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ABSTRACT

We consider the problem of learning models of intuitive physics from raw, unla-
belled visual input. Differently from prior work, in addition to learning general
physical principles, we are also interested in learning “on the fly” physical proper-
ties specific to new environments, based on a small number of environment-specific
experiences. We do all this in an unsupervised manner, using a meta-learning for-
mulation where the goal is to predict videos containing demonstrations of physical
phenomena, such as objects moving and colliding with a complex background. We
introduce the idea of summarizing past experiences in a very compact manner, in
our case using dynamic images, and show that this can be used to solve the problem
well and efficiently. Empirically, we show, via extensive experiments and ablation
studies, that our model learns to perform physical predictions that generalize well
in time and space, as well as to a variable number of interacting physical objects.

1 INTRODUCTION

Many animals possess an intuitive understanding of the physical world. They use this understanding
to accurately and rapidly predict events from sparse sensory inputs. In addition to general physical
principles, many animals also learn specific models of new environments as they experience them
over time. For example, they can explore an environment to determine which parts of it can be
navigated safely and remember this knowledge for later reuse.

Authors have looked at equipping artificial intelligences (AIs) with analogous capabilities, but
focusing mostly on performing predictions from instantaneous observations of an environment, such
as a few frames in a video. However, such predictions can be successful only if observations are
combined with sufficient prior knowledge about the environment. For example, consider predicting
the motion of a bouncing ball. Unless key parameters such as the ball’s elasticity are known a priori, it
is impossible to predict the ball’s trajectory accurately. However, after observing at least one bounce,
it is possible to infer some of the parameters and eventually perform much better predictions.

In this paper, we are interested in learning intuitive physics in an entirely unsupervised manner, by
passively watching videos. We consider situations in which objects interact with scenarios that can
only be partially inferred from their appearance, but that also contain objects whose parameters
cannot be confidently predicted from appearance alone (fig. 1). Then, we consider learning a system
that can observe a few physical experiments to infer such parameters, and use this knowledge to
perform better predictions in the future.

Our model has three goals. First, it must learn without the use of any external or ad-hoc supervision.
We achieve this by training our model from raw videos, using a video prediction error as a loss.

Second, our model must be able to extract information about a new scenario by observing a few
experiments, which we formulate as meta-learning. We also propose a simple representation of the
experiments based on the concept of “dynamic image” that allows to process long experiments more
efficiently than using a conventional recurrent network.

Third, our model must learn a good representation of physics without access to any explicit or external
supervision. Instead, we propose three tests to support this hypothesis. (i) We show that the model
can predict far in the future, which is a proxy to temporal invariance. (ii) We further show that the
model can extend to scenarios that are geometrically much larger than the ones used for training,
which is a proxy to spatial invariance. (iii) Finally, we show that the model can generalize to several
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Figure 1: Probing a new environment. Given the input showing a (purple) ball moving from right
to left, three possible future outcomes are possible: the ball passes above (A), passes under (U), or
bounces (B) off the object. This cannot be predicted from appearance alone. Instead, our model
learns the property of the object by probing each new environment via a small set of experiments.

moving objects, which is a proxy to locality. Locality and time-space invariance are of course three
key properties of physical laws and thus we should expect any good intuitive model of physics to
possess them.

In order to support these claims, we conduct extensive experiments in simulated scenarios, including
testing the ability of the model to cope with non-trivial visual variations of the inputs. While the
data is simpler than a real-world application, we nevertheless make substantial progress compared to
previous work, as discussed in section 2. We do so by learning from passive, raw video data a good
model of dynamics and collisions that generalizes well spatially, temporally, and to a variable number
of objects. The scalability of our approach, via the use of the dynamic image, is also unique. Finally,
we investigate the problem of learning the parameters of new scenarios on the fly via experiences and
we propose an effective solution to do so.

2 RELATED WORK

A natural way to represent physics is to manually encode every object parameter and physical property
(e.g., mass, velocity, positions) and use supervision to make predictions. This has been widely used
to represent and propagate physics (Wu et al., 2015; 2016; Battaglia et al., 2016; Chang et al., 2017;
Mrowca et al., 2018; Sanchez-Gonzalez et al., 2018). If models like Wu et al. (2015; 2016) also
estimate environment parameters, these works rely on a physics engine that assumes strong priors
about the scenario, while our approach does not require such constraint.

Inspired by the recent successes of Convolutional Neural Networks (CNNs (Krizhevsky et al., 2012))
and their application to implicit representation of dynamics (Ondruska & Posner, 2016; Oh et al.,
2015; Chiappa et al., 2017; Bhattacharyya et al., 2018), researchers (Watters et al., 2017; Ehrhardt
et al., 2019; Kansky et al., 2017; Fragkiadaki et al., 2016) have tried to base their approaches on
visual inputs. They learn from several frames of a scene to regress the next physical state of a system.
In general these approaches learn an implicit representation of physics (Ehrhardt et al., 2019; Watters
et al., 2017) as a tensor state from recurrent deep networks.

Such models are mostly supervised using ground-truth information about key physical parameters
(e.g., positions, velocities, density) during training. While these approaches require an expensive
annotation of data, other works have tried to learn from unsupervised data as well. Researchers have
successfully learned unsupervised models either through active manipulation (Agrawal et al., 2016;
Denil et al., 2016; Finn et al., 2016a), using the laws of physics (Stewart & Ermon, 2017), using
dynamic clues and invariances (Greff et al., 2017; van Steenkiste et al., 2018) or features extracted
from unsupervised methods (Finn et al., 2016b; Ehrhardt et al., 2018). Perhaps most related to our
approach is the work of Wang et al. (2018), where the model is learnt using future image prediction on
a simple synthetic task and then transferred to real world scenarios. They also demonstrate long-term
dynamic predictions, however they did not generalize to different background/number of balls.

In other works, models are taught to answer simple qualitative questions about a physical setup, such
as: the stability of stacks of objects (Battaglia et al., 2013; Lerer et al., 2016; Li et al., 2017; Groth
et al., 2018), the likelihood of a scenario (Riochet et al., 2018), the forces acting behind a scene (Wu
et al., 2017; Mottaghi et al., 2016) or properties of objects through manipulation (Agrawal et al.,
2016; Denil et al., 2016). Other papers compromise between qualitative and quantitative predictions
and focus on plausibility (Tompson et al., 2016; Ladický et al., 2015; Monszpart et al., 2016).

3 METHOD

We describe our model, illustrated in fig. 2, starting from the input and output data.
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Figure 2: Overview of our method. Ψ (bottom right block) acts as a meta-learning module. It takes
as input past experiments compressed into dynamic images alongside with the median image and
learn to optimise m and a to minimise the final loss. η (top-left yellow block) extracts states x0:T0

which are carried forward with the auto-regressive predictor Φ. Finally g renders frame Ît from xt.

A scenario S is a physical environment that supports moving objects interacting with it. In this paper,
we take as scenarios 2.1D environments containing obstacles and we consider rolling balls as moving
objects. Hence, interactions are in the form of bounces. Formally, a scenario is defined over a lattice
Ω = {0, . . . ,H − 1} × {0, . . . ,W − 1} and is specified by a list of obstacles S = {(Oj , bj), j =
1, . . . ,K}. Here Oj ⊂ Ω is the shape of an obstacle and bj ∈ {B,A,U} is a flag that tells whether
the ball bounces against it (B), passes above it (A), or passes under it (U). Obstacles do not overlap.

A run is a tupleR = (S,y) associating a scenario S with a trajectory y = (yt ∈ Ω, t = 0, . . . , T −1)
for the ball (this is trivially extended to multiple balls). Scenarios and runs are sensed visually. The
symbol I(S) : Ω → R3×H×W denotes the image generated by observing a scenario with no ball
and It(R) = I(S, yt) is the image generated by observing the ball at time t in a run. The symbol
I(R) = (It(R), t = 0, . . . , T − 1) denotes the collection of all frames in a run, which can be thought
of as a video.

We are interested in learning intuitive physics with no explicit supervision on the object trajectories,
nor an explicit encoding of the laws of mechanics that govern the motion of the objects and their inter-
actions and collisions with the environment. Hence, we cast this problem as predicting the video I(R)
of the trajectory of the objects given only a few initial frames I0:T0

(R) = (I0(R), . . . , IT0−1(R)),
where T0 � T .

We are not the first to consider a similar learning problem, although most prior works do require
some form of external supervision, which we do not use. Here, however, we consider an additional
key challenge that the images I0:T0

(R) do not contain sufficient information to successfully predict
the long-term objects’ motion. This is because these few frames tell us nothing about the nature of
the obstacles in the scenario. In fact, under the assumptions that obstacles of type B, A and U have
similar or even the identical appearance, it is not possible to predict whether the ball will bounce,
move above, or move under any such obstacle. This situation is representative of an agent that needs
to operate in a new complex environment and must learn more about it, from past experiences, before
it can do so reliably.

Thus, we consider a modification of the setup described above in which the model can experience
each new scenario for a while, by observing the motion of the ball, before making its own predictions.
Formally, an experience is a collection of N runs E = (R1, . . . ,RN ) all relative to the same
scenario S with each a different trajectories y1, . . . ,yN . By observing such examples, the model
must determine the nature of the obstacles and then use this information to correctly predict the
motion of the ball in the future. We cast this as the problem of learning a mapping

Φ : (I0:T0(R), I(E)) 7−→ I(R), (1)
where I(E) = (I(R1), . . . , I(RN )) are the videos corresponding to the runs in the experience. We
will callR the prediction run to distinguish it from the experience runs E .
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3.1 A META-LEARNING PERSPECTIVE

The setup we have described above can be naturally described as meta-learning. Namely, eq. (1) can
be thought of as incorporating a “local” learning ruleM that maps the experience E to a scenario-
specific predictor Φ̂ on the fly: Φ̂(·) = Φ(·, I(E)) = M[I(E)]. Hence M must extract from the
experience as much information as possible about the underlying scenario and transfer it to the
scenario-specific predictor Φ̂. In order to learnM, we consider meta-samples of the type (S,R, E)
comprising a scenario S, a prediction run R and N experience runs E . Given a dataset D of such
meta-samples, meta-learning searches for the mappingM that minimizes the error on the prediction
runs:

M∗ = argmin
M

1

|D|
∑

(S,R,E)∈D
`(I(R), Φ̂(I0:T0

(R))), Φ̂ =M[I(E)]. (2)

3.2 COMPRESSED DYNAMIC EXPERIENCES

Concretely, we parameterise the scenario-specific predictor Φ̂(·;w,m) using parameters w, which
is fixed and scenario-independent, and m, which is scenario-specific. The latter is extracted by a
network m = Ψ1(I(E)) from the experience videos I(E). Since we expect m to provide information
about the nature of the obstacles in the scenario, we let m ∈ R1×H×W be a tensor with the same
spatial resolution as the scenario and interpret it as an “obstacle mask”.

Given that the function Ψ1 takes as input a number of video sequences, one may think to implement
it as a recurrent neural network; however, recurrent networks scale badly, especially in our meta-
learning context — to the point that we had difficulties in even running such a model at a non-trivial
scale. Instead, we propose to construct Ψ1 based on a compact representation of the experience which
leads to a much more efficient design.

For this, we use the concept of dynamic image (Bilen et al., 2016), which encodes a video as a
weighted average of its frames: f1(I0, . . . , IT−1) =

∑T−1
t=0 αtIt with αt =

∑T−1
i=t

2(i+1)−T−1
i+1 .

Since the dynamic image is only sensitive to changes in the video, we complement it by computing
also the median image f2(I0, . . . , IT−1) = mediant=0,...,T−1 It and combine the two functions f1
and f2 in a single representation f by stacking the respective outputs along the channel dimension.
With this design, we can rewrite the map Ψ1 as follows:

m = Ψ1(I(E)) = maxpool
n=1,...,N

Ψ̂1(f(I(Rn))). (3)

Here the map Ψ̂1 : R6×H×W → R1×H×W , which can be implemented as a standard CNN, takes as
input the dynamic/median image and produces as output the obstacle mask m. The pooling operator
summarizes the information extracted from multiple runs into a single mask m.

We also consider a second similar map Ψ̂2 : R6×H×W → RC×H×W to extract an “appearance”
tensor a. The latter helps the generator to render obstacles above or underneath the moving ob-
jects as needed. The response of this function is also max-pooled over runs, but channel-wise:
[poolk=1,...,N ak]cvu = [ak(c)]cvu where k(c) = argmaxk=1,...,N

∑
vu[ak]2cvu.

In practice, Ψ̂1 and Ψ̂2 are implemented as a single neural network Ψ : R6×H×W → R(1+C)×H×W

where Ψ̂1 is the first output channel and Ψ̂2 the others.

Optional obstacle mask supervision. In the experiments, we show that the map Ψ̂ can be learned
automatically without any external supervision. We contrast this with supervising Ψ̂1 with an oracle
rendition of the obstacle map. To this end, we define the tensor mgt for a scenario S to be the
indicator mask of whether a pixel contains a solid obstacles (including the perimetral walls) and then
minimize the auxiliary loss `(mgt,Ψ1(I(E))) = ‖mgt −Ψ1(I(E))‖2.

3.3 AUTO-REGRESSIVE PREDICTOR

The predictor Φ is designed as an RNN that takes as input T0 past states xt−T0:t = (xt−T0
, . . . ,xt−1)

and outputs a new state xt. Each state variable is in turn a distributed representation of the physical
state of the system, in the form of a “heatmap” xt ∈ RH×W . Considering T0 past states allows the
model to auto-regressively represent the dynamics of the system if so learning chooses to do.
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The predictor also takes as input the scenario representation m given by eq. (3). The first T0 state
variables are initialized from observations I0:T0

(R) via an initialization function η : R3×H×W →
RH×W . We thus have

x0:T0
= [η(It(R))]t=0:T0

(initialization) (4)
xt = Φ(xt−T0:t,m) (auto-regressive prediction) (5)

In short, this model estimates recursively the evolution of the system dynamics from the visual
observations of the first T0 samples.

Conditional generator. Variable xt contains information about the state of the moving objects
(balls). This is then converted into a prediction of the corresponding video frame, combining also the
appearance tensor a and the median of the first T0 images in the sequence Î = mediant=0,...,T0−1 It.
This is formulated as a conditional generator network Ît = g(xt,a, Î).

Video reconstruction loss. Next, we discuss the nature of the loss equation 2. Owing also to
the static background, the conditional video generation task is relatively simple provided that the
dynamics are estimated correctly. As a consequence, the generated videos are likely to closely
approximate the ground truth ones, so the loss function ` in equation 2 does not require to be complex.
In our experiments, we combine the L2 image loss with the perceptual loss of (Johnson et al.,
2016). The latter is obtained by passing the ground-truth and predicted images through the first
few layers of a pre-trained deep neural network e, VGG-16 (Simonyan & Zisserman, 2015) in our
case, and then comparing the resulting encodings in L2 distance. The overall loss is then given by
`(It, Ît) = λI‖It− Ît‖2 +λp‖e(It)− e(Ît)‖2 (details in the sup. mat.). The perceptual loss is robust
to small shifts in the image reconstructions that may arise from imperfect physics predictions and
favors reconstructing a sharp image; by comparison, the L2 loss alone would result in blurrier images
by regressing to the mean. In practice, trading-off the L2 and perceptual losses results in qualitatively
better images as well as in better trajectory prediction.

State space integrity. An issue with the recursion equation 5 is that the state xt may, in the long
run, falls outside the space of meaningful states, leading to a catastrophic failure of the predictor.
This is especially true for predictions longer than the ones used for training the model. In order to
encourage the recursion to maintain the integrity of the state over time, we add a self-consistency
loss ‖xt − η(It(R))‖2. Here the network η is the same that is used to extract the state space from
the initial frames of the video sequence in equation 4 which weights are fixed. In practice, we find
that, by using this additional loss, our recursion learns to maintain the integrity of the state nearly
indefinitely.

4 EXPERIMENTAL SETUP

Data. A scenario S (see embedded figure) is generated by sampling a certain number of obsta-
cles of different types mi and shapes Oi (either rectangular or custom), placing them at random
locations and orientations on a 2D board. We consider boards with either two rectangular ob-
stacles (denoted R2), a random number from 3 to 4 rectangular obstacles (R4) or two curved
obstacles (C). Scenarios are rendered by painting the background and a wall around it. Then,
all obstacle are painted in a solid colour, randomly picked from a fixed palette to ensure suffi-
cient contrast. The background is also painted in solid color (general case) or by using a texture
image (only curved shapes, denoted C+T). Crucially, there is no correlation between an obsta-
cle’s type and its shape, location and color, so its type cannot be inferred by appearance alone.
RunsR are generated by placing one or more dynamic ob-
jects (“balls”) with a random initial location and a random
momentum oriented towards the obstacles, simulating the
2.1D physics, and rendering the balls as circles with a
fixed color (see fig. A1 in supp. mat. for more examples).

For each scenario S, we sample N + 1 runs, using the first as a prediction run and the others as
experience runs, forming triplets (S,R, E). Unless otherwise stated, we set N = 7 and let each run
evolve for 60 frames, including for the experience runs. Thanks to our compact representation, we
only use 200MB for 7 experiences for backpropagation during training. Using a recurrent network
requires an amount of memory larger in proportion with the length of an experience, i.e. 60-fold, so
12GB for 64×64 boards, which wouldn’t allow the reccurrent architecture to fit into memory. Using
shorter runs is also not possible, as they tend to contain no collisions.
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For training, samples (S,R, E) are drawn in an on-line fashion and are thus unlimited. For testing,
we use a fixed set of 200 samples. We generate boards of size 64× 64 and 128× 128, but use the
latter only for testing purposes to evaluate generalization. Unless otherwise stated, the board size is
64× 64.

Evaluation metrics. We report the video prediction error as average L2 image loss. In order to
assess the ability of the method to predict good trajectories, we note that blobs tend to emerge in the
heatmaps xt in correspondence of the tracked objects. Hence, we handcrafted a simple blob detector
h(xt) that detects the blobs contained in the heatmaps xt (see sup. mat.). We then report the number
of detected blobs vs the actual number of moving objects and, for each, the distance in pixel space of
the predicted blob center and ground-truth object center, averaged over the different scenarios. For
each experiment we report mean and standard deviation across all sampled scenarios.

Baselines. We compare with three baselines. The first is a version of the Interaction Net-
works (Battaglia et al., 2016), trained with perfect knowledge of the object locations, background
and object generation. The baseline works directly on the object positions and regresses object
positions. The ground truth obstacle map is given as input and transformed into a vector thanks to a
pre-trained VGG-16 architecture. We also reimplemented the RLVN network of Wang et al. (2018),
which has a vector representation bottleneck, and compared video prediction error results. Note that
this baseline wouldn’t adapt to bigger board. Our last baseline amounts to running the ground-truth
physics simulator after removing the obstacles from the board (and thus results in perfect predictions
for trajectories that do not hit solid obstacles).

Implementation details. Networks Φ and η share very similar auto-encoder type architecture, the
network Ψ uses a U-Net-like architecture (Ronneberger & Fischer, 2015). As stated in Wang et al.
(2018) intuitively Ψ would better preserve appearance while the structure of Φ would loose some
appearance structure and put an inductive bias on dynamic predictions. g is a fully-convolutional
6-layers stack. Our implementation uses TensorFlow 1.9 (Abadi et al., 2015) and the Adam opti-
mizer (Kingma & Ba, 2014) with learning rate 10−4 and Xavier initialization (Glorot & Bengio,
2010). We used a batch size of 10 samples (S,R, E). Models are first trained for 110,000 iterations
using only the L2 and self-consistency losses for eq. (2), and then optionally fine-tuning for further
1,000 iterations using the perceptual loss as well. All models are trained on R2 with board size
642 and tested without any fine-tuning on different board types and sizes (see Tab. 1,2,3,A.3). For
the C+T scenarios, we first train the model using flat colour R2 scenarios and then fine-tune for
55,000 iterations using the textured data. Unless otherwise specified, models are trained in a fully
unsupervised fashion. Full details can be found in the sup. mat.

5 RESULTS

Full system. Table 1 rows 1-4 report the prediction accuracy of our system on the 200 simulated
test sequences using one moving object. In the table, we distinguish three durations: T0 = 4 is the
number of frames to bootstrap the prediction of a test runs, Ttrain = 20 is the length of prediction
runs observed during meta-training and Ttest = kTtrain is the length of the runs observed during
meta-testing, where k = 1, 3, 5. We test both 64×64 boards (which is the same size used for training)
and larger 128× 128 boards to test spatial generalization. We also compare training using the L2 or
the L2+perceptual loss for video prediction supervision. We report the number of detected objects
(which should be 1 in this experiment), the video prediction error, and the position prediction error.

We find that switching from the L2 to the L2+perceptual loss for training (rows 1 vs 3 and 2 vs 4)
reduces significantly the trajectory prediction error and prevents the object from disappearing. This,
however, results to slightly larger L2 video prediction error compared to empty boards predicted
in the long run by models trained with L2 loss only. We also find that generalization through
time is excellent: prediction errors accumulate over time (as it is unavoidable), but the recursion
evolves without collapsing well beyond Ttrain (qualitatively we found that the recursion can be applied
indefinitely). This should be contrasted with prior work on intuitive physics (Fragkiadaki et al., 2016)
where recursion was found to be unstable in the long term.

Spatial generalization to larger boards (rows 2,4,6) is also satisfactory if the perceptual loss is used.
However, we did notice the emergence of a few artifacts in this case.

In rows 5-6 we use external supervision to train the obstacle map predictor as suggested in section 3.2
(the rest of the system is still unsupervised). Supervision improves the trajectory prediction accuracy
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Table 1: Predicting one moving object. Obst. is the obstacle type (R2, R4, C). The test board size
can be either 64× 64 (same as in training) or 128× 128 and we consider using either no supervision
or obstacle supervision. We test the average prediction error at Ttest = 20, 60, 100 well above the
duration Ttrain = 20 observed during training. Position errors were normalized by the board size
diagonal. Video errors were normalized to board size 642 where larger. L2 loss on positions is used
for (14)-(15).

Ttest = Ttrain = 20 Ttest = 3×Ttrain Ttest = 5×Ttrain

No. Obst. Sup. Test
brd. size

Train
loss # obj. Vid. L2 Pos. err. # obj. Vid. L2 Pos. err. # obj. Vid. L2 Pos. err.

(1) R2 None 642 L2 1.0±0.2 2.5±2.6 .036±.096 0.3±0.5 4.6±3.3 .404±.241 0.1±0.3 4.7±3.3 .526±.180
(2) R2 None 1282 L2 0.7±0.4 1.7±1.3 .179±.236 0.1±0.3 1.7±1.1 .484±.228 0.0±0.1 1.7±1.1 .531±.209
(3) R2 None 642 Percep. 1.0±0.2 2.5±2.9 .028±.073 1.0±0.2 5.3±4.0 .145±.148 1.0±0.2 5.5±4.0 .286±.168
(4) R2 None 1282 Percep. 0.9±0.4 1.7±1.4 .104±.170 1.0±0.4 2.0±1.4 .227±.179 1.0±0.4 2.0±1.4 .320±.172

(5) R2 Obst. 642 Percep. 1.0±0.1 3.0±3.3 .018±.023 1.0±0.2 5.7±4.4 .112±.086 1.0±0.3 5.8±4.2 .231±.141
(6) R2 Obst. 1282 Percep. 8.3±3.3 2.4±1.9 .323±.064 26.5±6.4 5.6±4.0 .355±.054 25.8±6.3 5.8±4.1 .363±.133

(7) C None 642 Percep. 1.0±0.1 2.9±3.5 .040±.086 1.1±0.3 5.4±4.1 .175±.160 1.0±0.3 5.4±4.0 .265±.155
(8) C None 1282 Percep. 0.9±0.4 1.7±1.4 .104±.170 1.0±0.4 2.0±1.4 .227±.179 1.0±0.4 5.6±4.6 .320±.172
(9) C Obst 642 Percep. 1.0±0.1 2.9±3.1 .024±.072 1.0±0.1 5.7±4.2 .128±.114 1.0±0.2 5.5±4.1 .247±.141

(10) C+T None 642 Percep. 1.0±0.1 3.4±2.9 .017±.044 1.0±0.2 6.1±3.4 .094±.076 1.0±0.2 6.2±2.9 .222±.147
(11) C+T None 1282 Percep. 1.0±0.1 .675±.685 .012±.033 1.0±0.2 1.4±.814 .057±.065 0.9±0.3 1.4±.750 .121±.088

Ablation: removing the median and dynamic images, respectively (see text)
(12) R2 None 642 Percep. 1.0±0.3 4.0±4.0 .074±.115 0.8±0.5 5.1±4.0 .302±.202 0.6±0.5 5.0±3.8 .357±.212
(13) R2 None 642 Percep. 1.4±0.6 3.2±3.4 .054±.062 1.8±0.8 5.5±4.2 .268±.151 1.7±0.8 5.6±4.2 .326±.136

Comparison: Interaction Network (14-15), RLVN (16) and Ground Truth Simulator minus Obstacles (17-18)
(14) R2 Full 1282 L2 Pos. - - .038±.027 - - .166±.088 - - .331±.152
(15) C Full 1282 L2 Pos. - - .038±.031 - - .171±.095 - - .349±.203

(16) R2 - 642 - - 3.6±3.2 - - 5.3±3.3 - - 5.5±3.5 -

(17) R2 - 642 - - - .060±.099 - - .229±.224 - - .224±.209
(18) C - 642 - - - .055±.099 - - .219±.217 - - .232±.228

for boards of the same size as the ones seen in training. However, generalization to larger boards is
poorer, suggesting that explicit supervision causes the model to overfit somewhat.

Rows 7-11 show results for more complex shapes (C) and appearances (C+T). Prediction accuracy is
only slightly worse than with the simpler obstacles (e.g. rows 3 vs 7 or 9 vs 10).

Ablation. We suppress respectively the median image (row 12) and dynamic image (row 13) in the
feature extractor f summarizing the experiences. We notice a sensible deterioration of performance
compared to row 3, suggesting that both components are important.

Comparison. Compared to the fully-supervised IN (rows 14-15), our unsupervised method is
highly competitive, especially for longer simulation times (rows 4,8). The method also outperforms
(except for very long simulations where drift prevails) the ground-truth simulator that ignores the
obstacles (rows 16,17). Finally we show that our method surpasses RLVN (Wang et al., 2018)(row
16), qualitatively, this method produces similar results to (13) and the object tends to disappear when
encounting an object.

The importance of experience. We investigate how much information the model extracts from the
experiences E by ablating the number of runs N in it. For the special case N = 0, since there are no
runs, we generate an pseudo experience run by copying the first frame I0(R) of the prediction runR.

Table 2: Importance of experience. For the unsupervised model, we report the trajectory prediction
error at T = 40 (rows 1-3) and the obstacle mask L2 prediction error (rows 4-6) for different obstacle
types. The number of runs N in the experiences is varied from 0 to 50. For the obstacle mask
prediction error, we also report the trivial baseline ‖mgt −mall-on‖2 as ‘All-ON’ (see text). Position
errors were normalized by the board size (642) diagonal. Ttrain = 20.

No Err. Obst. All-ON N = 0 1 2 5 7 10 20 50

(1) Pos. R2 — .462±.136 .144±.157 .108±.136 .083±.128 .077±.120 .071±.114 .070±.116 .070±.104
(2) Pos. R4 — .502±.151 .189±.169 .158±.164 .122±.155 .110±.149 .114±.130 .110±.154 .114±.152
(3) Pos. C — .459±.124 .161±.172 .125±.158 .099±.139 .099±.146 .099±.144 .101±.144 .106±.143

(4) Obs. R2 13.2±11.1 24.6±16.4 10.3±9.5 7.6±8.4 4.2±5.4 3.8±4.7 3.5±3.3 3.6±3.5 3.8±3.7
(6) Obs. R4 16.8±13.3 23.6±15.1 14.1±10.9 11.5±9.9 7.7±8.0 7.4±7.3 7.3±7.2 7.4±7.2 8.4±8.3
(5) Obs. C 9.4±8.9 27.8±15.8 10.1±8.2 7.0±7.0 5.4±5.6 5.3±5.2 5.1±5.2 5.7±5.6 6.0±5.9
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(U1) (U2) (U3) (B1) (B2) (B3)
Figure 3: Qualitative results. We show time lapse images for the trajectory predicted for the ball
colliding with obstacles of type U (permeable; left) and B (solid; right). We test three variants of
the model: (1) the model supervised with ground-truth obstacle masks, (2) the unsupervised model
and (3) the model after suppressing the dynamic image that summarizes the experience (ablation).
Qualitatively, (1,2) produce plausible predictions but (3) does not.

In table 2, we report the trajectory prediction accuracy for different obstacle types (row 1-3). We
also test the ability to predict the obstacle mask mgt (defined in section 3). Since the model is
unsupervised, the learned mask m will not in general be an exact match of mgt (e.g. the mask range
is arbitrary); hence, after fixing all the parameters in the model, we train a simple regression network
that maps m to mgt and report the prediction accuracy of the latter on the test set (see sup. mat. for
details). As a point of comparison, we also report the error ‖mgt −mall-on‖2 of the trivial baseline
that predict a mask mall-on where all objects are highlighted, regardless of their flag.

We note that there is a very large improvement when we move from zero to one experience runs, and
a smaller but non-negligible improvement until N = 10. Furthermore, comparing the results with
predicting mall-on shows that the system can tell from the experiences which obstacles are solid and
which are not.

Table 3: Predicting the obstacles: supervision vs no supervision. The table reports the obstacle
mask prediction error (L2) for a network trained with or without supervision for the obstacles (see
text). The last column shows a multi-ball predictor operated with 3 balls in each run. Ttrain = 20.

Supervision R2 R4 C C+T R2 (3 balls) C+T→ R2

Obstacle 2.7±4.4 6.3±7.8 3.5±4.9 2.6±3.9 2.6±3.9 7.1±9.2

None 3.8±4.7 7.4±7.3 5.3±5.2 4.0±5.2 3.9±3.5 7.6±8.9

Supervised obstacle regression. Table 3 compares our unsupervised method to using full obstacle
map supervision in order to predict the obstacle map mgt from the experiences E . For the unsupervised
system, the obstacle map is estimated as explained in the paragraph above. As expected, supervised
learning achieves a lower error, but the unsupervised method is still much better than the trivial
baseline of table 2. Finally, we observe that for network fine-tuned on C+T and evaluated back on R2
(C+T→R2 in Table 3) obstacle predictions results remain competitive with results on R2 only while
object appearance and backgrounds drastically changed in the new setting.

Multiple moving objects. We also test whether the system trained with a single moving object can
generalize to multiple ones. In table A.3 (see sup. mat.) we show that the network can simulate the
motion properly until balls collide, after which they merge (see videos in the sup. mat.). This indicates
that, just as physical laws, the rules learned by the model are local. We also train a model (scenario
R2) showing it from 1 to 3 balls in each run. This model is able not only to correctly handle ball
collisions, but is also able to generalize correctly to several more objects on the board. Furthermore,
as shown in table 3, this model still predicts correctly the obstacle masks from experiences, despite
the act that the latter are much more crowded.

6 CONCLUSIONS

We have demonstrated a system that can learn an intuitive model of physics in an unsupervised
manner. Differently from most prior works, our system is also able to learn on-the-fly and very
efficiently some physical parameters of new scenarios from a few experiences. Prediction results are
strong, competitive with fully-supervised models, and predictors generalize well over time space, and
an arbitrary number of moving objects. Our next challenge is to apply the system to more difficult
scenarios, including non-frontal views of the physical worlds. For this, we plan to learn a function to
summarize past experiences in a more general manner than the dynamic image could.
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A1 DATA GENERATION

In fig. A1 and fig. A2 we provide more details on the scene aspect. For solid background color, the
objects and background colours are sampled to be different. Every rectangular object have height and
width randomly sample in between 10 and 17 pixels. Custom object are loaded from template images
and randomly scaled from 1 to 2.

Figure A1: Dataset samples. Pairs of sample data from left to right: R2, C, C+T.

Figure A2: Additional material used for data generation. From left to right: color palette for solid
object/background color (R2,R4,C), texture used to increase background complexity in (C+T), set of
custom objects for (C) data generation.

A2 IMPLEMENTATION DETAILS

A2.1 NETWORK ARCHITECTURE

In fig. A3 we show the details of all the networks of our pipeline. The regression network men-
tionned in sec.5 is a simple 3 layers fully convolutional network with [3x3] kernel convolution and
intermediate channel of size 64.

A2.2 TRAINING DETAILS

In the overall loss l is:

`(t) = λI‖It − Ît‖2 + λx‖xt − η(It(R))‖2 + λp‖e(It)− e(Ît)‖2

When training without L2 we used λI = λx = 1. When finetuning with perceptual we weighted
the perceputal loss with coefficient λperc = 10 and the other losses with λI = λx = 0.01. Finally,
perceptual loss uses feature extracted from conv3 of VGG-16.

The Interaction Network baseline is a simple Interaction Network to which state we concatenated the
background feature extracted from a pre-trained VGG-16 network. The state propagator uses the last
4 states. The network is then trained over Ttrain = 40 time steps with Adam optimizer with learning
rate 10−4 and batch size 50. We found that 50 000 iterations were sufficient to reach convergence.

All experiments are run using single NVIDIA-GPU Titan X.

A2.3 EVALUATION DETAILS

To detect blob create a binary image by manually thresholding the intermediate heatmap xt and using
a simple Hough circle detector. Every threshold coefficient is hand picked for every model but kept
constant across scenarios and different data.

A3 ADDITIONAL RESULTS

In Table A1 we report two more results on one moving object prediction. (1) is an upper bound of
our system had full knowledge of {B,U} obstacle locations at training time. We simply replaced m
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Figure A3: Networks architecture detail. All the networks generally uses layer normalization η
and Φ are simple auto-encoder type architecture while Ψ shares similarity with U-Net.

Table A1: Predicting one moving object. Obstacle type is R2. The test board size is 64× 64 We
test the average prediction error at Ttest = 20, 60, 100 well above the duration Ttrain = 20 observed
during training. Position errors were normalized by the board size diagonal.

Ttest = Ttrain = 20 Ttest = 3× Ttrain Ttest = 5× Ttrain

No. Sup. Train
loss # obj. Vid. L2 Pos. err. # obj. Vid. L2 Pos. err. # obj. Vid. L2 Pos. err.

(1) Oracle Perc. 1.0±0.1 2.5±2.9 .013±.012 1 .0±0.1 5.8±4.4 .095±.095 1.0±0.3 6.2±4.5 .201±.136
(2) None Perc. 1.0±0.1 3.2±3.1 .030±.068 1.0±0.2 5.5±4.0 .136±.151 0.9±0.4 5.5±4.0 .262±.180

with the binary map of B obstacles and a with the binary map of U obstacles where 1s indicate the
presence of the obstacle type. In this scenario we note although that we obtain an upper bound of
the results introduced in Table 1, our method still remains competitive with this upper bound. (2)
reports results of the network trained on C+T and evaluated back on R2. As in Table 3 we see that
the network still manage to make accurate predictions. Table A2 is an extension of Table 2 in the
paper for the supervised model and Table A3 introduces results on multiple balls prediction.
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Table A2: Importance of experience. For the supervised model, we report the trajectory prediction
error at T = 40 (rows 1-3) and the obstacle map prediction error (rows 4-6) for different obstacle
types. The number of runs N in the experiences is varied from 0 to 50. Position errors were
normalized by the board size diagonal. Ttrain = 20.

No Err. Obst. N = 0 1 2 5 7 10 20 50

(1) Pos. R2 1.81±1.41 .94±.975 .53±.81 .15±0.41 .08±.21 .07±.16 .10±.24 .19±.38
(2) Pos. R4 3.28±1.94 2.22±1.67 1.56±1.40 .63±.84 .43±.68 .37±.60 .44±.61 .83±.97
(3) Pos. C 1.05±0.91 .58±.61 .36±.49 .15±.29 .13±.26 .12±.22 .16±.26 .24±.36

(4) Obs. R2 4.1±4.0 3.6±3.8 3.1±3.4 2.3±2.5 2.3±2.4 2.3±2.4 2.3±2.7 2.6±3.0
(5) Obs. R4 6.1±2.2 4.1±3.8 3.1±3.4 2.8±3.3 2.7±3.1 2.6±3.0 2.7±2.9 3.3±3.6
(6) Obs. C 3.9±3.9 3.3±3.7 2.8±3.1 2.4±2.7 2.4±2.8 2.3±2.6 2.4±2.6 2.5±2.9

Table A3: Predicting multiple moving object. Obstacle type is R2, all network were trained on
the fully unsupervised with perceptual loss. Num. is the maxmium number of balls per run during
training. For instance Num=3 means that every runs sampled contained one to three balls. The
test board is size 64× 64 We test the average prediction error at Ttest = 20, 60, 100 well above the
duration Ttrain = 20 observed during training.

Ttest = Ttrain = 20 Ttest = 3× Ttrain Ttest = 5× Ttrain

Num. # obj. Vid. L2 # obj. Vid. L2 # obj. Vid. L2

3 Balls

1 2.6±0.8 6.5±5.2 1.7±0.9 8.5±5.9 1.6±0.8 8.5±6.0

3 3.1±0.6 4.6±4.8 2.9±0.8 10.4±7.6 2.9±0.9 11.0±8.0

5 Balls

1 3.3±1.0 8.9±6.6 2.0±1.0 10.2±7.4 3.1±0.6 1.8±.775

3 5.5±0.7 6.6±6.2 5.1±1.1 13.0±9.5 5.1±1.0 13.5±10.0
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