
Under review as a conference paper at ICLR 2020

SOFT TOKEN MATCHING FOR INTERPRETABLE
LOW-RESOURCE CLASSIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a model to tackle classification tasks in the presence of very little
training data. To this aim, we introduce a novel matching mechanism to focus
on elements of the input, by using vectors that represent semantically meaningful
concepts for the task at hand. By leveraging highlighted portions of the training
data, a simple, yet effective, error boosting technique guides the learning process.
In practice, it increases the error associated to relevant parts of the input by a given
factor. Results on text classification tasks confirm the benefits of the proposed
approach in both balanced and unbalanced cases, thus being of practical use when
labeling new examples is expensive. In addition, the model is interpretable, as it
allows for human inspection of the learned weights.

1 INTRODUCTION

Gathering and labeling data is a task that can be expensive in terms of time, human effort and
resources. When we cannot rely on already available datasets, training a model with acceptable
performance on few data points annotated by few annotators, becomes critical in many practical
applications. This is, indeed, especially important when the data is naturally imbalanced and the
demands of gathering samples of the minority class are high. One important domain in which
these issues arise is text classification, for example hate-speech (Waseem & Hovy, 2016), web spam
(Castillo et al., 2007) and abuse detection (Mishra et al., 2018).

One effective approach to overcome the lack of training data is that of Zaidan et al. (2007), which
consists of augmenting the few data available with rationales, i.e., highlighted portions of the input.
Rationales are usually coupled with feature-engineering to be effective in low resource scenarios.
An alternative way to deal with data sparsity, especially in text classification tasks, is to use pre-
trained language models (LMs) that are fine-tuned on a target domain. While this approach has
been tested on hundreds of training points (Devlin et al., 2018; Howard & Ruder, 2018), it is not
clear how it behaves in an even scarcer setting, as the vast parameter space of an LM might pose a
problem. Moreover, fine-tuning a model may require a considerable amount of computing power,
therefore restricting its applicability.
On the other hand, some embedding-based models represent the input as a weighted average of
words (Kalchbrenner et al., 2014; Sheikh et al., 2016), where the weight is given by a parame-
ter called “reference vector”. However, these models cannot easily incorporate multiple reference
vectors, and they are not interpretable since classification works on unreadable embedding features.

In this paper, we propose a novel and efficient representation learning model to address the above
issues. The underlying idea is to focus on relevant words in the input while being able to generalise
to semantically similar concepts; this is something akin to what a human would do in the presence of
data scarcity. We therefore introduce two techniques that should coexist to reflect our intuition. First
of all, the model to focuses on specific words by computing soft matching probabilities between
each word and multiple vectors which represent semantic concepts. Secondly, we guide the learning
process to learn important concepts thanks to an error boosting technique that exploits rationales.
Basically, it encourages the model to reduce the overall error by improving the prediction associated
with highlighted words.
Additionally, by direct inspection of model weights it is possible to understand what words it focuses
on; in short, the model is easily interpretable. Results across a consistent number of baselines and
three datasets also indicate a significant improvement in performance. Interestingly, we always

1



Under review as a conference paper at ICLR 2020

outperform fine-tuned models when little training data is available. Our model can also assist users
to train a classifier for a very specific task. As an example, consider training an abstract filtering
system with rationales provided by the user itself. The model will then learn to filter out papers that
are not matching the user’s preferences.

The rest of the paper is structured as follows: Section 2 provides an overview of the existing litera-
ture, highlighting similar and different ideas; Section 3 formally introduces the problem as well as
our model, providing intuition behind our architectural choices; Section 4 details our experiments
and shows our findings, with a thorough ablation study that disentangles the contribution of each
part of the model and a use case on interpretability; finally, Section 5 summarizes our work.

2 RELATED WORKS

There are different ways in which rationales can be used. Some works generate rationales, while
others exploit them to inform the learning process. The method proposed by Lei et al. (2016) tack-
les text classification by learning a distribution of rationales given the text and a distribution of the
target class given the rationales. Interestingly, an additional regularization term is added to the loss
to produce rationales that are short and coherent. The model makes use of high-capacity recurrent
neural networks (Schuster & Paliwal, 1997), thus it is tested on large amounts of training data to pre-
vent overfitting. This work was later refined by Bastings et al. (2019), who proposed a probabilistic
version of a similar architecture, where a latent model is responsible for the generation of discrete
rationales. The main advantage of predicting discrete rationales is that it is possible to constrain their
maximum number per sample, thus effectively controlling sparsity. However, it usually requires a
large amount of data points to be effective.
The first to exploit rationales in a low resource scenario were Zaidan et al. (2007) and Zaidan &
Eisner (2008), by means of a rationale-constrained SVM (Cortes & Vapnik, 1995) and a proba-
bilistic model. Moreover, the latter is realized as a log-linear classifier with heavy use of feature-
engineering. On the other hand, when rationales are defined on features rather than on samples, one
can use the Generalized Expectation (GE) criteria (Druck et al., 2007; McCallum et al., 2007) to
significantly improve the performance of classifiers.
Rationales can also be incorporated in the loss function (Barrett et al., 2018), where the attention
module (Vaswani et al., 2017) on top of an LSTM (Hochreiter & Schmidhuber, 1997) is forced to at-
tend relevant tokens in a document. This method was not tested on small datasets, possibly because
of the aforementioned issues of high capacity models. A similar approach has been successfully
applied by Bao et al. (2018) to the weak supervision problem. However, the model assumes one
source domain, with supervised labels, to learn an attention generation module that is then applied
to the target domain. In contrast, our method can be built on a given embedding space with mini-
mum supervision.
Apart from incorporating prior knowledge in the form of rationales, one can augment neural net-
works with: first-order logic (Li & Srikumar, 2019; Hu et al., 2016a); a corpora of regular ex-
pressions (Luo et al., 2018); or massive linguistic constraints (Hu et al., 2016b). While generally
powerful and effective, all these methods require domain-specific expertise to define the additional
features and constraints that are then explicitly incorporated into the network. In a different manner,
the SoPA architecture of Schwartz et al. (2018) learns to match surface patterns on text through a
differentiable version of finite state machines. A weighted combination of these patterns is used to
classify a document. Instead, BabbleLabble (BL) (Hancock et al., 2018) is a method for generating
weak classifiers from natural language explanations when supervision is scarce. These are then fed
to Data Programming (DP) (Ratner et al., 2016), a probabilistic framework, that outputs a final score.
On one hand, BL works well because it exploits a domain-specific grammar to parse explanations;
on the other hand, this grammar must be carefully designed by domain experts.
Finally, the Neural Bag Of Words (NBOW) model (Kalchbrenner et al., 2014) takes an average of
token embeddings and applies a logistic regression to classify a document. Its extension, NBOW2
(Sheikh et al., 2016), computes an importance score for each word by comparing it with a single
reference vector that is learned. Despite the underlying idea being similar, we propose a different
mechanism to focus on relevant words.

In the following, we describe the architecture whose only requirements are i) an embedding space
of the input, and ii) additional rationales, though the latter is not strictly required. As we are shall
discuss, the model has a strong inductive bias, which is effective when trained with very little data.

2



Under review as a conference paper at ICLR 2020

Hereinafter, we refer to our new architecture with the name PARCUS, which stands for Pattern
Representations on Continuous Spaces.

3 THE PARCUS MODEL

Let us consider a classification task in which a very small labelled dataset DL =
{(x1, r1, y1), . . . , (xL, rL, yL)} is given, where xi is an input sample, ri represents the rationale
information and yi is the discrete target label. For the purpose of this paper, an input is a set of
tokens xi = {x1i , . . . , x

Ti
i } of arbitrary size Ti. In addition, xji ∈ Rd, where d is the size of an

embedding space obtained using a pretrained model. Finally, we assume that each token in the input
has been marked as relevant or not by annotators, i.e., ri = {r1i , . . . , r

Ti
i } ∈ {0, 1}Ti .

Intuition When humans are asked to solve a text classification problem after seeing few examples,
they tend to look for very simple patterns across the dataset, such as specific words. Nevertheless,
humans are also able to generalise to semantically similar concepts; our goal is to design a model
that reflects this ability. For example, assume that the word “excellent” is important for classifying
a movie review as positive. If we were to work in the character space, a straightforward solution
would be to match specific (sub-)strings in the input, an instance of the so-called pattern matching
technique. Clearly, pattern matching cannot generalize to words that have similar meaning, e.g.,
“outstanding”. In this work, we transfer the concept of pattern matching into the embedding space,
where semantically similar words are assumed to have “close” representations. We achieve this via
a mechanism that outputs a probability of soft matching between a token and a “reference vector”,
which is learned together with the classification task to capture discriminative “concepts”. Differ-
ently from bag-of-word methods of Section 2, this model easily accommodates multiple reference
vectors, hence it can focus on many different concepts that are critical for classification.
In order to guide the learning process using the given rationales, it seems sensible to magnify the er-
ror for those words that have been marked as relevant by annotators. Notwithstanding the simplicity
of the idea, the underlying challenge is to effectively embed human knowledge into the reference
vectors, which are responsible for the soft matching technique. In other words, the probabilities of
soft matching should be highly correlated with the target class.
Finally, we require that classification should be done in such a way that a user can explicitly under-
stand which reference vectors are more important for positive or negative prediction. This last step
is obtained by learning a linear combination of the soft matching probabilities.

The next sections describe the proposed model in depth. First, we show how to compute and com-
bine soft token matching probabilities, and then we introduce the error boosting technique that in-
corporates rationales in the training process. It is worth mentioning that both techniques have been
designed to coexist, even though the latter is not strictly necessary to train the model.

3.1 SOFT TOKEN MATCHING

We now present the core mechanism that implements soft token matching. Let us define a set of
parameters P = {p1, . . . , pN}, pk ∈ Rd called prototypes, where N is an hyper-parameter of the
model. A prototype plays a similar role as the reference vector in Sheikh et al. (2016). Going back
to our movie review example, one pi ∈ P should ideally adapt to be close to the embedding of the
word “excellent”.

To learn the N prototypes, we employ the cosine similarity metric. Cosine similarity can be seen
as a way to measure semantic similarity; its co-domain ranges from −1, i.e., opposite in meaning,
to 1, i.e., same meaning, with 0 indicating uncorrelation. Ideally, we would like our prototypes to
have near-1 similarity with the relevant tokens in the input. To this aim, we further define a gate
activation function g : [−1, 1] → [0, 1] that takes the distance between a token xji and a prototype
pk and outputs a probability of soft matching:

P (xji soft-matches pk) = g(d(xji , pk)) = ad(x
j
i ,pk)−1 ∈ [0, 1] (1)

where a is an hyper-parameter. In practice, the closer to 1 the similarity is, the greater the output of
this gated activation, and g(v) = 1 ⇔ v = 1. By choosing a high value of a we strongly penalize
tokens that are associated with low similarity scores. For completeness, Section A.1 depicts g(v)

3



Under review as a conference paper at ICLR 2020

Figure 1: The PARCUS architecture is applied to the i-th example of a dataset, i.e., “Alice is married
to Bob”, with “married” being highlighted. After an initial phase where rationales ri are extracted
and words are mapped to embeddings xi, we extract features by computing the similarity between
the token’s embedding and the parameters of our model. Then, we combine these features with a
linear layer which outputs per-token predictions. At training time only, predictions are multiplied
by a boosting factor f(rji ). Results are then summed to yield the sentence prediction yi.

for different values of a. Such a technique is important because it allows PARCUS to focus on
N concepts that are semantically different while fostering interpretability. Notice that this method
differs from NBOW2 (Sheikh et al., 2016), as we use prototypes to compute per-token features
rather than importance scores.

3.2 COMBINING PROTOTYPES

Equation 1 computes the probability of soft matching between a token and a prototype. Likewise,
because we have N prototypes, we treat all N probabilities as features associated with that token.
We represent these features as φk(xji ) = g(d(xji , pk)) ∀k ∈ 1, . . . , N . Now that we have a no-
tion of multiple soft matching probabilities, we can combine them via AND/OR logical functions.
An approximation of such functions can be straightforwardly implemented through the pseudo-
differentiable version of min and max (Paszke et al., 2017):

φAND(xji ) = min({φk(xji ) ∀k}) (2)

φOR(xji ) = max({φk(xji ) ∀k}) (3)

In Section A.2 we propose a fully differentiable version of the above equations, though min and
max significantly speed up convergence (due to the absence of non-linearities).

3.3 INFERENCE

Finally, we need to linearly combine all F features to output a token prediction yji . Let us define an
auxiliary function (omitting the argument xji to make notation less cluttered):

∆(xji ) = [φ1, . . . , φN , φAND, φOR] ∈ [0, 1]1×F (4)

where square brackets denote concatenation. Then, the token prediction is computed as

yji = ∆(xji )W + b (5)

where W ∈ RF×C is a matrix of parameters (multi-class prediction with C classes’) and b is the
(optional) bias. It is worth noticing that these features are yet another strong inductive bias, and that
the linear model is especially necessary to interpret the model, as detailed in Section 4.3. Figure 1
combines all steps of the proposed architecture for token classification.

4



Under review as a conference paper at ICLR 2020

Finally, the input prediction is just a sum of the individual yji

yi = σ(

Ti∑
j

yji ), (6)

where σ, from now on, represents the softmax activation.

3.4 RATIONALE-DRIVEN ERROR BOOSTING

So far, we have not made use of rationales, which are of fundamental importance to guide the
learning process. Intuitively, we would like the prototypes to softly match those tokens that are
relevant for prediction. It follows that a boosting approach (Freund et al., 1999) is not feasible in
this scenario, because we want to weight the importance of tokens rather than of whole samples.
Instead, the method we propose is simple and efficient, and it effectively exploits prior information.
The idea is to boost the error associated with specific tokens’ predictions to encourage the model to
focus on them. To be more precise, at training time only we modify Equation 6 to take into account
the prior information as follows

yi = σ(

Ti∑
j

yji · f(rji )), (7)

where f : [0, 1] → R is an arbitrary exponential function of our choice that boosts the error, e.g.,
f(x) = ex; we leave the extension to an adaptive version of f for future works. In terms of learning,
f(rji ) boosts the gradient of highlighted tokens while leaving unchanged the rest (i.e., if rji is 0, our
f(rji ) outputs a multiplicative factor of 1).

Discussion Regularization of the matrix W plays an important role for effective learning. We use
L1 and L2 regularization terms on W, as done in (Zou & Hastie, 2005), for two main purposes. First,
the L1 term enforces sparsity, which allows us to more easily interpret the importance of different
features. Secondly, L2 limits the magnitude of the weights, hence avoiding over-compensation of
low cosine similarity scores. Consequently, in order to increase one of the soft-matching probability
features, the model is encouraged to make changes to the prototypes rather than to the linear weights;
in turn, this translates into a particular prototype being “close” to relevant embeddings.
From a mathematical standpoint, we cannot achieve the same result as Equation 6 by means of an
additional loss term as done in Lei et al. (2016), because gradients would be summed and not multi-
plied. Moreover, in our experiments we choose to augment ∆(xji ) with additional information, such
as the probability of “opposite” matching: φ¬k(xji ) = g(−d(xji , pk)) ∀k ∈ 1, . . . , N . Specifically,
when φ¬k(xji ) ≈ 1 the token xji and pk have cosine similarity equal to -1, hence they are opposite
in meaning.

We conclude with remarks on the model complexity. The total number of parameters is Θ(Nd +
FC), which is larger than those needed by simpler models such as logistic regression. Usually, a
restricted number of parameters serves to counteract overfitting, by limiting the hypotheses space of
the model (Vapnik, 1998). However, this work tackles the problem from a different and novel per-
spective, as we prevent the prototype weights from freely changing. Specifically, prototype weights
vary in a way that depends on the given embedding space, because they tend to be close to some
token representation. If this had not been the case, we could have simply used an MLP in place of
P , which does not perform as well as PARCUS in our experiments.

4 EXPERIMENTS

This section reports the experimental setting as well as our experimental findings. We perform an
in-depth analysis on our model through ablation studies, in order to clearly separate the contribution
of prototypes from the error boosting technique. Then, we explain what a model can learn by direct
inspection of its parameters. All code to reproduce experiments is publicly available1.

1Link to the code to reproduce the experiments is omitted at review time

5



Under review as a conference paper at ICLR 2020

4.1 EXPERIMENTAL SETTING

Datasets We empirically validate our method on three different datasets. First, MovieReview
(Zaidan et al., 2007) contains balanced positive and negative movie reviews with rationales. Sec-
ondly, we use the highly imbalanced Spouse dataset from Hancock et al. (2018), where the task is
to tell whether two entities in a given piece of news are married or not. This is a much harder task
than standard classification, as the same document can appear multiple times with different given
entities and background context greatly varies. Finally, we use the Hatespeech Twitter dataset of
Waseem & Hovy (2016), which contains short and noisy tweets that can belong to the hate-speech
or neutral class. Datasets’ statistics are reported in the appendix for completeness. We manually
provide rationales for 60 randomly chosen positive samples of both Spouse and Hatespeech (this
process required approximately 1 hour).

Setup The experimental evaluation was carried out by measuring performances on the given test
set while varying the number of data points used for training. We used balanced train and validation
splits for all models, and the validation set is taken as big as the training one to simulate a real sce-
nario. As for Spouse, we used the given validation set to fairly compare with the results of Hancock
et al. (2018). We chose the pre-trained base version of BERT (Devlin et al., 2018) to provide the
embedding space to our method and to other neural baselines as well.
We repeated each experiments 10 times with different random train/validation splits; however, dif-
ferent models have been trained and validated on the same data splits, and we report the hyper-
parameters table in the appendix. Moreover, to avoid bad initializations of the final re-training (for
the selected configuration), we average test performances over 3 runs. The optimized measure is
Accuracy for MovieReview and F1-score for Spouse and Hatespeech, as the former is perfectly bal-
anced. We optimize the Cross Entropy loss using the Adam optimizer (Kingma & Ba, 2015) for all
the baselines we implement.

Methods To have a fair evaluation with respect to the same embedding space, we train a linear
model (Linear) and a single-layer MLP that work on token embeddings (MLP), as well as NBOW
and NBOW2. Importantly, we also finetune BERT on Spouse and MovieReview. For Spouse,
we propose a regular expression that associates specific sub-strings (“wife”, “husb”, “marr” and
“knot”) to the positive class; ideally, our model should be able to focus on such words while
also generalizing. Traditional Supervision (TS) is a logistic regression trained on n-gram features,
whereas BL-DM stands for the BabbleLabble pipeline tested on 30 random explanations; results for
TS and BL-DM are taken from Hancock et al. (2018). BL-DM can explicitly exploit the relational
information of the Spouse dataset, hence it is a strong baseline.
Moreover, we report results of an SVM (Zaidan et al., 2007) and a log-linear model on language
features (Zaidan & Eisner, 2008), both of which are specifically designed to exploit additional ratio-
nales. On Hatespeech, we compare against a Logistic Regression model based on character n-grams
(LR-ngrams), as it was shown to reach state of the art performance (Park & Fung, 2017). Finally, we
perform a number of ablation studies to isolate the contribution of different techniques: i) an MLP
with the error boosting technique; ii) our method without highlights; ii) our method with no logical
features; iii) our method with φk features only.

4.2 RESULTS & DISCUSSION

Table 1 presents our empirical results for all three datasets, Results confirm that the choice of a
strong inductive bias indeed benefits performances in a very low data regime. On Spouse, our model
strongly outperforms other neural baselines and reaches the manually tuned regular expression with
just 60 data points (only 30 of them are positive). Moreover, TS needs ≈50x more data to achieve
similar performance, whereas 10 datapoints are sufficient to do better than almost all baselines with
a training size of 300, a >30x improvement which does not depend on the chosen embedding space.
We also found that TS performs much worse than our linear baseline (hence the need for a fair com-
parison on the embedding space). With 300 datapoints, our model without highlights has an average
F1 score very close to that of BL-DM, which relies on a domain-specific grammar and parser. In ad-
dition, we note that the reported result (46.5) is not averaged over multiple runs; as a matter of fact,
one of our random splits achieves a test score of 46.3, indicating the need for robust evaluation when
it comes to experiments on few examples. Overall, we found that the proposed approach can be
really helpful when data is greatly imbalanced, and outperforms models like BERT that are deemed

6



Under review as a conference paper at ICLR 2020

Table 1: Results for all three datasets. Standard deviation is shown in brackets. On Spouse and
Hatespeech we report the F1 score, whereas we use accuracy to compare models on MovieReview.

SPOUSE

MODEL/TRAIN SIZE 10 30 60 150 300 3K 10K
TUNED REGEXP - - - - - - - 40.48
LINEAR 18.24 (1.3) 20.56 (1.4) 22.46 (1.4) 26.08 (1.1) 26.12 (1.2) - - -
MLP 17.91 (2.4) 20.24 (3.1) 18.34 (0.6) 23.26 (1.2) 24.08 (1.3) - - -
NBOW 21.00 (2.3) 21.84 (1.7) 24.03 (1.0) 27.39 (2.0) 28.15 (1.8) - - -
NBOW2 19.51 (2.6) 22.27 (1.9) 25.87 (1.4) 29.62 (1.5) 31.66 (2.1) - - -
BERT+FINETUNING 16.91 (2.6) 20.19 (2.1) 23.41 (1.2) 32.11 (2.0) 35.45 (3.2) - - -
(Abl.) MLP W. H. 16.71 (1.4) 20.81 (2.7) 20.92 (1.6) 22.72 (1.8) 23.12 (2.0) - - -
(Abl.) PARCUS WO H. 27.00 (2.2) 31.60 (2.5) 34.24 (2.3) 41.79 (2.1) 44.03 (1.2) - - -
(Abl.) PARCUS-φk 32.43 (4.5) 34.36 (4.2) 37.76 (2.7) 42.70 (1.0) 41.41 (2.4) - - -
(Abl.) PARCUS-NO-LOGIC 32.70 (3.4) 34.52 (3.9) 36.76 (2.6) 42.66 (1.6) 41.96 (1.9) - - -
TS - 15.5 15.9 16.4 17.2 41.8 55.0
BL-DM (30 EXPL.) - - - - - - - 46.5
PARCUS 34.03 (4.5) 36.64 (4.3) 40.29 (2.5) 43.67 (1.7) 42.85 (1.6) - - -

MOVIEREVIEW

10 20 50 100 200
LINEAR 60.37 (3.4) 64.03 (3.5) 70.17 (2.0) 77.2 (2.6) 80.28 (3.1)
MLP 59.12 (4.1) 62.57 (4.2) 69.65 (2.4) 73.25 (3.8) 80.01 (3.0)
NBOW 62.56 (4.6) 65.7 (4.8) 73.88 (1.6) 77.99(2.0) 81.22 (3.6)
NBOW2 61.45 (4.5) 64.30 (4.9) 72.88 (1.4) 78.87 (4.4) 83.63 (1.8)
BERT+FINETUNING 53.52 (2.0) 54.83 (4.9) 59.72 (4.5) 67.73 (4.3) 79.20 (2.5)
(Abl.) MLP W. H. 61.45 (4.6) 63.05 (5.8) 68.87 (7.0) 72.38 (8.5) 74.63 (5.8)
(Abl.) PARCUS WO H. 61.2 (4.3) 64.85 (5.0) 74.25 (2.4) 78.55 (2.3) 84.55 (2.8)
(Abl.) PARCUS-φk 66.05 (5.7) 68.4 (3.5) 77.8 (2.0) 80.7 (3.0) 83.40 (2.4)
(Abl.) PARCUS-NO-LOGIC 66.90 (5.9) 67.9 (3.5) 75.5 (4.0) 80.95 (2.4) 83.65 (2.7)
SVM + RATIONALES - 65.4 - 75 83.2
LOG-LINEAR + RATIONALES - 65.8 - 76 83.75
PARCUS 67.2 (5.5) 70.05 (5.6) 76.55 (2.4) 79.95 (2.6) 83.75 (2.8)

HATESPEECH

10 20 50 100 200
LINEAR 37.81 (5.8) 40.8 (6.2) 47.35 (3.4) 51.49 (3.3) 51.86 (2.0)
MLP 42.09 (8.5) 42.94 (6.3) 50.77 (4.2) 51.03 (5.7) 54.62 (4.8)
NBOW 41.90 (6.1) 42.50 (5.7) 49.07 (3.0) 52.52 (1.5) 56.17 (2.5)
NBOW2 40.20 (6.9) 41.63 (5.5) 47.96 (3.2) 51.52 (2.5) 53.48 (2.5)
LR-NGRAMS 41.48 (9.1) 48.00 (7.7) 49.86 (7.2) 56.83 (5.5) 62.75 (1.5)
PARCUS 43.06 (12.7) 45.25(9.8) 48.32 (6.6) 55.09 (3.0) 56.39 (4.7)
PARCUS (Fasttext) 40.97 (11.1) 46.43 (5.3) 52.46 (4.4) 54.04 (5.0) 59.07 (2.3)

quite performing when fine-tuned on relatively small datasets (Devlin et al., 2018; Howard & Ruder,
2018). Similar arguments apply to MovieReview, where our model strongly improves over the base-
lines. Interestingly, our simple representation learning approach is able to beat the state of the art by
a large margin when few data points are available. Here, NBOW and NBOW2 models proved to be
strong baselines, as the mean representation of a document seems to work well.Generally speaking,
the gap between performances is more evident as training size is very scarce, even when compared
to other baselines that use rationales.
In light of these results, we performed ablation studies on both datasets to understand if the improve-
ments are only due to prototypes, rationales or both. Overall, we observe that the strong inductive
bias represented by prototypes provides a consistent improvement with respect to the other models,
which is especially evident on the Spouse dataset. Interestingly, the MLP does not benefit from error
boosting, which might be explained by the fact that its larger hypotheses space, i.e., unconstrained
weights, makes it difficult to diminish the contributions of non-relevant tokens. Because rationales
guide the learning process, their are more important in the extremely low resource scenario, but their

7



Under review as a conference paper at ICLR 2020

Figure 2: Top-10 most relevant tokens for positive prediction, averaged on unseen data.

effect slowly fades as the training size increases; contrarily to our expectations, PARCUS performed
even better on larger amounts of training points without rationales.
On Hatespeech PARCUS still performs fairly well on average, but with 200 traning examples it
cannot keep up with the logistic regressor of Park & Fung (2017). We found two reasons for such
behavior: (i) BERT’s tokenizer is unable to accurately splitting tweets, due to their noisy nature,
and (ii) character n-grams are strong discriminative features for this task (Nobata et al., 2016), and
BERT does not use them. To simultaneously solve both issues we switched to Fasttext embeddings
(Bojanowski et al., 2017) which are also trained on character n-grams and do not need an additional
tokenizer. Surprisingly, we observed a significant improvement on 200 data points, which reduces
the gap in performance with the n-grams based model. Therefore, we conclude that choosing the
“right” embedding space can make the difference, which does not necessarily mean using one of the
latest and most powerful language models available.

4.3 PROVIDING EXPLANATIONS

In this Section we show that PARCUS is interpretable. To this aim, we train a model using N=3
prototypes on 60 examples taken from the Spouse dataset. Then we run the model on unseen data
and we inspect the outputs associated with each token. We then rank them to see what are the most
important ones, and we observe that the tokens with highest rank correspond to semantic concepts
that are relevant for the task. Indeed, the model learned to focus on words related to marriage, as
well as syntactic variations associated with similar semantics. Moreover, some of the words were
not given as part of rationales in the training set. The next step is to show that rationales have
effectively been incorporated in the prototypes, and how the features of Eq. 4 have been weighted.
We started by inspecting the magnitude of the linear weights W ∈ R8×2; specifically, if the i-th
feature is discriminative for a class c, then the i-th row of W will have the c-th element clearly
larger than the others. In our example, we found that φ1 was important for positive predictions,
whereas the other features did not contribute to a particular class. Therefore, we performed top-10
cosine similarity ranking between tokens and the prototype p1. From the most similar to the least
one, we obtained: husband; marriage; marrying; wife; married; marry; fiance; wedding; fiancee;
and girlfriend. Interestingly, PARCUS has automatically learned to match concepts similar to those
provided in natural language form by BabbleLabble Hancock et al. (2018).

5 CONCLUSIONS

We presented a new methodology to perform classification in the low data regime. We coupled
soft token matching with error boosting to focus on concepts that are important for the task at
hand. The model is able to outperform other competitors, including fine-tuned complex models.
Moreover, we showed with a practical example how humans can interpret the predictions in terms
of concepts matching. In conclusion, our model proved to be a useful in tasks where gathering data
is challenging.

8



Under review as a conference paper at ICLR 2020

REFERENCES

Yujia Bao, Shiyu Chang, Mo Yu, and Regina Barzilay. Deriving machine attention from human
rationales. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pp. 1903–1913, 2018.

Maria Barrett, Joachim Bingel, Nora Hollenstein, Marek Rei, and Anders Søgaard. Sequence classi-
fication with human attention. In Proceedings of the 22nd Conference on Computational Natural
Language Learning, pp. 302–312, 2018.

Joost Bastings, Wilker Aziz, and Ivan Titov. Interpretable neural predictions with differentiable
binary variables. In Proceedings of the 57th Conference of the Association for Computational
Linguistics, ACL, 2019.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word vectors with
subword information. Transactions of the Association for Computational Linguistics, 5:135–146,
2017.

Carlos Castillo, Debora Donato, Aristides Gionis, Vanessa Murdock, and Fabrizio Silvestri. Know
your neighbors: Web spam detection using the web topology. In Proceedings of the 30th annual
international ACM SIGIR conference on Research and development in information retrieval, pp.
423–430. ACM, 2007.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):273–297,
1995.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Gregory Druck, Gideon Mann, and Andrew McCallum. Reducing annotation effort using gener-
alized expectation criteria. Technical report, Massacusetts University, Department of Computer
Science, Amherst, 2007.

Yoav Freund, Robert Schapire, and Naoki Abe. A short introduction to boosting. Journal-Japanese
Society For Artificial Intelligence, 14(771-780):1612, 1999.

Braden Hancock, Paroma Varma, Stephanie Wang, Martin Bringmann, Percy Liang, and Christopher
Ré. Training classifiers with natural language explanations. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics, ACL 2018, Melbourne, Australia, July
15-20, 2018, Volume 1: Long Papers, pp. 1884–1895, 2018.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification.
In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 328–339, 2018.

Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard Hovy, and Eric Xing. Harnessing deep neural
networks with logic rules. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), volume 1, pp. 2410–2420, 2016a.

Zhiting Hu, Zichao Yang, Ruslan Salakhutdinov, and Eric Xing. Deep neural networks with massive
learned knowledge. In Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, pp. 1670–1679, 2016b.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neural network for
modelling sentences. In Proceedings of the 52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pp. 655–665, 2014.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015.

9



Under review as a conference paper at ICLR 2020

Tao Lei, Regina Barzilay, and Tommi Jaakkola. Rationalizing neural predictions. In Proceedings of
the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 107–117, 2016.

Tao Li and Vivek Srikumar. Augmenting neural networks with first-order logic. arXiv preprint
arXiv:1906.06298, 2019.

Bingfeng Luo, Yansong Feng, Zheng Wang, Songfang Huang, Rui Yan, and Dongyan Zhao. Marry-
ing up regular expressions with neural networks: A case study for spoken language understand-
ing. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 2083–2093, 2018.

Andrew McCallum, Gideon Mann, and Gregory Druck. Generalized expectation criteria. Computer
science technical note, University of Massachusetts, Amherst, MA, 94(95):159, 2007.

Pushkar Mishra, Helen Yannakoudakis, and Ekaterina Shutova. Neural character-based composition
models for abuse detection. In Proceedings of the 2nd Workshop on Abusive Language Online
(ALW2), pp. 1–10, 2018.

Chikashi Nobata, Joel Tetreault, Achint Thomas, Yashar Mehdad, and Yi Chang. Abusive language
detection in online user content. In Proceedings of the 25th international conference on world
wide web, pp. 145–153. International World Wide Web Conferences Steering Committee, 2016.

Ji Ho Park and Pascale Fung. One-step and two-step classification for abusive language detection
on twitter. In Proceedings of the First Workshop on Abusive Language Online, pp. 41–45, 2017.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Alexander J Ratner, Christopher M De Sa, Sen Wu, Daniel Selsam, and Christopher Ré. Data
programming: Creating large training sets, quickly. In Advances in neural information processing
systems, pp. 3567–3575, 2016.

Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11):2673–2681, 1997.

Roy Schwartz, Sam Thomson, and Noah A. Smith. Bridging cnns, rnns, and weighted finite-state
machines. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics, ACL, 2018.

Imran Sheikh, Irina Illina, Dominique Fohr, and Georges Linares. Learning word importance with
the neural bag-of-words model. In ACL, Representation Learning for NLP (Repl4NLP) workshop,
2016.

Vlamimir Vapnik. Statistical learning theory wiley. New York, pp. 156–160, 1998.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Zeerak Waseem and Dirk Hovy. Hateful symbols or hateful people? predictive features for hate
speech detection on twitter. In Proceedings of the NAACL student research workshop, pp. 88–93,
2016.

Omar Zaidan, Jason Eisner, and Christine Piatko. Using annotator rationales to improve machine
learning for text categorization. In Human language technologies 2007: The conference of the
North American chapter of the association for computational linguistics; proceedings of the main
conference, pp. 260–267, 2007.

Omar F Zaidan and Jason Eisner. Modeling annotators: A generative approach to learning from an-
notator rationales. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing, pp. 31–40. Association for Computational Linguistics, 2008.

Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal of the
royal statistical society: series B (statistical methodology), 67(2):301–320, 2005.

10



Under review as a conference paper at ICLR 2020

A APPENDIX

A.1 GATING ACTIVATION FUNCTION

The gating activation function of Eq. 1 controls how similar an embedding and a prototype have
to be in order to significantly contribute as a feature. Figure 3 shows different curves for different
values of a. A bigger a squashes low cosine similarities more, as is the case for a = 100, therefore
acting as a stricter filter. For completeness, Figure 5 shows the effect of a g(·) in R2, using a = 100.

Figure 3: Plot of the gating function g(v) = av−1 for different values of a. In practice, the argument
v will be the cosine similarity between 2 vectors, hence g : [−1, 1]→ [0, 1]

(a) Cosine similarity (b) Gated cosine similarity

Figure 4: From left to right: (a) Cosine similarity with respect to the [1,1] vector v and (b) its gated
activation for a = 100. The gate function acts as a filter on cosine similarity, thus promoting those
vectors “close enough” to v while penalizing the others.

11



Under review as a conference paper at ICLR 2020

A.2 DIFFERENTIABLE IMPLEMENTATION OF AND AND OR

(a) Differentiable AND function (b) Differentiable OR function (s = 2)

(c) Differentiable XOR function (s = 2)

Figure 5: From left to right: Cosine similarity with respect to the [1,1] vector and its gated activation.

Given the set {φ1, , φN} ∈ [0, 1]N , interpreted as N independent “soft matching probabilities”, we
would like to compute their joint probability as well as the probability of a single matching out of
all possible ones. In our experiments, we found a pseudo-differentiable implementation of min and
max (Eq. 2 and Eq. 3) to speed up convergence. Alternatively, we tried a fully differentiable version
of those two functions as well as the probability of mutually exclusive events, i.e., XOR. We present
the equations for N = 2, although this can be easily generalized to arbitrary N :

φDiff
AND(φ1, φ2) = φ1 ∗ φ2

φDiff
OR (φ1, φ2, s) = (φ1 − 2)−2s − 2−2s(1− φ1) + (φ2 − 2)−2s − 2−2s(1− φ2)− φDiff

AND(φ1, φ2)

φDiff
XOR(φ1, φ2) = φDiff

OR (φ1, φ2)− φDiff
AND(φ1, φ2)

where s controls how squashed is the curve is. Figure 5 depicts all three curves for s = 2.

12



Under review as a conference paper at ICLR 2020

A.3 DATASETS’ STATISTICS

In Table 2 we report the statistics of the datasets we used. When preprocessing the data with BERT,
we used a maximum sentence length of 128 for token-based methods, and 512 when finetuning
BERT.

Table 2: Datasets’ statistics.

Train Size Validation Size Test Size % Pos. No. Rationales

Spouse 22195 2796 2697 8% 60 (Positive)
MovieReview 1800 - 200 50% 1800
Hatespeech 3430 - 3430 14.7% 60 (Positive)

As mentioned in Section 4, each sample of the Spouse dataset contains a pair of entities as well as
the sentence. Therefore, the MLP baseline, ablation studies and our method will make use of an
input-mask (at test time only), which reflects the fact that we are not interested in those sentences
where both our entities of interest do not appear. It is worth noticing that such relational information
should be naturally exploited by methods like BabbleLabble, which rely on domain-specific gram-
mars. While this method should help to improve precision, in practice it did not significantly affect
performances.

A.4 HYPER-PARAMETERS

Hyper-parameters are used to perform model selection, which returns the best configuration for a
given validation split. We use such configuration to train a model on the whole training set and then
evaluate its generalization performances on the unseen test set. When Data Programming is used, we
simply combine model selection of our model with that of data programming. Since the experiment
is repeated 10 times to avoid lucky/unlucky data splits, model selection is performed 10 times as
well. Model assessment, i.e., the measure of performance of our family of models, is evaluated by
averaging the 10 different performances on the test set. When fine-tuning BERT, we mainly follow
the guidelines reported in Devlin et al. (2018).

Table 3: Hyper-parameters tried for model selection.

LINEAR MLP/NBOW(2) BERT+FINETUNE DP OURS
LEARNING RATE {0.01, 0.001, 0.0001} {0.001, 0.0001} {0.00002, 0.00003, 0.00005} range(0.001, 0.0001) {0.01}
L1 - - - - {0.01, 0.001}
L2 {0.1, 0.01, 0.0001} {0.01, 0.0001} - - {0.001, 0.0001}
EPOCHS {50, 100, 150} {100, 500} {2, 4, 10} {100, 500} {500}
HIDDEN UNITS - {8, 16, 32} - - -
BATCH SIZE 32 32 8 - 32
N - - - - {5, 10}
f(r) - - - - {er, 5r, 10r}
a - - - - {10, 100}
MAX SEARCH - - - 10 -

13



Under review as a conference paper at ICLR 2020

A.5 GRADIENT BOOSTING EFFECT ON BACKPROPAGATION

For a loss ` defined on top of Equation 6 and a true label ŷ, backpropagation is computed as (ab-
stracting from the sample index i to simplify notation):

∂`(y, ŷ)

∂θ
=
∂`(y, ŷ)

∂y
· ∂y
∂θ

=
∂`(y, ŷ)

∂y
·
∂ σ(

∑T
j y

jf(rj))

∂(
∑T

j y
jf(rj))

·
∂
∑T

j y
jf(rj)

∂θ

∂
∑T

j y
jf(rj)

∂θ
=

T∑
j

(∂(∆(xj)W + b)

∂θ
· f(rj)

)
, (8)

where θ are the parameters of the model.

A.6 ROBUSTNESS TO NOISE

Figure 6: Robustness to different degrees of rationale noise on the Spouse dataset. From bottom to
top, the curves refer to different training sizes: 10, 30, 60, 150, 300. We fix f(r) = er

We investigated how injecting random rationales (i.e., ones) in prior information affects the final
performances. Clearly, having a 100% noise corresponds to not having rationales at all, therefore
we run a simple experiment (with fixed hyper-parameters) 10 times on Spouse, with the goal to
study robustness to noise. Figure 6 shows the result, where different curves stand for different
training sizes; as one would expect, for few data points (blue and red curves) noise has bigger
influence whereas for 150 (orange curve) and 300 (green curve) data points the effect is negligible.
This confirms that there is a trade-off where the impact of rationales has little effect on the final
performances.

14



Under review as a conference paper at ICLR 2020

A.7 VISUALIZATION OF THE MOST IMPORTANT TOKENS

The importance of tokens in a sentence can be inspected by looking at the prototypes pi, the weight
matrix W and the tokens predictions yji . In Figure 7 we show the some of the tokens which are
responsible for positive prediction on Spouse unseen data, which is consistent with the results of
Section 4.3.

Figure 7: Visualization of the most important tokens for positive prediction. Sentences were ex-
tracted from the Spouse dataset. The entities we are interested in are always called “alex” and
“chris”.

15


