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ABSTRACT

Universal feature extractors, such as BERT for natural language processing and
VGG for computer vision, have become effective methods for improving deep
learning models without requiring more labeled data. A common paradigm is to
pre-train a feature extractor on large amounts of data then fine-tune it as part of
a deep learning model on some downstream task (i.e. transfer learning). While
effective, feature extractors like BERT may be prohibitively large for some de-
ployment scenarios. We explore weight pruning for BERT and ask: how does
compression during pre-training affect transfer learning? We find that pruning af-
fects transfer learning in three broad regimes. Low levels of pruning (30-40%) do
not affect pre-training loss or transfer to downstream tasks at all. Medium levels of
pruning increase the pre-training loss and prevent useful pre-training information
from being transferred to downstream tasks. High levels of pruning additionally
prevent models from fitting downstream datasets, leading to further degradation.
Finally, we observe that fine-tuning BERT on a specific task does not improve its
prunability. We conclude that BERT can be pruned once during pre-training rather
than separately for each task without affecting performance.

1 INTRODUCTION

Pre-trained feature extractors, such as BERT (Devlin et al., 2018) for natural language processing
and VGG (Simonyan & Zisserman, 2014) for computer vision, have become effective methods for
improving the performance of deep learning models. In the last year, models similar to BERT have
become state-of-the-art in many NLP tasks, including natural language inference (NLI), named
entity recognition (NER), sentiment analysis, etc. These models follow a pre-training paradigm:
they are trained on a large amount of unlabeled text via a task that resembles language modeling
(Yang et al., 2019; Chan et al., 2019) and are then fine-tuned on a smaller amount of downstream
data, which is labeled for a specific task. Pre-trained models usually achieve higher accuracy than
any model trained on downstream data alone.

The pre-training paradigm, while effective, still has some problems. While some claim that lan-
guage model pre-training is a “universal language learning task” (Radford et al., 2019), there is no
theoretical justification for this, only empirical evidence. Second, due to the size of the pre-training
dataset, BERT models tend to be slow and require impractically large amounts of GPU memory.
BERT-Large can only be used with access to a Google TPU, and BERT-Base requires some opti-
mization tricks such as gradient checkpointing or gradient accumulation to be trained effectively on
consumer hardware (Sohoni et al., 2019). Training BERT-Base from scratch costs ∼$7k and emits
∼1438 pounds of CO2 (Strubell et al., 2019).

Model compression (Bucila et al., 2006), which attempts to shrink a model without losing accuracy,
is a viable approach to decreasing GPU usage. It might also be used to trade accuracy for mem-
ory in some low-resource cases, such as deploying to smartphones for real-time prediction. The
main questions this paper attempts to answer are: Does compressing BERT impede it’s ability to
transfer to new tasks? And does fine-tuning make BERT more or less compressible?

To explore these questions, we compressed English BERT using magnitude weight pruning (Han
et al., 2015) and observed the results on transfer learning to the General Language Understanding
Evaluation (GLUE) benchmark (Wang et al., 2019), a diverse set of natural language understanding
tasks including sentiment analysis, NLI, and textual similarity evaluation. We chose magnitude
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weight pruning, which compresses models by removing weights close to 0, because it is one of the
most fine-grained and effective compression methods and because there are many interesting ways
to view pruning, which we explore in the next section.

Our findings are as follows: Low levels of pruning (30-40%) do not increase pre-training loss or
affect transfer to downstream tasks at all. Medium levels of pruning increase the pre-training loss
and prevent useful pre-training information from being transferred to downstream tasks. This infor-
mation is not equally useful to each task; tasks degrade linearly with pre-train loss, but at different
rates. High levels of pruning, depending on the size of the downstream dataset, may additionally
degrade performance by preventing models from fitting downstream datasets. Finally, we observe
that fine-tuning BERT on a specific task does not improve its prunability or change the order of
pruning by a meaningful amount.

To our knowledge, prior work had not shown whether BERT could be compressed in a task-generic
way, keeping the benefits of pre-training while avoiding costly experimentation associated with
compressing and re-training BERT multiple times. Nor had it shown whether BERT could be over-
pruned for a memory / accuracy trade-off for deployment to low-resource devices. In this work, we
conclude that BERT can be pruned prior to distribution without affecting it’s universality, and that
BERT may be over-pruned during pre-training for a reasonable accuracy trade-off for certain tasks.

2 PRUNING: COMPRESSION, REGULARIZATION, ARCHITECTURE SEARCH

Neural network pruning involves examining a trained network and removing parts deemed to be
unnecessary by some heuristic saliency criterion. One might remove weights, neurons, layers, chan-
nels, attention heads, etc. depending on which heuristic is used. Below, we describe three different
lenses through which we might interpret pruning.

Compression Pruning a neural network decreases the number of parameters required to specify the
model, which decreases the disk space required to store it. This allows large models to be deployed
on edge computing devices like smartphones. Pruning can also increase inference speed if whole
neurons or convolutional channels are pruned, which reduces GPU usage.1

Regularization Pruning a neural network also regularizes it. We might consider pruning to be a form
of permanent dropout (Molchanov et al., 2017) or a heuristic-based L0 regularizer (Louizos et al.,
2018). Through this lens, pruning decreases the complexity of the network and therefore narrows the
range of possible functions it can express.2 The main difference between L0 or L1 regularization and
weight pruning is that the former induce sparsity via a penalty on the loss function, which is learned
during gradient descent via stochastic relaxation. It’s not clear which approach is more principled
or preferred. (Gale et al., 2019)

Sparse Architecture Search Finally, we can view neural network pruning as a type of sparse ar-
chitecture search. Liu et al. (2019b) and Frankle & Carbin (2019) show that they can train carefully
re-initialized pruned architectures to similar performance levels as dense networks. Under this lens,
stochastic gradient descent (SGD) induces network sparsity, and pruning simply makes that spar-
sity explicit. These sparse architectures, along with the appropriate initializations, are sometimes
referred to as lottery tickets.3

2.1 MAGNITUDE WEIGHT PRUNING

In this work, we focus on weight magnitude pruning because it is one of the most fine-grained and
effective pruning methods. It also has a compelling saliency criterion (Han et al., 2015): if a weight
is close to zero, then its input is effectively ignored, which means the weight can be pruned.

1If weights are pruned, however, the weight matrices become sparse. Sparse matrix multiplication is difficult
to optimize on current GPU architectures (Han et al., 2016), although progress is being made.

2Interestingly, recent work used compression not to induce simplicity but to measure it (Arora et al., 2018).
3Sparse networks are difficult to train from scratch (Evci et al., 2019). However, Dettmers & Zettlemoyer

(2019) and Mostafa & Wang (2019) present methods to do this by allowing SGD to search over the space
of possible subnetworks. Our findings suggest that these methods might be used to train sparse BERT from
scratch.
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Magnitude weight pruning itself is a simple procedure: 1. Pick a target percentage of weights to
be pruned, say 50%. 2. Calculate a threshold such that 50% of weight magnitudes are under that
threshold. 3. Remove those weights. 4. Continue training the network to recover any lost accuracy.
5. Optionally, return to step 1 and increase the percentage of weights pruned. This procedure is
conveniently implemented in a Tensorflow (Abadi et al., 2016) package4, which we use (Zhu &
Gupta, 2017).

Calculating a threshold and pruning can be done for all network parameters holistically (global prun-
ing) or for each weight matrix individually (matrix-local pruning). Both methods will prune to the
same sparsity, but in global pruning the sparsity might be unevenly distributed across weight matri-
ces. We use matrix-local pruning because it is more popular in the community.5 For information on
other pruning techniques, we recommend Gale et al. (2019) and Liu et al. (2019b).

3 EXPERIMENTAL SETUP

BERT is a large Transformer encoder; for background, we refer readers to Vaswani et al. (2017) or
one of these excellent tutorials (Alammar, 2018; Klein et al., 2017).

3.1 IMPLEMENTING BERT PRUNING

BERT-Base consists of 12 encoder layers, each of which contains 6 prunable matrices: 4 for the
multi-headed self-attention and 2 for the layer’s output feed-forward network.

Recall that self-attention first projects layer inputs into key, query, and value embeddings via linear
projections. While there is a separate key, query, and value projection matrix for each attention head,
implementations typically stack matrices from each attention head, resulting in only 3 parameter
matrices: one for key projections, one for value projections, and one for query projections. We
prune each of these matrices separately, calculating a threshold for each. We also prune the linear
output projection, which combines outputs from each attention head into a single embedding.6

We prune word embeddings in the same way we prune feed-foward networks and self-attention
parameters.7 The justification is similar: if a word embedding value is close to zero, we can assume
it’s zero and store the rest in a sparse matrix. This is useful because token / subword embeddings
tend to account for a large portion of a natural language model’s memory. In BERT-Base specifically,
the embeddings account for ∼21% of the model’s memory.

Our experimental code for pruning BERT, based on the public BERT repository, is available here.8

3.2 PRUNING DURING PRE-TRAINING

We perform weight magnitude pruning on a pre-trained BERT-Base model.9 We select sparsities
from 0% to 90% in increments of 10% and gradually prune BERT to this sparsity over the first 10k
steps of training. We continue pre-training on English Wikipedia and BookCorpus for another 90k
steps to regain any lost accuracy.10 The resulting pre-training losses are shown in Table 1.

We then fine-tune these pruned models on tasks from the General Language Understanding Evalua-
tion (GLUE) benchmark, which is a standard set of 9 tasks that include sentiment analysis, natural

4https://www.tensorflow.org/api docs/python/tf/contrib/model pruning
5The weights in almost every matrix in BERT-Base are approximately normally distributed with mean 0

and variance between 0.03 and 0.05 (Table A). This similarity may imply that global pruning would perform
similarly to matrix-local pruning.

6We could have calculated a single threshold for the entire self-attention layer or for each attention head
separately. Similar to global pruning vs. matrix-local pruning, it’s not clear which one should be preferred.

7Interestingly, pruning word embeddings is slightly more interpretable that pruning other matrices. See
Figure 9 for a heatmap of embedding magnitudes, which shows that shorter subwords tend to be pruned more
than longer subwords and that certain dimensions are almost never pruned in any subword.

8URL omitted for anonymity
9https://github.com/google-research/bert

10 Evaluation curves leveled out at 20k steps.
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language inference, etc. We avoid WNLI, which is known to be problematic.11 We also avoid tasks
with less than 5k training examples because the results tend to be noisy (RTE, MRPC, STS-B). We
fine-tune a separate model on each of the remaining 5 GLUE tasks for 3 epochs and try 4 learn-
ing rates: [2, 3, 4, 5] × 10−5. The best evaluation accuracies are averaged and plotted in Figure 1.
Individual task results are in Table 1.

BERT can be used as a static feature-extractor or as a pre-trained model which is fine-tuned end-to-
end. In all experiments, we fine-tune weights in all layers of BERT on downstream tasks.

3.3 DISENTANGLING COMPLEXITY RESTRICTION AND INFORMATION DELETION

Pruning involves two steps: it deletes the information stored in a weight by setting it to 0 and then
regularizes the model by preventing that weight from changing during further training.

To disentangle these two effects (model complexity restriction and information deletion), we repeat
the experiments from Section 3.2 with an identical pre-training setup, but instead of pruning we
simply set the weights to 0 and allow them to vary during downstream training. This deletes the
pre-training information associated with the weight but does not prevent the model from fitting
downstream datasets by keeping the weight at zero during downstream training. We also fine-tune
on downstream tasks until training loss becomes comparable to models with no pruning. We trained
most models for 13 epochs rather than 3. Models with 70-90% information deletion required 15
epochs to fit the training data. The results are also included in Figure 1 and Table 1.

3.4 PRUNING AFTER DOWNSTREAM FINE-TUNING

We might expect that BERT would be more compressible after downstream fine-tuning. Intuitively,
the information needed for downstream tasks is a subset of the information learned during pre-
training; some tasks require more semantic information than syntactic, and vice-versa. We should
be able to discard the “extra” information and only keep what we need for, say, parsing (Li & Eisner,
2019).

For magnitude weight pruning specifically, we might expect downstream training to change the
distribution of weights in the parameter matrices. This, in turn, changes the sort-order of the absolute
values of those weights, which changes the order that we prune them in. This new pruning order,
hypothetically, would be less degrading to our specific downstream task.

To test this, we fine-tuned pre-trained BERT-Base on downstream data for 3 epochs. We then pruned
at various sparsity levels and continued training for 5 more epochs (7 for 80/90% sparsity), at which
point the training losses became comparable to those of models pruned during pre-training. We
repeat this for learning rates in [2, 3, 4, 5] × 10−5 and show the results with the best development
accuracy in Figure 1 / Table 1. We also measure the difference in which weights are selected for
pruning during pre-training vs. downstream fine-tuning and plot the results in Figure 3.

4 PRUNING REGIMES

4.1 30-40% OF WEIGHTS ARE NOT USEFUL

Figure 1 shows that the first 30-40% of weights pruned by magnitude weight pruning do not impact
pre-training loss or inference on any downstream task. These weights can be pruned either before
or after fine-tuning. This makes sense from the perspective of pruning as sparse architecture search:
when we initialize BERT-Base, we initialize many possible subnetworks. SGD selects the best one
for pre-training and pushes the rest of the weights to 0. We can then prune those weights without
affecting the output of the network.12

11https://gluebenchmark.com/faq
12We know, however, that increasing the size of BERT to BERT-Large improves performance. This view

does not fully explain why even an obviously under-parameterized model should become sparse. This may be
caused by dropout, or it may be a general property of our training regime (SGD). Perhaps an extension of Tian
et al. (2019) to under-parameterized models would provide some insight.
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Figure 1: (Blue) The best GLUE dev accuracy and training losses for models pruned during pre-
training, averaged over 5 tasks. Also shown are models with information deletion during pre-training
(orange), models pruned after downstream fine-tuning (green), and models pruned randomly during
pre-training instead of by lowest magnitude (red). 30-40% of weights can be pruned using mag-
nitude weight pruning without decreasing dowsntream accuracy. Notice that information deletion
fits the training data better than un-pruned models at all sparsity levels but does not fully recover
evaluation accuracy. Also, models pruned after downstream fine-tuning have the same or worse
development accuracy, despite achieving lower training losses. Note: none of the pruned models
are overfitting because un-pruned models have the lowest training loss and the highest development
accuracy. While the results for individual tasks are in Table 1, each task does not vary much from
the average trend, with an exception discussed in Section 4.3.

Figure 2: (Left) Pre-training loss predicts information deletion GLUE accuracy linearly as sparsity
increases. We believe the slope of each line tells us how much a bit of BERT is worth to each task.
(CoLA at 90% is excluded from the line of best fit.) (Right) The cosine similarities of features
extracted for a subset of the pre-training development data before and after pruning. Features are
extracted from activations of all 12 layers of BERT and compared layer-wise to a model that has not
been pruned. As performance degrades, cosine similarities of features decreases.
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4.2 MEDIUM PRUNING LEVELS PREVENT INFORMATION TRANSFER

Past 40% pruning, performance starts to degrade. Pre-training loss increases as we prune weights
necessary for fitting the pre-training data (Table 1). Feature activations of the hidden layers start to
diverge from models with low levels of pruning (Figure 2).13 Downstream accuracy also begins to
degrade at this point.

Why does pruning at these levels hurt downstream performance? On one hand, pruning deletes pre-
training information by setting weights to 0, preventing the transfer of the useful inductive biases
learned during pre-training. On the other hand, pruning regularizes the model by keeping certain
weights at zero, which might prevent fitting downstream datasets.

Figure 1 and Table 1 show information deletion is the main cause of performance degradation
between 40 - 60% sparsity, since pruning and information deletion degrade models by the same
amount. Information deletion would not be a problem if pre-training and downstream datasets con-
tained similar information. However, pre-training is effective precisely because the pre-training
dataset is much larger than the labeled downstream dataset, which allows learning of more robust
representations.

We see that the main obstacle to compressing pre-trained models is maintaining the inductive bias of
the model learned during pre-training. Encoding this bias requires many more weights than fitting
downstream datasets, and it cannot be recovered due to a fundamental information gap between
pre-training and downstream datasets.14 The amount a model can be pruned is limited by the largest
dataset the model has been trained on: in this case, the pre-training dataset. Practitioners should be
aware of this; pruning may subtly harm downstream generalization without affecting training loss.

4.3 HIGH PRUNING LEVELS ALSO PREVENT FITTING DOWNSTREAM DATASETS

At 70% sparsity and above, models with information deletion recover some accuracy w.r.t. pruned
models, so complexity restriction is a secondary cause of performance degradation. However, these
models do not recover all evaluation accuracy, despite matching un-pruned model’s training loss.

Table 1 shows that on the MNLI and QQP tasks, which have the largest amount of training data,
information deletion performs much better than pruning. In contrast, models do not recover as well
on SST-2 and CoLA, which have less data. We believe this is because the larger datasets require
larger models to fit, so complexity restriction becomes an issue earlier.

We might be concerned that poorly performing models are over-fitting, since they have lower train-
ing losses than unpruned models. But the best performing information-deleted models have the
lowest training error of all, so overfitting seems unlikely.15

4.4 HOW MUCH IS A BIT OF BERT WORTH?

We’ve seen that over-pruning BERT deletes information useful for downstream tasks. Is this infor-
mation equally useful to all tasks? We might consider the pre-training loss as a proxy for how much
pre-training information we’ve deleted in total. Similarly, the performance of information-deletion
models is a proxy for how much of that information was useful for each task. Figure 2 shows that
the pre-training loss linearly predicts the effects of information deletion on downstream accuracy.

For every bit of information we delete from BERT, it appears only a fraction is useful for CoLA,
and an even smaller fraction useful for QQP.16 This relationship should be taken into account when

13We believe this observation may point towards a more principled stopping criterion for pruning. Currently,
the only way to know how much to prune is by trial and (dev-set) error. Predictors of performance degradation
while pruning might help us decide which level of sparsity is appropriate for a given trained network without
trying many at once.

14We might consider finding a lottery ticket for BERT, which we would expect to fit the GLUE training data
just as well as pre-trained BERT (Morcos et al., 2019; Yu et al., 2019). However, we predict that the lottery-
ticket will not reach similar generalization levels unless the lottery ticket encodes enough information to close
the information gap.

15We are reminded of the double-descent risk curve proposed by Belkin et al. (2018).
16We can’t quantify this now, but perhaps compression will help quantify the “universality” of the LM task.
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Figure 3: (Left) The measured difference in pruning masks between models pruned during pre-
training and models pruned during downstream fine-tuning. As predicted, the differences are less
than 6%, since fine-tuning only changes the magnitude sorting order of weights locally, not globally.
(Right) The average GLUE development accuracy and pruning mask difference for models trained
on downstream datasets before pruning 60% at learning rate 5e-5. After pruning, models are trained
for an additional 2 epochs to regain accuracy. We see that training between 3 and 12 epochs before
pruning does not change which weights are pruned or improve performance.

considering the memory / accuracy trade-off of over-pruning. Pruning an extra 30% of BERT’s
weights is worth only one accuracy point on QQP but 10 points on CoLA. It’s unclear, however,
whether this is because the pre-training task is less relevant to QQP or whether QQP simply has a
bigger dataset with more information content.17

5 DOWNSTREAM FINE-TUNING DOES NOT IMPROVE PRUNABILITY

Since pre-training information deletion plays a central role in performance degradation while over-
pruning, we might expect that downstream fine-tuning would improve prunability by making im-
portant weights more salient (increasing their magnitude). However, Figure 1 shows that models
pruned after downstream fine-tuning do not surpass the development accuracies of models pruned
during pre-training, despite achieving similar training losses. Figure 3 shows fine-tuning changes
which weights are pruned by less than 6%.

Why doesn’t fine-tuning change which weights are pruned much? Table 2 shows that the magnitude
sorting order of weights is mostly preserved; weights move on average 0-4% away from their starting
positions in the sort order. We also see that high magnitude weights are more stable than lower ones
(Figure 7).

Our experiments suggest that training on downstream data before pruning is too blunt an instrument
to improve prunability. Even so, we might consider simply training on the downstream tasks for
much longer, which would increase the difference in weights pruned. However, Figure 4 shows that
even after an epoch of downstream fine-tuning, weights quickly re-stabilize in a new sorting order,
meaning longer downstream training will have only a marginal effect on which weights are pruned.
Indeed, Figure 3 shows that the weights selected for 60% pruning quickly stabilize and evaluation
accuracy does not improve with more training before pruning.

6 RELATED WORK

Compressing BERT for Specific Tasks Section 5 showed that downstream fine-tuning does not
increase prunability. However, several alternative compression approaches have been proposed to
discard non-task-specific information. Li & Eisner (2019) used an information bottleneck to discard
non-syntactic information. Tang et al. (2019) used BERT as a knowledge distillation teacher to

17Hendrycks et al. (2019) suggest that pruning these weights might have a hidden cost: decreasing model
robustness.
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Figure 4: (Left) The average, min, and max percentage of individual attention heads pruned at each
sparsity level. We see at 60% sparsity, each attention head individually is pruned strictly between
55% and 65%. (Right) We compute the magnitude sorting order of each weight before and after
downstream fine-tuning. If a weight’s original position is 59 / 100 before fine-tuning and 63 / 100
after fine-tuning, then that weight moved 4% in the sorting order. After even an epoch of downstream
fine-tuning, weights quickly stabilize in a new sorting order which is not far from the original sorting
order. Variances level out similarly.

compress relevant information into smaller Bi-LSTMs, while Kuncoro et al. (2019) took a similar
distillation approach. While fine-tuning does not increase prunability, task-specific knowledge might
be extracted from BERT with other methods.

Attention Head Pruning Voita et al. (2019) previously showed redundancy in transformer models
by pruning entire attention heads. Michel et al. (2019) showed that after fine-tuning on MNLI,
up to 40% of attention heads can be pruned from BERT without affecting test accuracy. They
show redundancy in BERT after fine-tuning on a single downstream task; in contrast, our work
emphasizes the interplay between compression and transfer learning to many tasks, pruning both
before and after fine-tuning. Also, magnitude weight pruning allows us to additionally prune the
feed-foward networks and sub-word embeddings in BERT (not just self-attention), which account
for ∼72% of BERT’s total memory usage.

We suspect that attention head pruning and weight pruning remove different redundancies from
BERT. Figure 4 shows that weight pruning does not prune any specific attention head much more
than the pruning rate for the whole model. It is not clear, however, whether weight pruning and
recovery training makes attention heads less prunable by distributing functionality to unused heads.

7 CONCLUSION AND FUTURE WORK

We’ve shown that encoding BERT’s inductive bias requires many more weights than are required to
fit downstream data. Future work on compressing pre-trained models should focus on maintaining
that inductive bias and quantifying its relevance to various tasks during accuracy/memory trade-offs.

For magnitude weight pruning, we’ve shown that 30-40% of the weights do not encode any useful
inductive bias and can be discarded without affecting BERT’s universality. The relevance of the
rest of the weights vary from task to task, and fine-tuning on downstream tasks does not change the
nature of this trade-off by changing which weights are pruned. In future work, we will investigate
the factors that influence language modeling’s relevance to downstream tasks and how to improve
compression in a task-general way.

It’s reasonable to believe that these conclusions will generalize to other pre-trained language mod-
els such as Kermit (Chan et al., 2019), XLNet (Yang et al., 2019), GPT-2 (Radford et al., 2019),
RoBERTa (Liu et al., 2019a) or ELMO (Peters et al., 2018). All of these learn some variant of
language modeling, and most use Transformer architectures. While it remains to be shown in fu-
ture work, viewing pruning as architecture search implies these models will be prunable due to the
training dynamics inherent to neural networks.
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pher Ré. Low-memory neural network training: A technical report. CoRR, abs/1904.10631, 2019.
URL http://arxiv.org/abs/1904.10631.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep
learning in NLP. CoRR, abs/1906.02243, 2019. URL http://arxiv.org/abs/1906.
02243.

Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga Vechtomova, and Jimmy Lin. Distilling task-
specific knowledge from BERT into simple neural networks. CoRR, abs/1903.12136, 2019. URL
http://arxiv.org/abs/1903.12136.

10

https://doi.org/10.18653/v1/P17-4012
http://arxiv.org/abs/1906.06438
http://arxiv.org/abs/1906.06438
http://cs.jhu.edu/~jason/papers/#li-eisner-2019
http://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=rJlnB3C5Ym
https://openreview.net/forum?id=H1Y8hhg0b
https://openreview.net/forum?id=H1Y8hhg0b
http://dl.acm.org/citation.cfm?id=3305890.3305939
http://dl.acm.org/citation.cfm?id=3305890.3305939
https://openreview.net/forum?id=S1xBioR5KX
https://openreview.net/forum?id=S1xBioR5KX
http://arxiv.org/abs/1802.05365
http://arxiv.org/abs/1904.10631
http://arxiv.org/abs/1906.02243
http://arxiv.org/abs/1906.02243
http://arxiv.org/abs/1903.12136


Under review as a conference paper at ICLR 2020

Yuandong Tian, Tina Jiang, Qucheng Gong, and Ari S. Morcos. Luck matters: Understanding
training dynamics of deep relu networks. CoRR, abs/1905.13405, 2019. URL http://arxiv.
org/abs/1905.13405.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.
URL http://arxiv.org/abs/1706.03762.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, pp. 5797–5808, Florence,
Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1580. URL
https://www.aclweb.org/anthology/P19-1580.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=rJ4km2R5t7.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdinov, and Quoc V.
Le. Xlnet: Generalized autoregressive pretraining for language understanding. CoRR,
abs/1906.08237, 2019. URL http://arxiv.org/abs/1906.08237.

Haonan Yu, Sergey Edunov, Yuandong Tian, and Ari S. Morcos. Playing the lottery with rewards
and multiple languages: lottery tickets in RL and NLP. arXiv e-prints, art. arXiv:1906.02768, Jun
2019.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for
model compression. arXiv e-prints, art. arXiv:1710.01878, Oct 2017.

11

http://arxiv.org/abs/1905.13405
http://arxiv.org/abs/1905.13405
http://arxiv.org/abs/1706.03762
https://www.aclweb.org/anthology/P19-1580
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
http://arxiv.org/abs/1906.08237


Under review as a conference paper at ICLR 2020

A APPENDIX

Pruned Pre-train
Loss

MNLI
392k

QQP
363k

QNLI
108k

SST-2
67k

CoLA
8.5k AVG

0 1.82 83.1|0.25 90.5|0.10 91.1|0.12 92.1|0.06 79.1|0.26 87.2|15.7
10 1.82 83.3|0.21 90.4|0.10 91.0|0.12 91.6|0.07 79.4|0.30 87.2|16.0
20 1.83 83.3|0.24 90.5|0.11 91.1|0.11 91.6|0.05 79.1|0.30 87.1|16.0
30 1.86 83.3|0.23 90.2|0.12 90.7|0.12 91.9|0.06 79.5|0.31 87.1|16.9
40 1.93 83.0|0.25 90.1|0.12 90.4|0.12 91.5|0.06 78.4|0.23 86.7|15.6
50 2.03 82.6|0.27 89.8|0.13 90.2|0.13 90.9|0.07 77.4|0.30 86.2|18.0
60 2.25 81.8|0.32 89.4|0.16 89.3|0.16 91.4|0.07 75.9|0.44 85.6|23.0
70 2.62 79.5|0.40 88.6|0.18 88.4|0.21 90.1|0.10 72.7|0.47 83.9|27.1
80 3.44 75.9|0.49 86.9|0.24 85.3|0.29 88.1|0.12 69.1|0.61 81.1|34.8
90 5.83 64.8|0.76 81.1|0.36 71.7|0.52 80.3|0.25 69.1|0.61 73.4|49.8

Information Deletion
0 1.82 83.0|0.20 90.6|0.06 90.0|0.10 92.1|0.03 80.6|0.18 87.3|11.6

10 1.82 82.8|0.01 90.5|0.05 90.5|0.09 92.2|0.05 80.8|0.16 87.4|07.2
20 1.83 82.9|0.01 90.5|0.05 90.5|0.09 91.5|0.05 80.3|0.16 87.2|07.3
30 1.86 82.3|0.01 90.6|0.04 90.5|0.10 90.8|0.05 80.0|0.18 86.9|07.7
40 1.93 82.2|0.19 90.5|0.05 90.1|0.10 92.0|0.05 79.0|0.17 86.7|11.1
50 2.03 82.5|0.19 90.3|0.05 90.2|0.10 91.2|0.05 77.9|0.19 86.4|11.6
60 2.25 81.9|0.20 90.1|0.05 89.5|0.10 90.8|0.05 76.4|0.23 85.7|12.6
70 2.62 80.8|0.01 90.2|0.01 88.7|0.10 90.3|0.06 74.4|0.28 84.9|09.3
80 3.44 78.6|0.01 89.3|0.02 86.0|0.02 88.8|0.07 70.0|0.45 82.5|11.5
90 5.83 72.9|0.01 87.5|0.02 76.8|0.06 83.0|0.09 69.1|0.61 77.9|15.7

Pruned after Downstream Fine-tuning
0 - 82.6|0.15 90.6|0.06 90.1|0.10 92.1|0.04 78.7|0.25 86.8|12.0

10 - 82.9|0.19 90.6|0.06 90.3|0.10 91.6|0.05 79.0|0.11 86.9|10.3
20 - 82.7|0.15 90.6|0.07 90.2|0.07 92.0|0.04 79.0|0.22 86.9|10.7
30 - 82.7|0.23 90.4|0.07 89.7|0.07 91.6|0.04 78.5|0.23 86.6|12.8
40 - 82.7|0.25 90.5|0.11 89.9|0.12 91.7|0.05 78.8|0.17 86.7|13.9
50 - 82.6|0.19 90.3|0.08 89.7|0.11 90.8|0.06 78.0|0.22 86.3|13.0
60 - 81.8|0.22 90.2|0.10 89.3|0.12 90.6|0.06 76.1|0.31 85.6|16.4
70 - 80.5|0.30 89.4|0.14 86.2|0.19 88.2|0.07 69.5|0.58 82.7|25.8
80 - 73.7|0.53 87.8|0.12 80.4|0.21 86.4|0.07 69.1|0.59 79.5|30.5
90 - 58.7|0.86 82.5|0.26 65.2|0.52 81.5|0.16 69.1|0.61 71.4|47.9

Random Pruning
0 1.82 83.3|0.26 90.5|0.10 90.6|0.15 92.4|0.07 78.7|0.18 87.1|15.3

10 2.09 82.0|0.27 90.1|0.12 90.3|0.13 92.3|0.05 77.0|0.32 86.3|18.0
20 2.46 80.6|0.32 89.8|0.12 88.5|0.14 91.1|0.07 73.5|0.39 84.7|20.8
30 2.98 79.1|0.36 89.2|0.14 86.9|0.23 89.3|0.10 71.8|0.47 83.3|25.9
40 3.76 75.4|0.45 88.2|0.16 84.5|0.23 88.6|0.09 69.3|0.57 81.2|30.3
50 4.73 71.6|0.60 86.6|0.20 81.5|0.28 85.0|0.10 69.1|0.61 78.8|35.8
60 5.63 70.4|0.60 85.2|0.24 71.7|0.45 81.5|0.21 69.1|0.61 75.6|42.3
70 6.22 64.1|0.76 81.4|0.34 63.0|0.62 80.6|0.20 69.1|0.61 71.6|50.3
80 6.87 58.8|0.84 76.6|0.46 61.1|0.64 80.6|0.23 69.1|0.61 69.3|55.6
90 7.37 49.8|0.98 74.3|0.51 60.2|0.65 75.1|0.33 69.1|0.61 65.7|61.4

Table 1: Pre-training development losses and GLUE task development accuracies for various levels
of pruning. Each development accuracy is accompanied on its right by the achieved training loss,
evaluated on the entire training set. Averages are summarized in Figure 1. Pre-training losses are
omitted for models pruned after downstream fine-tuning because it is not clear how to measure their
performance on the pre-training task in a fair way.
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Figure 5: The sum of weights pruned at each sparsity level for one shot pruning of BERT. Given the
motivation for our saliency criterion, it seems strange that such a large magnitude of weights can be
pruned without decreasing accuracy.

Figure 6

LR MNLI QQP QNL SST-2 CoLA
2e-5 1.91 ± 1.81 1.82 ± 1.72 1.27 ± 1.22 1.06 ± 1.03 0.79 ± 0.77
3e-5 2.68 ± 2.51 2.56 ± 2.40 1.79 ± 1.69 1.54 ± 1.47 1.06 ± 1.03
4e-5 3.41 ± 3.18 3.30 ± 3.10 2.31 ± 2.19 1.99 ± 1.89 1.11 ± 1.09
5e-5 4.12 ± 3.83 4.02 ± 3.74 2.77 ± 2.62 2.38 ± 2.29 1.47 ± 1.43

Table 2: We compute the magnitude sorting order of each weight before and after downstream fine-
tuning. If a weight’s original position is 59 / 100 before fine-tuning and 63 / 100 after fine-tuning,
then that weight moved 4% in the sorting order. We then list the average movement of weights in
each model, along with the standard deviation. Sorting order changes mostly locally across tasks: a
weight moves, on average, 0-4% away from its starting position. As expected, larger datasets and
larger learning rates have more movement (per epoch). We also see that higher magnitude weights
are more stable than lower weights, see Figure 7.

Figure 7: We show how weight sort order movements are distributed during fine-tuning, given a
weight’s starting magnitude. We see that higher magnitude weights are more stable than lower
magnitude weights and do not move as much in the sort order. This plot is nearly identical for every
model and learning rate, so we only show it once.
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Figure 8: A heatmap of the weight magnitudes of the 12 horizontally stacked self-attention key
projection matrices for layer 1. A banding pattern can be seen: the highest values of the matrix tend
to cluster in certain attention heads. This pattern appears in most of the self-attention parameter
matrices, but it does not cause pruning to prune one head more than another. However, it may prove
to be a useful heuristic for attention head pruning, which would not require making many passes
over the training data.

Figure 9: A heatmap of the weight magnitudes of BERT’s subword embeddings. Interestingly,
pruning BERT embeddings are more interpretable; we can see shorter subwords (top rows) have
smaller magnitude values and thus will be pruned earlier than other subword embeddings.
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Weight Matrix Weight Mean Weight STD
embeddings word embeddings -0.0282 0.042

layer 0 attention output FC -0.0000 0.029
layer 0 self attn key 0.0000 0.043

layer 0 self attn query 0.0000 0.043
layer 0 self attn value -0.0000 0.029

layer 0 intermediate FC -0.0000 0.037
layer 0 output FC -0.0012 0.036

layer 1 attention output FC 0.0001 0.028
layer 1 self attn key 0.0000 0.043

layer 1 self attn query -0.0003 0.043
layer 1 self attn value -0.0000 0.029

layer 1 intermediate FC 0.0001 0.039
layer 1 output FC -0.0014 0.038

layer 10 attention output FC -0.0000 0.033
layer 10 self attn key -0.0000 0.046

layer 10 self attn query 0.0002 0.046
layer 10 self attn value -0.0000 0.036

layer 10 intermediate FC 0.0000 0.039
layer 10 output FC -0.0011 0.038

layer 11 attention output FC -0.0000 0.037
layer 11 self attn key 0.0002 0.044

layer 11 self attn query -0.0001 0.045
layer 11 self attn value -0.0000 0.039

layer 11 intermediate FC 0.0004 0.039
layer 11 output FC -0.0008 0.036

layer 2 attention output FC 0.0000 0.027
layer 2 self attn key 0.0000 0.047

layer 2 self attn query 0.0000 0.048
layer 2 self attn value -0.0000 0.028

layer 2 intermediate FC 0.0001 0.040
layer 2 output FC -0.0015 0.038

layer 3 attention output FC 0.0001 0.029
layer 3 self attn key 0.0000 0.043

layer 3 self attn query 0.0003 0.043
layer 3 self attn value -0.0001 0.031

layer 3 intermediate FC -0.0001 0.040
layer 3 output FC -0.0014 0.039

layer 4 attention output FC 0.0000 0.033
layer 4 self attn key 0.0000 0.042

layer 4 self attn query -0.0001 0.042
layer 4 self attn value 0.0001 0.035

layer 4 intermediate FC 0.0001 0.041
layer 4 output FC -0.0014 0.040

layer 5 attention output FC -0.0000 0.033
layer 5 self attn key -0.0001 0.043

layer 5 self attn query -0.0000 0.043
layer 5 self attn value -0.0000 0.035

layer 5 intermediate FC 0.0000 0.041
layer 5 output FC -0.0014 0.039
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layer 6 attention output FC 0.0001 0.032
layer 6 self attn key -0.0000 0.043

layer 6 self attn query 0.0001 0.043
layer 6 self attn value 0.0000 0.034

layer 6 intermediate FC -0.0000 0.041
layer 6 output FC -0.0014 0.039

layer 7 attention output FC 0.0000 0.032
layer 7 self attn key -0.0000 0.044

layer 7 self attn query -0.0000 0.044
layer 7 self attn value 0.0001 0.033

layer 7 intermediate FC 0.0003 0.039
layer 7 output FC -0.0013 0.038

layer 8 attention output FC 0.0000 0.034
layer 8 self attn key -0.0000 0.044

layer 8 self attn query 0.0001 0.044
layer 8 self attn value 0.0000 0.035

layer 8 intermediate FC 0.0004 0.039
layer 8 output FC -0.0013 0.037

layer 9 attention output FC 0.0001 0.033
layer 9 self attn key 0.0000 0.046

layer 9 self attn query -0.0001 0.046
layer 9 self attn value 0.0000 0.035

layer 9 intermediate FC 0.0005 0.040
layer 9 output FC -0.0012 0.039

pooler FC 0.0000 0.029

Table 3: The values of BERT’s weights are normally distributed in each weight matrix. The means
and variances are listed for each.
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