (X)].

Let = be a fixed input point and write p = Hy(x) € P(Y) to denote the distribution over labels.

A number of robustness properties about the soft classifier H at x can be phrased in terms of
Deﬁnition For example, suppose ) = {1,..., K} and assume, without loss of generality, that
p1 > p2 > -+ > pg sothat {1,..., k} are the top k labels at z. Then we can verify that the set of
top k labels will not change when moving the input from  to =’ with ||z — z’|| < € by defining the
specifications ¢; ;(z) = H(z); — H(z), fori € [1,k] and j € [k + 1, K], and showing that all of
these ¢, ; are robustly certified at £1(2) with respect to the set D, . defined above. Note that the case
k = 1 corresponds to robustness of the standard classification rule which outputs the label with the
largest score. Another example is robustness of classifiers which are allowed to abstain. For example,
suppose we build a hard classifier h out of H, which returns the label with the maximum score as
long as the gap between this score and the score of any other label is at least ; otherwise it produces
no output. Then we can certify that & will not abstain and return the label ¢ = arg max, ¢y, p, at any
point close to x by showing that every ¢ (2) = H(2). — H(2)er — 7, ¢’ # ¢, is robustly certified at
w(z) with respect to Dy, .

A.3 BACKGROUND ON f-DIVERGENCES

A number of well-known properties about f-divergences are used throughout the paper, both explicitly
and implicitly. Here we review such properties for the readers’ convenience. Proofs and further
details can be found in, e.g., (Csiszar et al.,|2004; Liese & Vajda, 2006).

Recall that the f-divergences can be defined for any convex function f : R — R such that f(1) = 0.
We note that this requirement holds without loss of generality as the map « — f(x) — f(1) is convex
whenever f is convex. Any f-divergence Dy satisfies the following:

L Dy(vlp) >

2. Ds(p|lp) = 0, and Ds(v||p) = 0 implies v = p whenever f is strictly convex at 1.

3. D¢(Fi(v)||Fi(p)) < Dy (v|p) for any function F', where F (p) is the push-forward of p.
(

4. Dy(v|p) = Df(pllv) where f(u) = wf(+) is again convex with f(1) = 0.

A.4 PROOF OF THEOREM[I]

For simplicity of exposition (and to avoid measure theoretic issues), we focus on the case where v, p
have well defined densities v(x), p(z) such that p(x) > 0 whenever v(x) > 0.

12
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We begin by rewriting the optimization problem in terms of the likelihood ratio r(X) = “(X) . We
have

B 6(X)] = B [f(X)6(X)] . Dplplv)= B [fi(r(X)] . E [f(X)=1,
~v ~p ~p ~p

where the first two equalities follow directly by plugging in v(X) = p(X)r(X) and the third is
obtained using the fact that v is a probability measure. Using these relations, the optimization over v
can be rewritten as

min B [r(X)0(X)) (120)
Subjectto E [f;(r(X))] <€, E [r(X)]=1, (12b)
X~p X~p

where > 0 denotes that r(z) > 0 Vxz € X. The optimization over r is a convex optimization
problem and can be solved using Lagrangian duality as follows — we first dualize the constraints on r

to obtain
win E (06001 + XA (B 16 C0] - ¢) +n(1- £ b0

~p

=min E lT(X)qS(X)—i-Z)\ifi(r(X))—ET(X) —&-R—Z)\ie

r>0 X~p

;{;)\ieixlgplm%(nrrgb Z)\ filr
=K — Z Ni€i — & [max (r(k — ¢(X)) — fA(r))}

r>0
= H—ZA e~ B [fi(r—o(X))] .

By strong duality, it holds that maximizing the final expression with respect to A > 0, x achieves the
optimal value in Eq.[T2a] Thus, if the optimal value is smaller than 0, the specification is not robustly
certified and if it is larger than 0, the specification is robustly certified. This concludes the proof of
correctness of the certificate Eq.

A.5 PROOF OF THEOREM [2]

For the next result, we observe that when ¢ is ternary valued, the optimization over x, A above can be
written as
max & = 3 hie; = 03 (8 = 1) = 05 (4 1) = 0S5 (x)
1

where 0, = Px~,[0(X) = +1],0, = Px,[0(X) = —1],0. = Px~,[¢(X) = 0].

Writing out the expression for f*, we obtain

Arg%ﬁglzlg K — Z)\ € — ( k—1)y, — ZMfi(%)) — 0 <(f€ + 1)y — Z)\ifi('Yb)>
- 00 <K:’Vc - Z)‘zfz(’ya)>

= min max £(1 — fa%a — O — feve) + Z Ai e{z:b }9yfz-(7y) —€ | +0ava— O
ye{a,b,c

where the second inequality follows from strong duality. The inner maximization is unbounded unless

Z ’ery =1, Z ayfz(’)/y) <€ .

y€{ab,c} ye{a,b,c}

13
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One thing to note is that, we can rewrite these constraints in terms of ( = 6 © v, i.e. , = 0,7,
fory € {a,b,c}. These constraints ensure that ¢ is a probability distribution over {+1,0,—1} and

furthermore
> Oufi(w) = Dr(Cl9) -
y€{a,b,c}

Thus, the second constraint above is equivalent to Dy, ((||f) < ¢;. Writing the optimization problem
in terms of {, we obtain

min w—
CasCb,Cc>0 C Cb
Subjectto Dy, (C||0) <e i=1,....,M ,

<a+§b+<c:1 .

A.6 CALCULATION OF CLOSED-FORM CERTIFICATES IN TABLE(]]

We present the derivation of certificates for Hockey-Stick and Rényi divergences. The certificates
for the KL and infinite Rényi divergence can be derived by taking limits of the Rényi certificate (as
a — 1, 0o respectively).

A.6.1 CALCULATION OF CERTIFICATE FOR HOCKEY-STICK DIVERGENCE

The function f(u) = max(u — §,0) — max(1 — 3, 0) is a convex function with f(1) = 0. Then, we
have

fi(u) = max (uv — Amax(v — 3,0)) + Amax(1 — 3,0)
_ {maX(BU,O)Jr)\max(lﬁ,O) ifu<\,

00 ifu>\.

The certificate given by Eq. [/|in Theorem |1| for this divergence in the case of a smoothed hard
classifier takes the form

e (e B [ 000)] ) < e 20

KER,A>0

where the specification takes the values

+1 w.p. 0, ,
p(X)=<¢-1 w.p. 0 ,
0 wp.1—6,—06, .

Plugging in the expression for f* the objective function above takes the form
k= B(0a[rk — 1], + 0[5+ 1], + (1 — s — 0,)[K], ) — A(e + max(1 — 5,0)) ,

where we use the notation [u], = max(u,0) and assumed the constraints k < A — 1 since the
objective is —oo otherwise. If E < 1, the objective is increasing monotonically in «, so the optimal
value is to set x to its upper bound A — 1. Plugging this in, the possible values of the derivative with
respect to \ are

B(l—06,) —¢ if0<A<1,
B0, — € ifl<A<2,
—€ ifA>2.

Thus, if € < 86,, the maximum is attained at 2, if 86, < ¢ < 3(1 — 6}), the maximum is attained at
1, else the maximum is attained at 0, leading to the certificate:

1 ife>B(1—6) ,
B(1—6)) —e—1 if 30, < e < B(1-0,)
B(l+ (0. —0p)) —2e—1 ife < 6,

14
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Thus, the certificate is non-negative only if
B+ (B =) 1
2 ’ '
The case 5 > 1 can be worked out similarly, leading to

B(=1+ (0o —6h)) +1
)

e < max(

e < max(

The two cases can be combined as

e < max(

5(9a —05) — |B_ 1| 0)
2 )

A.6.2 CALCULATION OF CERTIFICATE FOR RENYI DIVERGENCE

We consider the cases o > 1 and o < 1 separately.

Casel (o > 1) Ifa > 1, the function f(u) = (u® — 1) is a convex function with f(1) = 0. Then,
we have
A ifu <0

() = A1) = o
f)\(u) If)lgéiuv (U ) {)\—i-)\(a—l)(fa)“_l 1fu20

Suppose we have a bound on the Rényi divergence R, (v||p) < e. Then we know Dy (v|/p) <
exp((a—1)e) — 1. Let 3 = -2 and

B = 0, (max(0, k — 1)) + 8, (max(0, k + 1)) + (1 — 0, — 6,) (max(0, x))" .
Then the certificate Eq. 7| simplifies to (after some algebra)

_ e ) Gt
jnax dexp((a—1)e) — BA v

Setting the derivative with respect to A to 0 and solving for A, we obtain

(%)
A:i«exp«ine))) /

and the optimal certificate reduces to

B (6
max K — expl =) .
B

K

For this number to be positive, we need that x > 0 and
>expl = | -
B# B

<9a max(0,1 —4)? + 6, max(0,1++)" +1 -6, — Hb) -

The LHS above evaluates to

=

where v = % > 0. Maximizing this expression with respect to 7y, we obtain
-1 —1
oy
oot +op

so that the certificate reduces to

=

=e(3).

. (
(2ﬂ9a9b(031 rop T p1 g, - 9b>

Taking logarithms now gives the result.

15
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Case2 (0 < @ <1) WhenO < a < 1, the function f(u) = (1 —u®) is a convex function with
f(1) = 0. Then, we have

fi(u) =maxuv — A1 —v%) =

v>0

A+ )\ﬁ(l — a)(%)(fﬁ) ifu<0,
00 otherwise .

Further, a bound R, (¢||p) < € implies
Dy(v[lp) <1 —exp((a—1)e) .
Then the certificate from Eq. [7]reduces to
max + dexp((a—1)e) — (1 — 04)/\ﬁo¢ﬁ <0a(1 —Rk)TTE 40y (—1— k) T + 90(—,%)_&)

with the constraint x < —1 (otherwise the certificate is —oo). Setting the derivative with respect to A
to 0 and solving for A, we obtain

exp((a — 1)6(1_7&))

A= ' ,
ow
where (1z2)
w= (9a(1 CR) TR Gy (—1— k)T 4 oc(—n)*ﬁ) .
Plugging this back into the certificate and setting 5 = 12, we obtain
e
o ——L
w
For this number to be positive, we require that
1 S €
exp| =) .
—Kw p I5)
The LHS of the above expression evaluates to
1
(0149 01 =) 410, -0,) 7
where v = —L. Maximizing this expression over v € [0, 1], we obtain the final certificate to be
oy (53)
el—a elfa (1—@)
1—9a—9b+2<‘1;_b> zexp(;) .

Taking logarithms, we obtain

el—a 91*& (T%E)
e < —log 1—0a—9b+2<‘1;_l’>

A.7 INFORMATION-LIMITED ROBUST CERTIFICATION AND TIGHT RELAXATIONS

A.7.1 PROOF OF THEOREM [3]

At a high level, the proof shows that, in the information-limited case, to achieve robust certification
under an arbitrary set of constraints D it suffices to know the “envelope” of D with respect to all
hockey-stick divergences of order 5 > 0, i.e. the function 8 — max,cp Dus g(v||p) captures all
the necessary information to provide information-limited robust certification with respect to D.

We start by considering the following optimization problem:

min E [¥(X)] (13a)

U X {—1,0,41}, €D X v
Subject to XE 1[Y(X)=+1]] >0, , (13b)

~p
E [[W(X)=-1] <0, . (13¢)

X~p
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In the information-limited setting, this problem attains the minimum expected value over ¢ € S.
Here 1[¢(X) = 1] denotes the indicator function.

It will be convenient to write this in a slightly different form: Rather than looking at the outputs of ¥
as the +1,0, —1, we look at them as vectors in R?:

{00
() ) - f)

Then, we can write the optimization problem Eq. [I3]equivalently as

3 T
ppin B [a" (X)) (14a)

. T
Subject to XENP [a,TW(X)]

and define

v

0. (14b)

XENJp[a_T\II(X)] <6, . (14c)

We first consider the minimization over W for a fixed value of v. We begin by observing that since the
objective is linear, the optimization over ¥ can be replaced with the optimization over the convex hull
of the set of U that satisfy the constraints (Bubeck, 2013). Since each input x € X can be mapped
independently of the rest, the convex hull is simply the cross product of the convex hull at every z, to
obtain the constraint set

{xp : X = P(Z)suchthat E [al¥(X)] >6,, E [al¥(X)] < eb}

X~p Xr~p
Therefore, the optimization problem reduces to

i E [a"¥(X 15
\II:XHr—lgg(Z) X~v [a ( )} ( a)
Subjectto [a,TU(X)] >0, , (15b)
~p
XENJP[a_T\I!(X)] <6, . (15¢)
This is a convex optimization problem in W. Denote
v(X)
r(X) = .
() p(X)

Considering the dual of this optimization problem with respect to the optimization variable ¥, we
obtain

min XENp [a" U (X)r(X)] — A <XENp[a+T‘II(X)] - ea) + Ab(

E [a-"T¥(X)] - eb)

X~p
= min A\, — MOy + E [(T(X)a ~ Neay + Aba_)ﬂy(xﬂ
v X~p

T

r(X) — A\
=min A0, — 0y + E ( 0 > U(X)
v Xeop —r(X) + X

Since we can choose ¥(z) independently for each € X, we can minimize each term in the
expectation independently to obtain

r(z) — Ag

min 0
V(z)eP(2) T'(ZL’) + X\
This implies that the Lagrangian evaluates to
Aaba — MOy + XE [min(r(X) — A, 0,7(X) + N\p)] -
~p

T
) U(z) = min(r(z) — Ag, 0, —r(z) + Xp) .

We now consider two cases:
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Case1 (A, > )y > 0) In this case, we can see that

min(r(X) — A, 0, —r(X) + Xp) = min(r(X) — Ag, 0) + min(—r(X) + Ay, 0)
=7r(X) — Aa —max(r(X) — Ag, 0) — max(r(X) — A, 0) .

Then, the Lagrangian reduces to

Aaba — b+ E [r(X) — ] — E [max(r(X) — X;,0)] — E [max(r(X) — Ap, 0)]
Xr~p Xr~p X~p

=1—Aa(1 = 0a) — MOy — (Dus,z, ([|p) + max(1 — Aq, 0)) — (Dus,z, (V][p) + max(l — Ay, 0)) .

Case 2 (\, > A\, > 0) In this case, we can see that

min(r(X) — Ag, 0, —r(X) + Ap) = min(r(X) — A, —(X) + Xp)

:r(X)—Aa+2mn(0, Aot (X)>

=7r(X) = A —Qmax( b,o) .

Then, the Lagrangian reduces to

Ao + M
Aol — MOy + XENJP[T(X) — ] — 2X}2p {max <7‘(X) — 5 ,O)]

1= Ao (1 = 62) — Aoy —2<DHS vy (V) +max<1 _ A“‘g”ﬂo)) .

We know that 1 — 6, > 6, and A, > A,. If Ay > A, by choosing X, = A\, + k and A} = X\, — & for
some small k > 0, we know that the the sum of the first three terms would reduce while the final
term would remain unchanged. Thus, at the the optimum in this case, we can assume A\, = )\, and
we obtain

1—Aq(1—04) — Aabp — 2(Dus »z, (V| p) + max(1l — Ay,0)) .

Final analysis of Lagrangian Combining the two cases we can write the dual problem as
Jmax 1= Aa(l—62) = 2y — (Drs, (vllp) +max(1 = Aq,0)) (16)
— (Dus , (V]| p) + max(1 — Ay, 0)) . (17)

By strong duality, the optimal value of the above problem precisely matches the optimal value of
Eq. [I5](and hence Eq.[I3). Thus, information limited robust certification with respect to D holds if
and only if Eq.[I7|has a non-negative optimal value for each v € D. Since we have that

Tl}leagDHs,Aa(Vllp)=€Aa ) IgleagDHs,Ab(Vllp)=€Ab ;

information-limited robust certification holds if and only if the optimal value of

/\arg\ifzol —Xa(1=6,) — N — (ex, + max(1l — \,,0)) (18)

— (ex, + max(1 — Ay, 0)) (19)

is non-negative. Further, since the optimal value only depended on the value of Dyg g(v||p) for
B > 0, it is equivalent to information-limited robust certification with respect to Dys.

The above argument also shows that in this case, information-limited robust certification with respect
to D is equivalent to requiring that the following convex optimization problem has a non-negative
optimal value:

Lo L= AL =0a) = by — (n, + 1= Aaly) = (o F L= Ns) - 20)
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A.7.2 GAUSSIAN SMOOTHING MEASURES

Consider the specification ¢, applied to hard classifiers smoothed using a smoothing measure
w X — P(X). The strict black-box verification problem is to certify that for all =’ with
d(z,2") < e we have Ex . (3)[¢c, (X)] > 0 knowing only that Ex .,z [¢c,e (X) = +1] > 0,
and Ex i (z)[@c,e (X) = —1] < 0. The above lemma gives us the exact solution to this problem
provided that we can compute

max _ Dys g(p(a") | 1(x))

z':d(x,x’)<e

for each § > 0. In particular, when p is a Gaussian measure p(x) = N (m, o2l ), it can be shown
that (see, e.g.,(Balle & Wang| (2018)):

max  Dys g(p(z’)||p(x))

willo—a |, <e
(e logB)o ¢ log(B)o
—\I/g<20—26)—5\119(—20—26>—max(1—5,0) s

where U, is the CDF of a standard normal random variable A'(0,1). Applying Eq. to this
expression, we recover the main result from (Cohen et al.,[2019):

Corollary 5. (6,,6y) are strictly robustly certified at p = N (a:, 0?1 ) with respect to
Dye = {N(2/,0%]) : o — 2/||, < €}
ifand only if 1 > 6, > 6, > 0 and

xpg(xp;l(oa) - 5) + U, (\1/;1(1 —9y) — g) >1 .

Proof. We have

o (< log(d)o ¢ log(B)o
6[3—\119(20__ % )_B\I!g<_20__ % )—max(l—ﬂ,O) )

so that Eq. 20]reduces to
max 1 — X (1—16,)— \bp

Aa=Ap >0
e log(Ay)o e log(As)o
<\Ilg (20 2e Ay 20 2¢

(-5 s -5

The result then follows from setting the derivatives of this expresion to 0 with respect to Ag, A\p. [

A.8 EFFICIENT SAMPLING AND F-DIVERGENCE COMPUTATION FOR NORM-BASED
SMOOTHING MEASURES

Lemma 6. The smoothing measure p : X — P(X') with density pu(x)[z] o< exp(—||z — z||) satisfies

fmax Roo(p(z + 6)||pu(z)) <€ .

if ||z|| is any norm. Further, if f is convex function with f(1) = 0 such that f(2) is convex and
monotonically increasing in u, then

masx Dy(u(e + O)u() < max B [Flexp(—[1X o] + [ X]))] @)

Proof. By the triangle inequality, we have
= exp(||z — 2|l — ||z = 2'[}) < exp(f|lz — 2'|))
so that

Reoo (u(2")l| () < [l — || -

Similarly, for f that satisfy the conditions of the theorem, it can be shown that Dy (u(z’)||p(2)) is
convex in 2’ so that its maximum over the convex set ||z’ — || < € is attained on the boundary. [J
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For several norms, the optimization problem in Eq. 2T]can be solved in closed form. These include
£y, 05, norms and the matrix spectral norm and nuclear norm (the final two are relevant when X’ is
a space of matrices). The results are documented in Table[3] Thus, every f-divergence that meets the
conditions of Lemma|6]can be estimated efficiently for these norms. In particular, the divergences
that are induced by the functions f(u~%) for any monotonic convex function f and o > 0 satisfy
this constraint. This gives us a very flexible class of f-divergences that can be efficiently estimated
for these norm-based smoothing measures.

Constraint on § | Bound on Eq.[21] | Sampling from X ~ p(0)
Slise | B el — ol ~ X1 | X~ Lap(0.1) id
0[], <€ B [flexp(]X = eeoll, = [1X112))] X = Ru
~p2(0)
R ~T(d,1)
u ~ U(agz)
Blse | LB Ulep(lX - et~ 1X],)) X = Ru
R~T(d+1,1)
u € U(Buo)
e <e |, B Fexp(lUlslvT = eleol], = Isl))] | X =U sV
UV~U(O)
s~ u, U,V ~UO)
Blo<e | B Dlesw(U sV - clel], - Islo))] | X =0V
U,V ~U(O)
S~ oo, U,V ~U(O)

Table 3: Bounds on f-divergences: ey is the vector with 1 in the first coordinate and zeros in all other
coordinates and 1 is the vector with all coordinates equal to 1. y, refers to the smoothing measure
induced by the £, norm, I/ (S) refers to the uniform measure over the set S, O is the set of orthogonal
matrices and B, = {||z||,, < 1} is the unit ball in the £, norm.

Efficient sampling The only other requirement for obtaining a certificate computationally is to be
able to sample from p(z) to estimate 6,, 6. Since u(x) is log-concave, there are general purpose
polynomial time algorithms for sampling from this measure. However, for most norms, more efficient
methods exist, as outlined below.

The random variable X ~ p(z) can be obtained as X = x + Z with Z ~ p(0). Thus, to sample
from () for any x it is enough to be able to sample from 1(0). For |||, this reduces to sampling
from a Laplace distribution which can be done easily. For |-, (Steinke & Ullmanl 2016) give
the following efficient sampling procedure: first sample r from a Gamma distribution with shape
d+1and meand+ 1,i.e. 7 ~ I'(d 4+ 1, 1), and then sample each Z;, ¢ € [d], uniformly from [—7, 7].
Theorem [7) gives a short proof of correctness for this procedure. Theorem [§]also has a similar result
for the case of ||-||, and Tablelists the sampling procedures for several norms.

Theorem 7. The random variable Z € R? obtained by first sampling R ~ I'(d + 1, 1) and then
sampling each Z;, i € [d], uniformly from [~ R, R] has density o< e~ I/l

Proof. We first compute the normalization constant for a density of the form o eIl as follows:

/ e 2l gy = / </ 2]l = t}dz) e tdt = / 24dti=te"tdt = d12? .
Rd 0 R 0

Next we show the density of Z satisfies pz(z) = e~ Il /(d!2?) by noting that conditioned on
R = r we have py|r=(2) = 1[||z]|. < r]/(2r)? because of the uniform sampling used in each
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coordinate, and integrating over R sampled from a Gamma distribution with shape d + 1 and mean
d + 1 yields

o [e%s) 1[”2” S 7”] T‘deir 1 [e%e) 3 ei‘lz‘loo
- —r d = > d — ""d = .
pz(2) /0 Pa|R=r ()pr(r)dr /0 (2r)d d! " d1od /| " d12d

oo

O

Theorem 8. The random variable Z € R obtained by first sampling Z’ ~ A(0,I) and R ~ I',(d, 1)

and then taking Z = Rﬁ has density o e~ 1?12, Here I',(d, a) denotes the generalized Gamma
2

distribution of order p > 0 with shape d and scale a.

Proof. First note that W = ﬁ ~ U(B3); i.e. it is uniform on the ¢5 ball of radius 1. Therefore,
2

RW is uniform on the ¢5 ball of radius R and the conditional density of Z given R is given by

Pz|R=r(2) = W. Since R has density pr(r) oc 74" Te™"", we get

pz(2) = /000 pZ\R:r(Z)pR(T)dT
o [ Ml o A2 s oy,
0

2 d/2pd—1
o e I#1IE
O
A.9 HIGH-CONFIDENCE ESTIMATES OF EXPECTED VALUES
Let Z1, ..., Z; be independent, identically distributed random variables with range R and mean m.

Let the empirical mean be Z = 2 3°!_| Z; and the empirical variance be 62 = 1 3" (Z; — Z)2.
Applying Bernstein’s inequality to the sum and the sum of the squares of these random variables, we
get the empirical Bernstein bound (Audibert et al., 2009)), which states that with probability at least
1-¢,

262 log(3/¢) | 3Rlog(3/¢)

7 —m| < X 22
| m| < ; + . (22)

The main benefit of the above inequality is that as long as the variance of the sample Z1, ..., Z; is
small, the convergence rate becomes essentially O(1/t) instead of the standard O(1/+/t). Also, since
Eq.[22| only contains empirical quantities apart from the range R, it can be used to obtain computable
bounds for the expectation p: with probability at least 1 — (,

7_ 252 lotg(S/C) 3 3Rlo§(3/C) cm<Z4+ 252 1otg(3/C) n 3RIO%(3/O . 23)

This bound can be applied to approximate the expectation in Eq. [7] with high probability for given
values of A and k. More specifically, if the function f}(x — ¢(-)) is bounded with range R, then
taking ¢ samples X1, ..., X, independently from p, and defining Z; = f;(x — #(X;)), and Z and
72 as above, Eq. implies that with probability at least 1 — (,

B [l = o(Xp)] < 7 4 22H8E0) | s

Plugging in this bound to Eq.[/|gives a high-probability lower bound for the function to be maximized
for any given A and k.

In practice, the way we apply this bound is to use a stochastic gradient method to optimize the values
of \, k, using samples of X ~ p to get an unbiased estimate of the gradient of the objective. We
then freeze the values of A\, x (after a fixed number of optimization steps) and then use the above
procedure to get a high confidence lower bound on the objective.
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A.10 DISCRETE PERTURBATIONS

We can also handle discrete perturbations in our framework. A natural case to consider is ¢
perturbations. In this case, we assume that X' = A% where

A={1,...,K}

is a discrete set. Then, we can choose

d I q 1[zi#x;]
e =T ()
i=1

where p + ¢ = 1, p > q > 0, and p denotes the probability that the measure retains the value of
and 15 denotes a uniform probability of switching it to a different value. In this case, it can be

shown that for every o« > 0 that
(@) _ (@)
o o) o 572) ")
|

Ro(p(2")l|p()) = [l — 2|

a—1

so that we can derive a certificate with respect to £, perturbations using any set of Rényi divergences
(or combinations of theses).

This can be extended to structured discrete perturbations by introducing coupling terms between the
perturbations:

d 1[z;#x;] d—1
Zi=T4 q — —
w(z)[z] o le[ ] <K—1> exp (Z [z = x;]1[zi01 = xi+1]> .
i=1

i=1

This would correlate perturbations between adjacent features (which for example may be useful to
model correlated perturbations for time series data). Since this can be viewed as a Markov Chain,
Rényi divergences between p(x), u(x’) are still easy to compute.
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