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ABSTRACT

Recent studies show that convolutional neural networks (CNNs) are vulnerable
under various settings, including adversarial examples, distribution shifting and
backdoor attacks. Motivated by the findings that human visual system pays more
attention to global structure (e.g., shape) for recognition while CNNs are bi-
ased towards local texture features in images, we propose a unified framework
EdgeGANRob based on robust edge features to improve the robustness of CNNs
on multiple tasks, which first explicitly extracts shape/structure features from a
given image and then reconstructs a new image by refilling the texture informa-
tion with a trained generative adversarial network (GAN). In addition, to reduce
the sensitivity of edge detection algorithm to adversarial perturbation, we propose
a robust edge detection approach Robust Canny based on the vanilla Canny al-
gorithm. To gain more insights, we also compare EdgeGANRob with its sim-
plified backbone procedure EdgeNetRob, which performs learning tasks di-
rectly on the extracted robust edge features. We find that EdgeNetRob can help
boost model robustness significantly but at the cost of the clean model accuracy.
EdgeGANRob, on the other hand, is able to improve clean model accuracy com-
pared with EdgeNetRob and without losing the robustness benefits introduced
by EdgeNetRob. Extensive experiments show that EdgeGANRob is resilient in
different learning tasks under diverse settings.

1 INTRODUCTION

Convolutional neural networks (CNNs) have been studied extensively (Goodfellow et al., 2016), and
have achieved state-of-the-art performance in many learning tasks (He et al., 2016; Zhu et al., 2017).
However, recent works have shown that CNNs are vulnerable to adversarial examples (Carlini and
Wagner, 2017; Goodfellow et al., 2014b; Szegedy et al., 2013), where imperceptible perturbation can
be added to the test data to tamper the predictions. Different from adversarial examples where test
data is manipulated, an orthogonal setting: data poisoning or backdoor attacks where training data
is manipulated to reduce model’s generalization accuracy and achieve targeted poisoning attack (Li
et al., 2016; Chen et al., 2017b). In addition, recent studies show that CNNs tend to learn surface
statistical regularities instead of high level abstraction, leading it fails to generalize to the superficial
pattern transformation (radial kernel, random kernel (Jo and Bengio, 2017a; Wang et al., 2019a;b).
We refer to this problem as model’s robustness under distribution shifting. How to improve the
general robustness of DNNs under these settings remains unsolved.

To improve the robustness of CNNs, recent studies explore the underlying cause of their vulnerabil-
ity. For example, Ilyas et al. (2019) attributes the existence of adversarial examples to the existence
of non-robust but highly-predictive features. They suggest to train a classifier only on “robust fea-
tures” which contain the necessary information for recognition and are insensitive to small pertur-
bations. In addition, it is shown that human recognition relies mainly on global object shapes rather
than local patterns (e.t. textures), while CNNs are more biased towards the latter (Baker et al., 2018;
Geirhos et al., 2019). For instance, Geirhos et al. (2019) creates a texture-shape cue conflict, such as
a cat shape with elephant texture, and feeds it to an Imagenet trained CNN and huamn respectively.
While Human can still recognize it as a cat, CNN wrongly predicts it as an elephant. Therefore, the
bias toward local features potentially contributes to CNN’s vulnerability to adversarial examples,
distribution shifting and patterns of backdoor attacks. Particularly, previous researcher also shows
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Figure 1: Structure of the proposed pipeline. EdgeNetRob feeds the output of edge detection to
the classifier to produce robust predictions, while EdgeGANRob refill the edge image with texture

information to reconstruct a new instance for predictions.

that the shape of objects is the most important cue for human object recognition (Landau et al.,
1988).

Given the above evidence, a natural question emerges: Can we improve the robustness of CNNs by
making it rely more on global shape structure? To answer this question, we need to formalize the
notion of global shape structure first. We propose to consider a specific type of shape representation:
edges (image points that have sharp change in brightness). Using edges comes with two benefits: 1)
it is an effective device for modelling shape; 2) edges are easy to be captured in images, with many
sophisticated algorithms (Canny, 1986; Xie and Tu, 2015; Liu et al., 2017) available.

More specifically, this paper explores a new approach EdgeGANRob to improve the robustness of
the CNNs to adversarial attacks,distribution shifting and backdoor attacks by leveraging struc-
tural information in images. The unified framework is shown in Figure 1. As illustrated, a sim-
plified version of EdgeGANRob is a two-stage procedure named EdgeNetRob, which extracts
the structural information by detecting edges and then trains the classifier on the extracted edges.
As a consequence, EdgeNetRob forces the CNNs to make prediction solely based on shape in-
formation, rather than texture/color, thus eliminating the texture bias (Geirhos et al., 2019). Our
results show that EdgeNetRob can improve CNNs’ robustness. However, there are still two
challenges: (i) the direct differentiable edge detection algorithms are also vulnerable to attacks,
which may lead to low robustness against sophisticated adaptive attackers. To handle this prob-
lem, we propose a robust edge detection algorithm, Robust Canny. Using Robust Canny is able to
EdgeNetRob dramatically improve the robustness of EdgeGANRob. As a result, this combined
method outperforms the adversarial retraining based defense method (Madry et al., 2018). (ii). Al-
though EdgeNetRob improves the CNNs’ robustness, it decreases the clean accuracy of CNNs
due to the missing texture/color information. This motivates the development of EdgeGANRob,
which embeds a generative model to refill the texture/colors based on the edge images before
they are fed into the classifier. Please find more visualization results on the anonymous website:
https://sites.google.com/view/edgenetrob.

The main contributions of this paper include: (i) We propose a unified framework EdgeGANRob
to improve the robustness of CNNs against multiple tasks simultaneously, which explicitly extracts
edge/structure information from input images and then reconstructs the original images by refilling
the textural information with GAN. (ii) To remain robust against sophisticated adaptive evasion at-
tacks, in which attackers have access to the defense algorithm, we propose a robust edge detection
approach Robust Canny based on the vanilla Canny algorithm to reduce the sensitivity of edge detec-
tor to adversarial perturbation. (iii) To further demonstrate the effectiveness of the inpainting GAN
in EdgeGANRob, we also evaluate its simplified backbone procedure EdgeNetRob by perform-
ing learning tasks directly on the extracted robust edge features. To justify the above contributions,
we conduct thorough evaluation on EdgeNetRob and EdgeGANRob in three tasks: adversarial
attacks, distribution shifting and backdoor attacks, where significant improvements are achieved.

2 RELATED WORK

Adversarial robustness A wide range of defense methods against adversarial examples have been
proposed, among which many (Liao et al., 2018; Song et al., 2018) are shown to be not robust
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against adaptive attacks (Athalye et al., 2018). The state-of-the-art defense methods are based on
adversarial training (Madry et al., 2018). Athalye et al. (2018) identified gradient obfuscation as
a common pitfall for defense methods, thus suggested that defense methods should be evaluated
against customized white-box attacks. Carlini et al. (2019) suggested that defense methods should
be evaluated against strong adaptive attacks.

Distribution shifting Compared to adversarial examples, distribution shifting (Recht et al., 2018) is
more common and general in real-world applications. Jo and Bengio (2017b) shows that CNNs have
a tendency to learn the superficial statistical cues. Recently, Wang et al. (2019a) proposes a method
to robustify CNNs by penalizing the predictive power of the local representations and mitigating
the tendency of fitting superficial statistical cues by evaluating on four patterns, including greyscale,
negcolor, radial kernel and random kernel. Hendrycks and Dietterich (2019) proposes benchmark
datasets for evaluating model robustness under common perturbations.

Backdoor attack Backdoor attack (Chen et al., 2017a; Gu et al., 2017) is a type of poisoning at-
tack (Shafahi et al., 2018) that works by injecting a pattern into training data. As a result, the trained
models will predict a specific target class when certain pattern is injected into test data. Tran et al.
(2018) has proposed a procedure to detect poisoned training data by using tools from robust statis-
tics. Liu et al. (2018) proposes an approach to protect models from backdoor attacks by using neuron
pruning.

Robust visual features. Recent work has highlighted a connection between recognition robustness
and robust features. For image recognition, Geirhos et al. (2019); Baker et al. (2018) shows that
CNNs rely more on textures than global shape structure, while humans rely more on shape structure
than detailed texture. Itazuri et al. (2019) uses visualization methods and finds that adversarially
robust models tend to capture global structure of the objects. Ilyas et al. (2019) argues that there
exists non-robust features in natural images which are highly predictive but not interpretable by
human. They showed that CNNs can obtain robustness by learning from images which contain only
robust features. However, they did not directly identify which features are robust features. In this
work, we propose explicitly to use edge as a robust feature.

3 METHODOLOGY

We introduce a new classification pipeline based on robust edge features, which we denote as
EdgeGANRob. Our method first extracts edge/structure features from a given image and then
reconstructs the original images by refilling the texture information with a trained generative ad-
versarial network (GAN). The newly generated image is then fed into a classifier. In this section, we
first describe a simplified backbone procedure of EdgeGANRob named EdgeNetRob, then intro-
duce Robust Canny and inpainting GAN. Last, we describe three settings under which robustness is
evaluated.

3.1 EDGENETROB : A SIMPLIFIED BACKBONE OF EDGEGANROB

As a simplified backbone of EdgeGANRob, EdgeNetRob consists of two stages: First, we exploit
an edge detection method to extract edge maps from an image, and then a standard image classifier
fθ(·) is trained on the extracted edge maps. Formally, denote the edge extractor function as e(·), the
EdgeNetRob pipeline aims to solve the following problem:

min
θ

E(x,y)∼D [L (fθ (e(x)) , y)] (1)

where D represents the underlying data distribution and L denotes the loss function (e.g., cross-
entropy loss). EdgeNetRob forces the decision of CNN to be solely based on edges, thus making
it less sensitive to local textures. Since original images are transformed into edge maps, even if a
pre-trained classifier on the original training data is available, we still need to train the edge classifier.

Despite the simplicity of EdgeNetRob, it degrades the performance of CNNs over clean test
data considering that the texture/color information is missing. This motivates us to develop
EdgeGANRob which embeds a generative model to refill the texture/colors of the edge images.
Because EdgeGANRob fills edge maps with texture/colors, which makes it more likely to achieve
higher clean accuracy.
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The robustness of such classification system that builds upon edges depends highly on the used edge
detector, as many existing edge detection algorithms are also vulnerable to attacks which may lead to
low accuracy of the recognition task. This motivates us to propose a robust edge detection algorithm
named Robust Canny in the next section.

3.2 ROBUST EDGE DETECTION

We now describe a robust edge detection method. Note that most neural network based edge de-
tectors are non-robust. For example, Cosgrove and Yuille (2019) finds that neural network based
edge detectors like HED (Xie and Tu, 2015) can fail easily when facing adversarial perturbation. In
contrast, some traditional edge detection methods like Canny (Canny, 1986) is intrinsically robust
since they output binary edge maps. However, as illustrated in Figure 2 (first line), when adversarial
perturbation is added, the output of Canny edge detector can become noisy. We propose to improve
the robustness of vanilla Canny by truncating the noisy pixels in its intermediate stages. We refer to
this modified version of Canny edge detector as Robust Canny.

Figure 2: Visualization of intermediate stages of Vanilla Canny (Upper) and Robust Canny (Lower)
on an image randomly sampled from Fashion MNIST. Results for clean images (Left) and adversarial
images (Right) are presented.

The 6 stages of our proposed Robust Canny include: (1)Noise reduction: A Gaussian filter is applied
to smooth the image. (2)Gradient computation: We apply the Sobel operator (Kanopoulos et al.,
1988) to compute the gradient magnitude and direction at each pixel from the smoothed images.
(3)Noise masking: We reduce the noise in the presence of adversarial perturbations by thresholding
the gradient magnitudes by a level α. (4)Non-maximum suppression (NMS): An edge thinning step
is taken to deblur the output of the Sobel operator. Gradient magnitudes that are not at a maximum
along the direction of the gradient are suppressed (set to zero). (5)Double threshold: Using a lower
threshold and a higher threshold (θl, θh) for the gradient magnitude after NMS, pixels are mapped
to 3 levels: strong, weak, and non-edge pixels, (6)Edge tracking by hysteresis: Edge pixels are
detected by finding strong pixels, or weak pixels that are connected to other strong pixels. Note
that we have modified the vanilla Canny algorithm by adding a noise masking stage after computing
the image gradients. Later in Figure 2, we show that the gradient computation stage is sensitive
to input perturbations. Thus, we set all gradient magnitudes lower than a threshold α to zero to
mitigate the perturbation noise. By adding a truncation operation, it is expected that adversarial
noise on the gradient map with small magnitude will be reduced in early stages without affecting
the quality of final edge maps. In addition to the masking operation, we find that the parameters of
Canny (e.g. standard deviation of gaussian filter σ, thresholds θl, θh) also affect the robustness level.
Specifically, we notice that larger σ and higher thresholds θl, θh result in better robustness due to the
stronger smoothing and pruning effects. This however comes at the cost of clean accuracy as larger
σ leads to blurrier images and higher θl, θh may eliminate useful information in the output edges.
To obtain a robust edge detector, we should carefully choose its parameters (e.g., σ, θl, θh). More
details are provided in the experiment section.

3.3 INPAINTING GAN

In this section, we describe how we train a Generative Adversarial Network (GAN) (Goodfellow
et al., 2014a) in EdgeGANRob. Recall that the task of generating color images from edge maps is
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well defined under the image-to-image translation framework (pix2pix) (Isola et al., 2017). We train
our inpainting GAN with two steps: in the first stage, we follow the common setup of pix2pix (Isola
et al., 2017; Wang et al., 2018) to train a conditional GAN using the following objective function:

min
G

max
D
Lgan = min

G

(
λadvmax

D
Ladv + λFMLFM

)
(2)

where Ladv,LFM denote the adversarial loss (Goodfellow et al., 2014a) and feature matching
loss (Johnson et al., 2016) with λadv and λFM control their relative importance. In the second stage,
since we want our classifier to achieve high accuracy over the generated RGB images, we jointly
fine-tune the trained GAN from first stage along with the classifier, using the following objective
function:

min
G

(
max
D
Lgan + λclsLcls

)
(3)

whereLcls represents the classification loss of generated images by inpainting GAN. Note that in the
first step we do not include classification loss because we want our GAN to generate more realistic
images, based on which it would be easier to fine-tune the classifier to gain accuracy.

3.4 APPLICATIONS

Our method simultaneously improves robustness under three different settings: (i) adversarial at-
tack, (ii) distribution shifting, (iii) backdoor attack. In terms of adversarial attack, EdgeGANRob
is expected to improve robustness as edges are invariant to small imperceptible adversarial pertur-
bations. Intuitively, consider a `∞ threat model, it is very challenging for an attacker to make a
specific edge pixel appear/disappear by reversing the magnitude of image gradient with only lim-
ited adversarial budget per pixel. When test data is under distribution shifting with well-preserved
shape structure, leveraging edge features could be helpful to improve model’s generalization ability.
EdgeGANRob would work in this case by focusing on shape structure which makes it less sensitive
to distribution change during testing. Recall that in backdoor attack, an attacker aims to poison the
training data with a specific pattern such that the trained models can be tricked into predicting a cer-
tain class when the pattern is injected at testing time. In our cases, extracting edges can be viewed
as a data sanitization step to remove the malicious pattern, thus rendering potential backdoor attacks
ineffective.

4 EXPERIMENTAL RESULTS

We evaluate the robustness of the proposed method in this section. Though EdgeNetRob is just
a backbone of EdgeGANRob without inpainting GAN, our experiments show that it has unique
advantage in certain settings and is of independent interest as a robust recognition method. Thus
we also list it as an independent method to compare with EdgeGANRob. For our methods, we first
evaluate their robustness against adversarial attacks, followed by an evaluation of their performance
over distribution shifting. In addition, we evaluate the robustness against backdoor attacks.

4.1 EXPERIMENTAL SETUP

We conduct our experiments on two datasets: Fashion MNIST (Xiao et al., 2017) and CelebA (Liu
et al., 2015). On CelebA, we evaluate our method on the task of gender classification. We did not
choose the more popular MNIST and CIFAR-10 datasets because MNIST is a toy dataset where
strong robustness has been achieved (Madry et al., 2018; Ding et al., 2019) and CIFAR-10 is a
low-resolution dataset (32 × 32) where it is hard to extract semantically meaningful edges. Thus
it can not provide informative benchmarks for our study. We use the same network architecture of
classification for our method and the vanilla classifier. More details are shown in Appendix A.

4.2 ROBUSTNESS AGAINST ADVERSARIAL ATTACKS

We evaluate our methods using the commonly used `∞ adversarial perturbation constraints with
input range [0, 1] (Madry et al., 2018; Goodfellow et al., 2016; Song et al., 2018; Samangouei et al.,
2018; Xie et al., 2019). We use standard perturbation budget on these two datasets as in Song et al.
(2018); Samangouei et al. (2018); Theagarajan et al. (2019). For Fashion MNIST, we use an `∞
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budget of 8/256 and 25/256. For CelebA, we use an `∞ budget of 2/256 and 8/256. We evalu-
ate our methods against adaptive attack (i.e., the attacker is fully aware of the defense algorithm).
Specifically, we measure the robustness to white-box attacks by the BPDA attack (Athalye et al.,
2018). This attack requires a differentiable version of Canny, which is provided in Appendix C.
More details on the attack setting are provided in Appendix B.

4.2.1 ROBUST EDGE DETECTION

First, we illustrate why a robust edge detector is needed for defending against adversarial attacks.
We compare the robustness of three edge detection methods: 1) RCF (Liu et al., 2017) which uses
a CNN as backbone to generate edge maps; 2) Canny (Canny, 1986) which is the traditonal Canny
edge detection; 3) Robust Canny. For each of the edge detection method, we train a classifier on
the extracted edge maps. The results for Fashion MNIST are reported in Table 1. First, we can see
that using edges generated by RCF is not robust, as under strong adaptive attack, the accuracy drops
near to 0. This result is in accordance with Cosgrove and Yuille (2019), where they show that there
exists adversarial examples for neural network based edge detectors. Second, it can be noticed that
adaptive attack (PGD-40) can let EdgeNetRob based on vanilla Canny drop to a low accuracy of
39.99% with perturbation ε = 25. This also shows that our adaptive attacks customized for Canny
is a strong adversary. Despite the weakness of vanilla Canny, we find that using Robust Canny can
significantly boost the robustness under strong adaptive attack: from 39.99% to 76.75%. This shows
that the truncation of values in Robust Canny is effective in reducing the adversarial risk. Therefore,
for the experiments below on evaluating adversarial robustness, we use Robust Canny as the default
edge extractor in EdgeNetRob and EdgeGANRob.

Table 1: Comparison of different edge extraction methods when used together with EdgeNetRob
on Fashion MNIST tested with ε = 8 / ε = 25.

Method Clean Accuracy FGSM PGD-10 PGD-40

RCF 90.15 65.79/50.07 43.68/3.37 33.84/0.18
Canny 88.32 83.45/66.98 81.24/54.07 79.76/39.99

Robust Canny 87.00 84.07/79.03 83.88/78.53 83.57/76.75

Table 2: Evalution of adversarial robustness on Fashion MNIST (ε = 8 / ε = 25) and CelebA (ε = 2
/ ε = 8).

Dataset Method Clean Accuracy FGSM PGD-10 PGD-40 CW∞

Fashion
MNIST

Vanilla Net 92.88 59.50/27.82 41.55/1.76 33.35/0.48 41.82/2.00
M-PGD 88.64/86.99 85.34/78.99 83.24/74.79 83.01/72.62 84.53/73.85

EdgeNetRob 87.00 84.07/79.03 83.88/78.53 83.57/76.75 85.53/73.43
EdgeGANRob 87.14 85.30/78.67 84.54/76.82 84.07/72.69 86.03/75.01

CelebA

Vanilla Net 98.30 50.04/18.67 5.92/0.00 3.98/0.00 4.39/0.00
M-PGD 96.51/92.75 91.73/84.67 89.01/82.55 89.01/81.31 92.46/83.45

EdgeNetRob 94.51 93.50/87.97 93.00/84.36 92.89/82.81 93.70/83.87
EdgeGANRob 95.88 94.78/91.06 94.48/88.12 94.52/84.60 95.91/88.46

4.2.2 COMPARISON WITH BASELINES

We present our results for two benchmark datasets Fashion MNIST (Xiao et al., 2017) and
CelebA (Liu et al., 2015). We compare with the state-of-the-art baseline: Adversarial training pro-
posed in Madry et al. (2018). Adversarial training (Madry et al., 2018) is one of the most effective
defense methods, achieving strong robustness to white-box attacks. The overall results are shown in
Table 2. We notice that EdgeNetRob and EdgeGANRob leads to a small drop in clean accuracy
compared to the vanilla baseline model. However, when compared with adversarial training with
ε = 8, both EdgeNetRob and EdgeGANRob achieve higher clean accuracy. We also observe that
EdgeGANRob has higher clean accuracy than EdgeNetRob on CelebA dataset, thus validating
the necessity of adding GANs on more complicated dataset to close the accuracy gap resulted from
directly training on binary edge images. In terms of adversarial robustness, we observe that under
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Figure 3: Test accuracy under different iterations in adaptive attacks.

strong adaptive attacks, EdgeNetRob and EdgeGANRob still remain robustness level better than
or comparable to adversarial training baselines. It is worth noting that EdgeNetRob does not use
adversarial training and thus has the advantage of time efficiency. We also show the plots for test
accuracy under different attack iterations in Figure 3.

Table 3: Test accuracy of EdgeNetRob and EdgeGANRob on Fashion MNIST and CelebA
datasets with perturbed color and texture.

Dataset Method Accuracy Greyscale NegColor RadialKernel RandKernel

Fashion
MNIST

Vanilla Net 92.07 − 25.52 37.01 46.92
PAR 92.18 − 24.20 38.67 47.94

EdgeNetRob 88.00 − 88.00 57.64 51.59
EdgeGANRob 88.57 − 88.54 47.77 49.87

CelebA

Vanilla Net 97.77 96.75 43.33 69.30 61.78
PAR 98.40 98.40 59.61 73.86 61.74

EdgeNetRob 95.02 95.02 95.02 79.40 74.91
EdgeGANRob 96.28 96.28 95.51 77.08 80.48

4.3 ROBUSTNESS UNDER DISTRIBUTION SHIFTING

We test our method for the generalization ability under distribution shifting. We follow the ex-
periment settings in HEX (Wang et al., 2019b) and PAR (Wang et al., 2019a), where we test the
models under perturbed Fashion MNIST and CelebA with four types of patterns: greyscale, nega-
tive color, random kernel and radial kernel. The random kernel and radial kernel transformations
are introduced in Jo and Bengio (2017a), which use Fourier filtering to transform an image while
perserving high level semantics. We compare with state-of-the-art method PAR introduced in Wang
et al. (2019a), which adds a local patchwise adversarial regularization loss. Some visualization re-
sults of perturbed images are shown in Appendix D. The overall results are shown in Table 3. We
can see that EdgeNetRob and EdgeGANRob significantly improve the accuracy on three types of
patterns: negative color, radial kernel and random kernel, while outperforming PAR. When testing
on greyscale images, similar to baselines, our methods remain high accuracy. The results show that
edge features are helpful for CNN’s generalization to test data under distribution shifting.

Figure 4: Qualitative results of EdgeGANRob (EdgeNetRob) with different stages for backdoor
attack on CelebA.
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4.4 ROBUSTNESS AGAINST BACKDOOR ATTACKS

We show that our method can be used as a defense against backdoor attacks. We follow the attack
setup in Tran et al. (2018). We embed invisible watermark pattern letter "A" into the pristine image
for Fashion MNIST and letters “classified” into CelebA. The qualitative results are shown in Figure 4
on CelebA and Figure D in Appendix for Fashion MNIST. For Fashion MNIST, we randomly choose
four attack and target pairs (attack, target) as (t-shirt, trouser), (trouser, pullover), (dress, coat), (coat,
dress). For CelebA, the pairs (attack, target) are (male, female) and (female, male). We select the
poisoning ratio as 20% and 30% for Fashion MNIST and 5% and 10% for CelebA. We compare our
method with the baseline method proposed in Tran et al. (2018), denoted as Spectral Signature.

The results are presented in Table 4 and Table 5, where we show the test accuracy over both stan-
dard test data (‘Clean Acc’) and poisoned data (‘Pois Acc’). We observe that our embedding pattern
can successfully attack the vanilla Net with high poisoning accuracy on both CelebA and Fashion
MNIST under all settings. It can be seen that Spectral Signature can not always achieve good perfor-
mance with such invisible watermark patterns while EdgeNetRob and EdgeGANRob consistently
remain low poisoning accuracy. Figure 4 shows the qualitative results of the backdoor images after
edge detection algorithm and the reconstructed images. We can observe that the effect of invisible
watermark pattern can be removed by the edge detector. In addition, we find that EdgeGANRob
achieves better clean accuracy compared with EdgeNetRob which also validates the benefit intro-
duced by inserting an inpainting GAN.

Table 4: Results of EdgeNetRob (EdgeGANRob) against backdoor attack on CelebA.

Source Target Ratio
Method

Vanilla Net Spectral Signature EdgeNetRob EdgeGANRob

Clean Acc Pois Acc Clean Acc Pois Acc Clean Acc Pois Acc Clean Acc Pois Acc

Man
5 98.3 97.4 98.35 52.89 92.3 13.80 94.53 3.66

10 98.2 99.0 98.03 76.14 92.2 12.10 93.84 5.46

Woman
5 98.2 99.0 98.28 93.68 94.3 8.80 93.91 11.73
10 98.2 96.9 98.00 22.41 93.9 7.70 94.10 9.68

Table 5: Results of EdgeNetRob (EdgeGANRob) against backdoor attack on Fashion MNIST.

Source Target Ratio
Method

Vanilla Net Spectral Signature EdgeNetRob EdgeGANRob

Clean Acc Pois Acc Clean Acc Pois Acc Clean Acc Pois Acc Clean Acc Pois Acc

T-shirt/top
20 87.17 95.80 86.32 96.30 83.10 1.00 88.91 0.30
30 87.03 97.49 84.79 98.00 82.44 2.00 88.71 0.30

Trouser/pants
20 86.98 93.19 87.23 93.40 82.60 0.10 88.62 1.70
30 87.12 95.80 86.78 94.50 82.22 3.90 88.73 6.10

Coat
20 87.55 95.59 84.88 94.80 82.90 9.2 88.98 3.20
30 86.83 95.80 83.18 95.20 82.71 11.80 88.82 2.92

Dress
20 86.95 90.79 87.29 10.30 82.90 9.20 88.85 3.45
30 86.80 96.90 87.01 8.60 82.53 9.50 88.38 3.85

5 CONCLUSION

We introduced a new method based on robust edge features for improving general model robustness.
By combining a robust edge feature extractor with the generative adversarial network, our method
simultaneously achieves competitive results in terms of both adversarial robustness and generaliza-
tion under distribution shifting. Additionally, we show that it can also be used to improve robustness
against backdoor attacks. Our results highlight the importance of using shape information in im-
proving model robustness and we believe it is a promising direction for future work.
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A EXPERIMENT SETUP

For data pre-processing, we resize the images in CelebA to 128 × 128 using bicubic interpolation,
and use 10% of total images as test data. For both datasets, we normalize the data into the range
of [−1, 1]. On Fashion-MNIST, we use a LeNet-style CNN (Table A). For CelebA dataset, we use
the standard ResNet (He et al., 2016) with depth 20. Models are trained using stochastic gradient
descent with momentum.

Table A: Architecture of CNN used in Fashion MNIST.

Net

Conv(128,3,3) + Relu
Conv(64,3,3) + Relu

Dropout(0.25)
FC(128) + Relu

Dropout(0.5)
FC(10) + Softmax

Table B: Hyper-parameter settings in the experiments.

Dataset Model Optimizer Momentum Epochs Learning Rate LR Step Decay

Fashion MNIST LeNet SGD 0.9 60 0.001 30, 45

CelebA ResNet 20 SGD 0.9 40 0.1 20, 30

B ATTACK SETTING

For each attack setting, we generate adversarial examples using three standard methods: Fast Gra-
dient Sign Method (FGSM) (Goodfellow et al., 2014b), Projected Gradient Descent (PGD) (Madry
et al., 2018) and the Carlini & Wagner `∞ attack (CW) (Carlini and Wagner, 2017). For PGD at-
tacks, we evaluate 10 steps and 40 steps PGD, denoted as ‘PGD-10’ and ‘PGD-40’ separately. For
`∞ distance of 2/256 or 8/256, step size is set to be 0.005. For `∞ distance of 25/256, we use
step size 0.015. For CW attack, we randomly sample 1,000 images for evaluation due to its high
computational complexity.

We use Robust Canny for evaluation of adversarial robustness. Here we report the hyper-parameters
used in Robust Canny, which are chosen using the validation set to trade off robustness and accuracy.
For Fashion MNIST, we set σ = 1, θl = 0.1, θh = 0.2, α = 0.3. For CelebA, we set σ = 2.5, θl =
0.2, θh = 0.3, α = 0.2.

C DIFFERENTIABLE CANNY

Note that the last three steps in the Robust Canny algorithm are non-differentiable transformations.
However, in a white-box attack scenario one needs to backpropagate gradient through the edge
detection algorithm for constructing adversarial samples. While obfuscating gradients through non-
differentiable transformations is a commonly used defense technique, Athalye et al. (2018) show
that the attacker can replace such transformation with differentiable approximations, refered to as the
Backward Pass Differentiable Approximation (BPDA) technique, to construct adversarial examples.
Therefore, to realize a stronger attack on our method, we find a differentiable approximation of the
Robust Canny algorithm as follows.

Assuming x to hold the pixel intensities in the original image, and xe to be the output of the R-
Canny algorithm, we can break the transformation into two stages: C1(·), comprised of step 1-3,
and C2(·) for steps 4-6 (Thresholding operation in step 3 can be formulated as a shifted ReLU
function). Note that C2(·) is a non-differentiable operation, where the output is a masked version
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of the input: C2(x) = M(x) ⊗ x, where M(·) produces the mask (i.e., an array of zeros and ones)
produced by steps 3-6, and ⊗ denotes element-wise multiplication. Therefore, we can write:

xe = R-Canny(x) = C2 (C1(x)) =M (C1(x))⊗ C1(x) (4)

To obtain a differentiable approximation of R-Canny for BPDA, we assume the mask to be constant.
In other words, we only backpropagate gradients through C1(·), and not M(·).

D MORE FIGURES IN EXPERIMENTS

In Figure A, we show the change of test accuracy under radial mask and random mask transfor-
mations with different parameters. For radial mask transformation, we vary the radius of mask in
fourier domain. For random mask transformation, we sample the random masks with various prob-
abilities. Figure B and ?? show the additional visualization results fro CelebA under four types of
distribution shifting. Figure D shows the qualitative results of EdgeGANRob and EdgeNetRob
for backdoor attacks on Fashion MNIST. We can also observe that the poisoning pattern can be
slightly removed by EdgeNetRob and the patterns for each of the generated images do not share
the similar patterns.
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Figure A: Test accuracy under radial kernel and random kernel perturbations with different proba-
bility on CelebA.
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Figure B: Additional visualization of images from CelebA under four types of distribution shifting.
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Figure C: Additional visualization of images from CelebA under four types of distribution shifting.
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Figure D: Qualitative results of EdgeGANRob (EdgeNetRob) for backdoor attacks on Fashion
MNIST.
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