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ABSTRACT

Learning to align multiple datasets is an important problem with many applications,
and it is especially useful when we need to integrate multiple experiments or
correct for confounding. Optimal transport (OT) is a principled approach to
align datasets, but a key challenge in applying OT is that we need to specify a
transport cost function that accurately captures how the two datasets are related.
Reliable cost functions are typically not available and practitioners often resort
to using hand-crafted or Euclidean cost even if it may not be appropriate. In this
work, we investigate how to learn the cost function using a small amount of side
information which is often available. The side information we consider captures
subset correspondence—i.e. certain subsets of points in the two data sets are
known to be related. For example, we may have some images labeled as cars in
both datasets; or we may have a common annotated cell type in single-cell data
from two batches. We develop an end-to-end optimizer (OT-SI) that differentiates
through the Sinkhorn algorithm and effectively learns the suitable cost function
from side information. On systematic experiments in images, marriage-matching
and single-cell RNA-seq, our method substantially outperform state-of-the-art
benchmarks.

1 INTRODUCTION

In many applications, we have multiple related datasets from different sources or domains, and
learning efficient computational mappings between these datasets is an important problem (Long
et al., 2017; Zamir et al., 2018). For example, we might have single-cell RNA-Seq datasets generated
for the same tissue type from two different labs. Since data come from the same type of tissue, we
would like to map cells between the two datasets to merge them, so that we could analyze them jointly.
However, there are often complex nonlinear batch artifacts generated by the different labs. Moreover
the cells are not paired—for each cell measured in the first lab, there is not an identical clone in the
second lab. How to integrate or align these two datasets is therefore a challenging problem.

Optimal transport (OT) is an principled analytical framework to align heterogeneous datasets (San-
tambrogio, 2015). It has been increasingly applied to problems in domain adaptation and transfer
learning (Seguy et al., 2017; Genevay et al., 2017; Courty et al., 2017b; Li et al., 2019). Optimal
transport is an approach for taking two datasets, and computing a mapping between them in the form
of a "transport plan" γ. The mapping is optimal in the sense that among all reasonable mappings
(precisely defined in Section 2), it minimizes the cost of aligning the two datasets. The transport
cost is given by the user and encodes expert knowledge about how datasets relate to each other. For
example, if the expert believes that one data Y is essentially data X with added Gaussian noise, then
Euclidean cost could be natural. If the cost is correctly specified, then there are powerful methods for
finding the global optimal transport (Villani, 2008). A major challenge in practice, e.g. for single-cell
RNA-seq, is that we and experts do not know what cost is appropriate. Users often resort to using
Euclidean or other hand-crafted cost functions, which could give misleading mappings.

Our contributions. We propose a novel approach to automatically learn good transport costs by
leveraging side information we may have about the data. The side information that we model is in the
form of knowledge that a certain subset of points in dataset X should be mapped to another subset of
points in dataset Y . In the single-cell example, we often have cell type annotations that certain points
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are, say, T cells. Then we can deduce that T cells from lab one should be at least mapped to T cells
from lab two. We only need T cells to be crudely annotated in both datasets, which is reasonable; we
don’t need to know that a particular T cell should be mapped to another specific T cell.

We present the first algorithm, OT-SI, to leverage subset correspondence as a general form of side
information. In contrast, previous works mainly focus on pair matching problems (Li et al., 2019;
Galichon & Salanié, 2010) — the extreme case of subset correspondence when the subset sizes are
1. In practice, exact one-to-one matching labels are often expensive to obtain or even intractable.
OT-SI is an end-to-end framework that learns the transport cost. The intuition is to optimize over
a parametrized family of transport costs, to identify the cost under which the annotated subsets are
naturally mapped to each other via optimal transport. OT-SI efficiently leverages even a small amount
of side information and it generalizes well to new, unannotated data. The learned transport cost
is also interpretable. We demonstrate in extensive experiments across image, single-cell, marriage
and synthetic datasets that our method OT-SI substantially outperform state-of-the-art methods for
mapping datasets.

Related Work Optimal transport been well studied in the mathematics, statistics and optimization
literature (Villani, 2008; Courty et al., 2017a; Li et al., 2019; Courty et al., 2017b). OT can be used to
define a distance metric between distributions (e.g. Wasserstein distance) or to produce an explict
mapping across two datasets. The latter is the focus of our paper. In machine learning, there has
been significant work on developing fast algorithms for efficient computation of the optimal transport
plan (Cuturi, 2013; Altschuler et al., 2017; Staib et al., 2017), and analyzing the properties of the
transport plan under various structures and constraints on the optimization problem (Alvarez-Melis
et al., 2018; Titouan et al., 2019). The previous work on learning the transport cost is done on a very
different setting from ours – learning feature histogram distances between many pairs of datapoints
(Cuturi & Avis, 2014). Some classical clustering and alignment methods (Xing et al., 2003; Ham
et al., 2005; Wang & Mahadevan, 2008; 2009) have realized benefits by including side information,
but these nonparametric methods differ from our explicit parametrization and optimization of the
transport cost function.

Separately, there have been recent efforts to directly map between datasets, without learning a
transport cost. The standard alignment methods can be divided into two categories: GANs-based
(Zhu et al., 2017; Choi et al., 2018) and OT-based (Grave et al., 2019; Alvarez-Melis et al., 2019).
GAN-based approaches have been used to align single-cell RNA-seq data when pairs of cells are
known to be related (Amodio & Krishnaswamy, 2018). However the exact pairing of individual
cells is always not readily available or even intractable. To address this issue, our method OT-SI
allows for more general correspondence between subsets, i.e., clusters, cell types and also individual
cells. In the meantime, the OT-based methods always rely on Procrustes analysis (Rangarajan et al.,
1997) — a linear transformation between the datasets is assumed, which lacks the flexibility to handle
nonlinear artifacts and the side information cannot be utilized. In contrast, a major benefit of our
approach is its graceful adaptation to partial subset correspondence information, where we frame the
problem as semi-supervised.

2 LEARNING COST METRICS

A good choice of the cost function for optimal transport is the key to a successful mapping between
two datasets. In this section, we present the algorithm OT-SI, which parametrizes the cost function
with weight θ and adaptively learns θ using side information about the training data. The side
information we consider is subset correspondence — a common situation when some subsets of
training points are known to be related; pair matching is included as an extreme case. The learned
cost function is further evaluated on the unseen test data to prove generalizability.

2.1 OPTIMAL TRANSPORT

Consider learning a mapping between two datasets X = {x(1), ..., x(nX)} and Y = {y(1), ..., y(nY )}.
Here we use nX and nY to denote the number of datapoints; each sample x(i) or y(j) could be a
vector as well. We briefly recall the optimal transport framework in this setting. Given probability
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vectors µX and µY , the transport polytope is defined as

U(µX , µY ) := {γ ∈ RnX×nY+ |γ1nX = µX , γ
T1nY = µY },

where 1nX (1nY ) is the nX (nY ) dimensional vector of ones. Here the probability vector µX (µY )
is in the simplex

∑
n := {p ∈ Rn+ : pT1n = 1} for n = nX (nY ). For two random variables with

distribution µX and µY , the transport polytope U(µX , µY ) represents the set of all possible joint
probabilities of the two variables. In this paper, we consider µX and µY to represent the empirical
distributions of the samples X and Y, respectively, and set µ = (1/n)1n.

Given a nX×nY cost matrix C, the classical optimal transport plan between µX and µY is defined as
γ∗ = arg min γ∈U(µX ,µY )〈γ,C〉, where 〈·, ·〉 denotes the Frobenius inner product. γ∗ is also called
a coupling. Despite its intuitive formulation, the computation of this linear program quickly becomes
prohibitive especially in the common situation when nX and nY , the sizes of the datasets, exceed
a few hundred. For computational efficiency, Sinkhorn-Knopp iteration is widely used to compute
the optimal transport (Cuturi, 2013). Sinkhorn-Knopp is a fast iterative algorithm for approximately
solving the optimization problem with entropy regularization Santambrogio (2015):

γλ = arg min
γ∈U(µX ,µY )

〈γ,C〉 − 1

λ
h(γ). (1)

where λ > 0 is a regularization parameter and h(γ) = −
∑nX
i=1

∑nY
j=1 γij log γij denotes the entropy.

The regularized solution γλ converges to the classical one γ∗ when the regularization diminishes, i.e.,
λ→∞, with exponential convergence rate (Cominetti & San Martín, 1994). The transport γλ treats
X and Y symmetrically.

The cost matrix is retrieved from the cost function Cij = c(x(i), y(j)). A good choice of the cost
function is the key to influencing the learned mapping γλ. However, reliable cost functions are
typically not available and Euclidean cost is mostly used. In this paper, the representation of the cost
function is adaptively learned using side information about the data.

2.2 SIDE INFORMATION

Subset correspondence describes a common situation when certain subsets of points are known to be
related. For example, images with the same objects should always be mapped together in domain
adaptation tasks (Courty et al., 2017b), while cells in a single-cell dataset need to be aligned to those
with the same cell type, where the cell type annotation is available.

Given m corresponding subsets, we write S(k)
X and S(k)

Y , k = 1, ...,m, to denote the sets of data
indices in the corresponding subsets, i.e., {x(i) | i ∈ S(k)

X } and {y(i) | i ∈ S(k)
Y }. Note that S(k)

X and

S
(k)
Y could have different probability mass. If |S

(k)
X |
nX
≤ |S

(k)
Y |
nY

, we take this side information to be that

S
(k)
X should be mapped into S(k)

Y . In other words, all the other entries of the transport matrix γ that

maps S(k)
X to outside of S(k)

Y should be 0. Everything is swapped if |S
(k)
Y |
nY
≤ |S

(k)
X |
nX

. Mathematically,
this side information corresponds to the constraint that γij = 0 for (i, j) ∈ S0, where

S0 =

m⋃
k=1

{(i, j)|i ∈ S(k)
X , j /∈ S(k)

Y ,
|S(k)
X |
nX

≤
|S(k)
Y |
nY
}∪{(i, j)|i /∈ S(k)

X , j ∈ S(k)
Y ,
|S(k)
Y |
nY

≤
|S(k)
X |
nX
}

(2)

Note that pair matching is an extreme case of subset correspondence with subset size 1 — that is, the
exact pairwise relation is known. The pair matching problem has been addressed in literature (Li
et al., 2019; Galichon & Salanié, 2010). However, in practice, exact one-to-one matching labels are
often expensive to obtain or even intractable. In this paper, we show that subset correspondence, as a
small amount of side information, can significantly aid cost function learning.

We investigate how to learn the cost function using subset correspondence information between
training datasets Xtrain and Ytrain. The learned cost function is evaluated via the mapping quality
on the test datasets Xtest and Ytest. Note that the training and test sets are not necessarily under the
same distribution. We demonstrate the power of OT-SI in generalizing to new subsets that were not
seen in the training process.
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2.3 THE OT-SI ALGORITHM

Our ultimate goal is to learn a cost function c(·), such that the computed optimal transport γλtrain
satisfies the side information given in Eq. (2) as faithfully as possible.

Cost function parametrization. When the cost function c(·) is Euclidean, the entry of the cost ma-
trix is computed asCij = c(x(i), y(j)) =

∑d
k=1(x

(i)
k −y

(j)
k )2, where d is the data dimension. To learn

the cost function systematically, we parametrize it as Cij(θ) = c(x(i), y(j); θ) with weight θ. Here
the function form c(·) can be chosen by users. To illustrate the improvement over the commonly-used
Euclidean cost, we parametrize c(x(i), y(j); θ) as a polynomial in (x

(i)
1 , ..., x

(i)
dx
, y

(j)
1 , ..., y

(j)
dy

) with co-
efficients θ and degree 2 for low-dimensional data. The Euclidean cost is equivalent to a specific choice
of θ0 which is set as the initialization; see Appendix for more discussions. For high-dimensional data,
the memory required to store the second order polynomials becomes too large and we use a fully
connected neural network to parametrize c(x(i), y(j); θ) with input (x

(i)
1 , ..., x

(i)
dx
, y

(j)
1 , ..., y

(j)
dy

) and
weights θ. Throughout this paper, the polynomial parametrization is used if not specified.

The optimal transport solution is characterized by θ as

γλ(θ) = arg min
γ∈U(µX ,µY )

〈γ,C(θ)〉 − 1

λ
h(γ). (3)

Then the problem can be formulated as optimizing θ to make the transport γλ(θ) approximately
satisfy the conditions defined in Eq. (2), penalizing deviation of the solution from these constraints
with the loss

Lλ(θ) =
∑

(i,j)∈S0,train

||γλij,train(θ)||22. (4)

Theorem 1. For any λ > 0, the optimal transport plan γλ(θ): Rdθ → U(µX , µY ) is C∞ in the
interior of its domain.

The infinite differentiability of the Sinkhorn distance is previously-known (Luise et al., 2018); Thm.
1 proves that the Sinkhorn transport plan also has this desirable property. Because Thm. 1 guarantees
that γλ(θ) is infinitely differentiable, we are able to optimize Lλ(θ) in Eq. (4) by gradient descent. In
practice, we iterate Sinkhorn’s update a sufficient number of times to converge to γλ. Each iteration
is a matrix operation involving the cost matrix C(θ), and when the number of iterations is fixed, we
can propagate the gradient∇θ through all of the iterations using the chain rule. Updating θ by one
forward and backward pass has complexity of O(n2) up to logarithmic terms. Hence OT-SI has the
same complexity as the Procrustes-based OT methods which alternatively optimize over coupling
matrix and linear transformation matrix (Grave et al., 2019; Alvarez-Melis et al., 2019). To further
boost the performance, we propose to use a mimic learning method for initialization, which does
not need to propagate the gradient. The pseudocode for OT-SI is in Algorithm 1 and details are
in the Appendix. The proof of Thm. 1, mimic learning algorithm, details, and discussions about
convergence are also in the Appendix.

2.4 EXPERIMENTS SETUP

The OT-SI algorithm is carried out in Pytorch (Paszke et al., 2017) and trained with GPU. The model
is fitted on training set, and evaluated on test set. We use validation set for hyperparameter selection
and early stopping. We evaluate OT-SI with different types of data and correspondence information.

Comparison methods. We use optimal transport with Euclidean cost function as a baseline for
comparison, referred as "OT-baseline". We also compare our result with state-of-the-art GAN-based
data alignment methods, MAGAN (Amodio & Krishnaswamy, 2018) and CycleGAN (Zhu et al.,
2017), as well as the OT-based methods, RIOT (Li et al., 2019) which is developed for specific pair
matching applications and the Procrustes-based OT (Grave et al., 2019), referred as "OT-Procrustes".
For MAGAN and CycleGAN, the matching point for a source sample is set as its nearest neighbor
in the target after mapping. Among the five comparison methods, OT-baseline, OT-Procrustes and
CycleGAN do not use any side information; MAGAN makes use of matching pairs; RIOT requires
the one-to-one matching labels for all the datapoints. Because MAGAN and RIOT requires pairwise
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Algorithm 1 OT-SI

Require: training datasets Xtrain and Ytrain, corresponding subsets index S
(k)
Xtrain

and S
(k)
Ytrain

(k = 1, ...,mtrain), step size α, total training steps T , weights θ0 from initialization proce-
dure, Sinkhorn regularization parameter λ and number of Sinkhorn iterations nSinkhorn.

1: nX = length(Xtrain), nY = length(Ytrain), µX = (1/nX)1nX , µY = (1/nY )1nY
2: Initialize θ = θ0

3: for t = 1 to T do
4: Compute cost matrix C(θ) with entries Cij(θ) = c(x(i), y(j); θ).
5: Solve γλtrain(θ) = arg min γ∈U(µX ,µY )〈γ,C(θ)〉 − 1

λh(γ) with Sinkhorn’s update with
nSinkhorn iterations.

6: Derive ∇θγλtrain(θ) by backpropagating the gradient through all Sinkhorn-Knopp iterations.
7: Update weights θ := θ − α

∑
(i,j)∈S0,train

γλij,train(θ)∇θγλij,train(θ).

8: end for

Table 1: Subset matching and pair matching accuracy on test data for two moon datasets. Here the
subset (pair) matching accuracy corresponds to the proportion of the data points that are aligned to
the correct moon (data points) on the test set. Higher is better. We generated 10 independent datasets
and the standard deviation is shown.

Side
Information

OT-
Baseline OT-SI OT-Procrustes MAGAN CycleGAN RIOT

Subset
Matching

Subsets 72% 100% 59%± 14% N/A 48% N/A
1 Pair 72% 93%± 1% 59%± 14% 46%± 2% 48% N/A

10 Pairs 72% 99.7%± 0.1% 59%± 14% 71%± 2% 48% 46.9%

Pair
Matching

Subsets 2% 87%± 1% 46%± 14% N/A 0% N/A
1 Pair 2% 53%± 5% 46%± 14% 0.94%± 0.08% 0% N/A

10 Pairs 2% 86%± 2% 46%± 14% 1.2%± 0.2% 0% 0%

correspondence, they are not applied in some experiments and these are marked as N/A. We use the
same settings and hyperparameters for the comparison methods as in their original implementations.

Evaluation metrics. When the subset correspondence is known on the test set (not shown to the al-
gorithm), we evaluate a transport plan γ by how much it satisfies the correspondence. Mathematically,
we define subset matching accuracy:

Accuracy =

∑m
k=1

∑
i∈S(k)

Xtest

∑
j∈S(k)

Ytest

γij,test∑m
k=1 min{|S(k)

Xtest
|/nXtest

, |S(k)
Ytest
|/nYtest

}
.

From the definition, 0 6 Accuracy 6 1 gives the probability of mapping to the correct corresponding
subsets. When all the test datapoints are mapped into the correct subsets, the accuracy is 1; when all
the data are matched to the wrong subsets, accuracy is 0. As an extreme example, pair matching is
equivalent to subset correspondence with subset sizes 1, referred to as pair matching accuracy. In the
next few sections, we thoroughly evaluate OT-SI and several state-of-the-art methods in extensive
and diverse experiments—aligning single-cell RNA-seq data to correct for batch effects, aligning
single-cell gene expression and protein abundances, a marriage data, an image dataset, and the
synthetic twin-moon data for illustration.

3 BENCHMARK ON SYNTHETIC DATASETS

We first experiment with the benchmark toy example for domain adaptation — two moon datasets—to
illustrate the challenges of data alignment, before we move onto complex real-world data (Germain
et al., 2013; Courty et al., 2017b). The dataset is simulated with two domains, source and target.
As shown in Fig. 1a, each domain contains two standard entangled moons. The two moons are
associated with two different classes, denoted by circle and crossing respectively. The target (colored
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(a) Data (b) OT-baseline. (c) OT-SI. (d) OT-Procrustes.

Figure 1: Illustration of the two moon datasets and the optimal transport result. The target domain
(blue) is built by adding noise to the source (orange) and rotating by 60 degrees. Corresponding
subsets are denoted by circles and crossings. (b-e) Optimal transport plan under (b) Euclidean cost
(OT-baseline) (c) learned cost function by OT-SI and (d) Procrustes-based OT. Points learned to be
matched are connected by solid curves. When a datapoint is matched to the wrong subset, i.e, to the
other moon, the connection curve is colored by red.

in orange), is built by adding noise to the source (colored in orange) and rotating by 60 degrees. In
the experiment, we generate the training, test and validation datasets with 100, 100, and 50 samples
of each moon. We set the parameter λ = 103 and the number of Sinkhorn-Knopp iterations N = 200.
The algorithm is run for 100 epochs with step size 1. There are two types of side information available
for OT tasks: (i) subset correspondence — datapoints are known to be mapped into the corresponding
moon class; (ii) pair matching — known matched datapoints after rotation. The result is averaged
over 10 (50) independent runs when the side information is subset correspondence (pair matching).

Baseline performance. The optimal transport plan under Euclidean cost function is depicted in Fig.
1b. Datapoints learned to be matched are connected by solid curves. The red curves indicate wrong
transports which map the data into the wrong subset, i.e., the other moon. As shown by Fig. 1b, most
wrong transports are between the points at the edges of the moons. In the euclidean space, the edge
of one moon becomes “closer" to the other moon after rotation, which leads to a small cost between
datapoints in different moon classes. A new cost function which captures the rotation property is
expected. Quantitatively, only 72% of the data are mapped into the correct moon it belongs to and
only 2% of the data are matched to their corresponding pairs, as given in Table 1.

Subset correspondence. We first evaluate our method OT-SI when the side information is only that
the data on the corresponding moons are known to be related—i.e. S(1)

X and S(2)
X are the two moons

in dataset one, and S(1)
Y and S(2)

Y are the two moons in dataset two. With the learned cost function,
almost all the datapoints are mapped into the corresponding moon, i.e., the subset matching accuracy
on the test data achieves 100% for both methods, as shown in Table 1. The results are averaged for
10 independent runs. Interestingly, although there is no pair matching information provided during
training, the learned cost function significantly improves the matching performance. As shown in
Table 1, 87% datapoints are transported into their exact matching points after rotation. The learned
mapping of OT-SI is depicted in Fig. 1c. The rotation property of the datasets is correctly captured.
In contrast, OT-Procrustes sometimes learns as good as OT-SI, similar to Fig. 1c, but sometimes
mistakenly learns rotation as flipping, indicated by Fig. 1d. This results in overall worse accuracy
and large variance for OT-Procrustes.

Pair matching. OT-SI demonstrates substantial improvement when the pair matching information
is provided—only 1 and 10 pairs are known out of the total 100 training pairs. The matching pairs
are randomly selected from the training data. OT-SI significantly outperforms all four bench methods
particularly when the number of known pairs is very limited. Even when only 1 matching pair is
provided, the learned cost function greatly improves the OT performance, as given in Table 1. The
improvement here is largely attributable to the unlabeled data, i.e., the datapoints without any pair
matching information. For comparison, we carry out another experiment with only 3 unlabeled
data, with all other settings unchanged. The algorithms are not able to learn the right cost function
anymore — the test pair matching accuracy is only 0.5% after learning, even worse than the Euclidean
baseline. With 199 unlabeled data, the accuracy achieves 53%. In contrast, the competing methods
MAGAN and RIOT learn barely any patterns, because too few labeled datapoints are available and
the unlabeled ones are wasted.
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Table 2: Subset matching and pair matching test accuracy for the alignment of protein and RNA
expression data in CITE-seq CBMCs experiment. Here subset (pair) matching accuracy denotes the
proportion of the cells that are aligned to the correct cluster (cells). Higher is better. For alignment
in the original space, the expression of 5001 mRNAs are mapped to the expression of 13 proteins.
For alignment in the embedding space, the first 10 principal components are used for both RNA and
protein expression datasets.

Embedding Space (10:10) Original Space (5001:13)
OT-Baseline OT-SI OT-Procrustes OT-Baseline OT-SI OT-Procrustes

Subset Matching 9.9% 56.1% 44.3% N/A 43.9% N/APair Matching 0 % 3.2% 1.0% 0.8%

4 BIOLOGICAL MANIFOLD ALIGNMENT

In this section, we implement our method OT-SI to learn a cost function that aligns biological
manifolds with partial supervision — annotations of some cell types or clusters, which is the common
situation in biological studies. The pair matching methods, MAGAN and RIOT, are not compared
here because the the cell-to-cell matching information is not available. Similar to Sec. 3, the
CycleGAN does not learn correctly for these data types and is not presented here. We show that
OT-SI has substantial improvement for aligning datasets with different data types and aligning data
from different batches.

4.1 ALIGNMENT OF PROTEIN AND RNA SEQUENCING DATA

How to align datasets with different data types has been a major topic in many fields. For example, in
single-cell studies, RNA and protein sequencing can both be done at cellular resolution. How to map
between those two types of data, i.e., map cells with certain mRNA level to cells with certain protein
level, becomes critical for downstream studies such as RNA and protein co-expression analysis.

We demonstrate the power of OT-SI in learning cost function that aligns two different data types —
RNA and protein expression in the CITE-seq cord blood mononuclear cells (CBMCs) experiments
(Stoeckius et al., 2017). The dataset is subset to 8,005 human cells with the expression of 5,001
highly variable genes and 13 proteins. Fifteen clusters are identified using the Louvain modularity
clustering. The CITE-seq technology has enabled the simultaneous measurement of RNA and protein
expression at single-cell level, hence the ground truth about the cell pairing is available. To emulate
the common situation, we only use the information of cluster correspondence in the training and
report the performance of both subset (cluster) matching and pair matching for test. We randomly
sampled 500 and 500 cells for validation and test purpose. When OT-SI is learned in the original data
space with the expression of 5001 mRNA and 13 proteins for each cell, we use a fully connected
neural network to parametrize the cost function, with two hidden layers of 100 and 5 neurons.

We align the RNA and protein expression datasets in two scenarios: i) the embedding space where
we use the first 10 PCs for both datasets; ii) the original expression space. Table 2 shows that
OT-SI substantially outperforms other methods. OT-SI is able to learn good cost function when the
dimensions of the two datasets are highly unbalanced as 5001:13. The learned cost metrics in the
original expression space can be used for future biological analysis on the effect and relation between
RNA and protein expressions. Although the single-cell sequencing data are noisy and the algorithm
is not informed of any matching pair during training, the accuracy of test pair matching is improved.

4.2 BATCH ALIGNMENT

Another fascinating biological application of optimal transport is to align data from different batches.
In biological studies, the samples processed or measured in different batches usually result in non-
biological variations, known as batch effect (Chen et al., 2011). Here we use OT to align two batches
of data1 — data collected with fluorescence activated cell sorting (FACS) and droplet methods. In
this case, the cell types are used as the subset correspondence information. For illustration purposes,

1https://github.com/czbiohub/tabula-muris-vignettes/blob/master/data
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Table 3: Subset matching accuracy on the two held-out cell types, T cell and immature T cell, for
aligning FACS and droplet data. The algorithms OT-SI and OT-Procrustes are trained on 2, 5 and 8
other cell types. Higher is better.

#Training Cell Types 2 5 8 0 (OT-Baseline)

OT-SI 70.0% 75.0% 83.8% 70.0%OT-Procrustes 36.9% 56.8% 61.5%

Table 4: Subset matching accuracy on the two held-out digits 3 and 5 when trained our model on the
rest eight digits for MNIST dataset. OT is used to align the original images with the perturbed ones.

original watering swirl sphere flip

OT-baseline 70.0% 62.5% 57.5% 35.0%
OT-SI 72.5% 75.0% 65.0% 57.5%

OT-Procrustes 66.3% 48.6% 39.4% 83.9%

we subsample the top 10 celltypes with 400 samples of each. There are 1,682 genes after filtering and
the first 10 principal components are used for analysis. The dataset is split into training, validation
and test sets with ratio 50%, 20% and 30%. The experiment setting is the same as in Sec. 3.

We demonstrate the power of our learned metric in generalizing to entirely new cell types that were
not used to train the cost. This is a hard task (a zero-shot learning task), and is more realistic because
in most settings we only have partial annotations for cell types and we would like the mapping to
generalize to all of the data. To do this, we choose two cell types — T cell and immature T cell — as
held-out and train on the rest. Among all the ground truth expert annotations, T cell and immature T
cell are most difficult to be aligned. With OT-baseline, only 70% cells are mapped into the correct cell
types. Substantial improvement is achieved, as shown in Table 3. From a small number of annotated
cells types, OT-SI is able to learn a transport cost that captures the batch artifacts between FACS
and droplet which generalized to mapping these two new cell types. We anticipate future uses of our
formulation to further investigate the cost function, particularly in biological discovery applications
like isolating genes that mark single-cell heterogeneity.

5 EXPERIMENTS ON IMAGES AND TABULAR DATA ALIGNMENT

5.1 IMAGE ALIGNMENT FOR NEW DIGITS

To illustrate the use of OT-SI in image alignment, we use it to learn cost metrics in aligning images
with partial annotation on the MNIST dataset which contains 28 × 28 images of handwritten digits.
We subsample 200 images from each digit class and split them into training, validation, and test sets
with ratio 50%, 20% and 30%. For illustration purposes, we use the first ten principal components for
the alignment analysis. We generate four different types of perturbations to the original images, as
plotted in Table 4. Then we align the original images with the perturbed ones using OT, respectively.
The experiment setting is the same as in Sec. 3. Similar to Sec. 4, we test how well our algorithm
generalizes to new classes that were not used in learning the cost function. In the experiment, we hold
out digits 3 and 5, and demonstrate the metric learned on the other eight digits can help the alignment
of digits 3 and 5. We achieve consistent improvement over the baseline on all four distribution types,
as indicated by Table 4.

5.2 MARRIAGE DATASET FOR PAIR MATCHING

While OT-SI is designed for the more general form of side information — subset correspondence, it
can also be used for pair matching purpose. We finally benchmark it from the comparison with other
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Table 5: Root mean square error (RMSE) and mean absolute error (MAE) of pair matching algorithms
for marriage-matching dataset. Lower is better.

Random PMF SVD itemKNN RIOT FM OT-SI

RMSE 54.7 77.8 109.0 2.4 2.4 9.5 2.4
MAE 36.5 36.1 62.0 1.6 1.5 7.5 1.5

state-of-the-art pair matching methods, including RIOT, factorization machine model (FM) (Rendle,
2012), probabilistic matrix factorization model (PMF) (Mnih & Salakhutdinov, 2008), item-based
collaborative filtering model (itemKNN) (Cremonesi et al., 2010), classical SVD model (Koren et al.,
2009) and baseline random predictor model. These methods were also used as comparisons in Li et al.
(2019). We follow the same experimental protocol as in Li et al. (2019) for the Dutch Household
Survey (DHS) dataset. The exact matching matrix between 50 datapoints with 11 features are known.
We note that the coupling matrix is treated as continuous and OT-Procrustes is not applicable.

The performance is evaluated by the root mean square error (RMSE) and the mean absolute error
(MAE) for the predicted matching matrix, as given in Table 5. When used for pair matching purposes,
OT-SI report comparable performance to state-of-the-art matching algorithms. Note that this marriage
dataset was a primary motivating dataset used to design RIOT (Li et al. (2019)), and therefore we
expect RIOT to perform very well for this task.

6 DISCUSSION

In this paper, we study the problem of learning the transport cost using side information in the
form of a small number of corresponding subsets between the two datasets. This is a new problem
formulation, to the best of our knowledge. Previous works rely on more restricted information such
as that specific pairs of points should be aligned. In settings such as genomics and images, it is often
difficult to say that a single point in dataset one should be mapped onto a particular point in dataset
two. It is more common to have partial annotation of subsets of points—e.g. T cells are annotated in
two single-cell RNA-seq datasets—which motivates our generalization.

We propose a flexible and principled method to learn the transport cost with side information.
Experiments demonstrate that they work significantly better than state-of-the-art methods when the
side-information is very limited, which is often the case. We compare against state-of-the-art methods
for the special case when the side information consists of matching pairs, since we are not aware of
other published OT methods that deal with the more general subset correspondence. One interesting
reason for the improved performance is that by learning the transport cost directly, our algorithms are
more efficiently using all of the unannotated datapoints that are not in any pairs or subsets. These
unannotated data act as regularization (similar to in semi-supervised 1learning), which enables the
model to avoid overfitting to the limited side information. An interesting direction of future work is
to interpret the learned cost function for insights on how the datasets differ.
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A COST FUNCTION

In Sec. 2.3, the cost function is parametrized as Cij(θ) = c(x(i), y(j); θ) with weight θ. For low-
dimensional data, we choose c(x(i), y(j); θ) as a polynomial in (x

(i)
1 , ..., x

(i)
dx
, y

(j)
1 , ..., y

(j)
dy

) with
coefficients θ and degree 2:

Cij(θ) =
∑

α,β∈Zd, α,β>0

161Td α+1Td β62

θα,β

dx∏
k=1

dy∏
l=1

(x
(i)
k )αk(y

(j)
l )βl . (5)

Here we do not require the dimension of the two datasets dx and dy to be the same. When the two
datasets X and Y have different features, the learned weights indicate the coupling between different
features in the data mapping. In general, the function form c(·) can be chosen by users. We have also
investigated parametrizing C(θ) as a small fully connected neural network and achieved very similar
performance.

The Euclidean cost is equivalent to a specific choice of θ, when the two datasets have the same
feature space dx = dy = d. The entry of the cost matrix is computed as Cij = c(x(i), y(j); θ) =∑d
k=1((x

(i)
k )2 + (y

(j)
k )2 − 2x

(i)
k y

(j)
k ).

B OT-SI ALGORITHM

The Lagrangian dual of Eq. (3) is

max
u,v

µTXu+ µTY v −
1

λ

nX∑
i=1

nY∑
j=1

e−λ(Cij(θ)−ui−vj) (6)

By Sinkhorn’s scaling theorem (Sinkhorn & Knopp, 1967), the optimal transport plan γλ(θ) is
computed as

γλ(θ) = diag(eλu
∗(θ))e−λC(θ)diag(eλv

∗(θ)), (7)
where u∗(θ) and v∗(θ) are the solutions to the dual problem in Eq. (6).

B.1 PROOF OF THEOREM 1

The analysis for Theorem 1 follows the strategy of the proofs of Theorem 2 in (Luise et al., 2018).

Theorem 1. For any λ > 0, the optimal transport plan γλ(θ): Rdθ → U(µX , µY ) is C∞ in the
interior of its domain.

Proof. Based on Eq. (7), the optimal transport plan γλ(θ) is a smooth function when u∗(θ), v∗(θ)
and C(θ) are smooth. In the meantime, the cost C(θ) is a linear function of θ, as indicated by Eq. (5).
Thus to prove the smoothness of γλ(θ), we only need to demonstrate u∗(θ) and v∗(θ) are both
smooth in θ.

Here we define

σ(θ;u, v) = −µTXu− µTY v +
1

λ

nX∑
i=1

nY∑
j=1

e−λ(Cij(θ)−ui−vj)

The dual problem in Eq. (6) becomes minu,v σ(θ;u, v). From the definition, σ(θ;u, v) is smooth
and strictly convex in (u, v). Note that C(θ) is linear in θ. Then for any fixed θ in the interior
of Rdθ , there exits (u∗(θ), v∗(θ)) such that σ(θ;u∗(θ), v∗(θ)) = minu,v σ(θ;u, v). The function
∇(u,v)σ(θ;u, v) ∈ C∞ due to the smoothness of σ(θ;u, v). Now we fix (u0, v0, x0) such that
∇(u,v)σ(θ0;u0, v0) = 0. The strict convexity of σ(θ;u, v) ensures that ∇2

(u,v)σ(θ0;u0, v0) is
invertible.

From implicit function theorem, we can always find a function f and a subset Uθ0 ∈ Rdθ such that
i) f(θ0) = (u0, v0); ii) ∇(u,v)σ(θ; f(θ)) = 0 for any θ ∈ Uθ0 ; iii) f ∈ C∞(Uθ0). That is, f(θ) is a
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stationary point of the function σ for any θ in Uθ0 . Together with the strict convexity of σ, we derive
f(θ) = (u∗(θ), v∗(θ)). Recalling f ∈ C∞(Uθ0), we prove that (u∗(θ), v∗(θ)) is C∞ in the interior
of its domain.

B.2 CONVERGENCE PROPERTIES

The gradient of γλ(θ) in Eq. (7) is computed as

∇θγλij(θ) = λγλij(θ)
(
∇θu∗i (θ) +∇θv∗j (θ)−∇θCij(θ)

)
The convergence of scaling factors eλu(θ) and eλv(θ) is linear (i.e. exponential in nSinkhorn), with the
bounded rate given by (Franklin & Lorenz, 1989); our experiments use a linear C(θ), and we do not
find Sinkhorn to bottleneck convergence. Besides this point, convergence is determined by the loss
landscape of C. Analyzing convergence to the global optimum, and the role of primal regularization
of γ, is a relevant open question.

C MIMIC LEARNING FOR INITIALIZATION

In this section, we derive a mimic learning as an fast initialization method to boost the performance
and accelerate the learning. While Algorithm 1 requires to differentiate through Sinkhorn updates,
the mimic learning approach does not need to propagate the gradient through all the iterations
and is applicable for any kind of OT algorithm. Here we take the classical optimal transport plan
γ∗ = arg min γ∈U(µX ,µY )〈γ,C〉 as an example.

As discussed in Sec. 2.3, our ultimate goal is to learn a cost function, such that the optimal transport
γ∗ satisfies the side information defined in Eq. (2) as faithfully as possible. From another perspective,
we force an additional set of constraints on the transport plan γ to fulfill the condition in Eq. (2):

U c =

m⋂
k=1

{γ|γij = 0, i ∈ S(k)
X , j /∈ S(k)

Y ,
|S(k)
X |
nX

≤
|S(k)
Y |
nY
}

∩ {γ|γij = 0, i /∈ S(k)
X , j ∈ S(k)

Y ,
|S(k)
Y |
nY

≤
|S(k)
X |
nX
}

(8)

To quantify how much the learned γ∗ in Eq. (1) follows the side information, we compare it with

γ̂ = arg min
γ∈U(µX ,µY )∩Uc

〈γ,C〉. (9)

Here γ̂ is interpreted as the optimal transport plan when the side information is completely satisfied,
and 〈γ̂, C〉 is the smallest transport distance under the constraint. With the cost function parametrized
as Cij(θ) = c(x(i), y(j); θ), The optimal transport solution in Eq. (9) is characterized by θ as
γ̂(θ) = arg min γ∈U(µ,ν)∩Uc〈γ,C(θ)〉.

Then we also expect a good cost function to make the distance under constraint 〈γ̂, C〉 to be as small
as the lowest one 〈γ∗, C〉 as possible — optimize θ to minimize the loss

Linit(θ) = 〈γ̂(θ), C(θ)〉 − 〈γ∗(θ), C(θ)〉. (10)

We refer to this method as mimic learning, because its objective is to make the γ̂ mimic the cost
performance of γ∗.

Note that γ∗(θ) is the optimal solution for any transport matrix in U(µX , µY ). That is, the optimal
distance 〈γ∗(θ), C(θ)〉 ≤ 〈γ,C(θ)〉 for any γ ∈ U(µX , µY ). The equality holds true only when
γ = γ∗(θ) for the convex transport problem. In the meantime, we have γ̂(θ) ∈ U(µX , µY ) ∩ U c.
Thus the loss L(θ) is always larger or equal to 0. When zero loss is achieved, we have γ∗(θ) = γ̂(θ),
coinciding with the optimal solution for L(θ) in Eq. (3).

Equation (10) describes the absolute difference between the two transport distances, but a relative
difference is more desirable in practice to adjust for the scale of the objective function around 〈γ∗, C〉.
For example, scaling the cost matrix C(θ) by a constant does not change the solutions γ∗ and γ̂, but
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Algorithm 2 Mimic Learning for Initialization

Require: training datasets Xtrain and Ytrain, corresponding subsets index S(k)
Xtrain

and S(k)
Ytrain

(k =
1, ...,mtrain), step size α, total steps Tinit, optimal transport solver OTSolver.

1: nX = length(Xtrain), nY = length(Ytrain), µX = (1/nX)1nX , µY = (1/nY )1nY
2: Define transport polytopes U∗ = U(µX , µY ) and constraints U c from Eq. (8).
3: Initialize θ such that the cost function is equivalent to the Euclidean cost.
4: for t = 1 to Tinit do
5: Compute cost matrix C as Cij = c(x(i), y(j); θ)
6: γ∗ = OTSolver(C,U∗), γ̂ = OTSolver(C,U(µX , µY ) ∩ U c)
7: Linit(θ) = 〈γ̂,C(θ)〉−〈γ∗,C(θ)〉

〈γ̄,C(θ)〉−〈γ∗,C(θ)〉
8: Update weights θ := θ − α∇θLinit(θ)
9: end for

does scale the loss defined in Eq. (10) by the same constant. We modify the loss to be invariant to
such scaling:

Linit(θ) =
〈γ̂(θ), C(θ)〉 − 〈γ∗(θ), C(θ)〉
〈γ̄, C(θ)〉 − 〈γ∗(θ), C(θ)〉

, (11)

Here γ̄ is a uniform nX × nY matrix used to stand for the averaged performance of random transport
plans. Eq. (11) captures how close the distance under constraint 〈γ∗, C〉 is to the best one, compared
to other random transports.

The mimic learning is approximately solved by alternating minimization. As described in Algorithm
2, we iterate over two steps: (i) compute the value of γ∗ and γ̂ while fixing θ; (ii) take one gradient
step with respect to Linit(θ) with fixed γ∗ and γ̂. The computation for optimal transport plans and
the optimization of θ are carried out in alternating fashion.

The OT solver is used only to estimate the value of γ∗ and γ̂ in the first step, requiring no gradient
propagation. Given such estimates of transport mappings γ∗ and γ̂, the second step can be interpreted
as learning a cost function which equates their transport costs, i.e., makes the behavior of γ̂ mimic
that of γ∗. In the experiments, we set α = 1 and Tinit = 10 for initialization purpose.
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