
Under review as a conference paper at ICLR 2020

ADVERSARIAL ATTACKS ON COPYRIGHT DETECTION
SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

It is well-known that many machine learning models are susceptible to adversarial
attacks, in which an attacker evades a classifier by making small perturbations
to inputs. This paper discusses how industrial copyright detection tools, which
serve a central role on the web, are susceptible to adversarial attacks. We discuss
a range of copyright detection systems, and why they are particularly vulnerable
to attacks. These vulnerabilities are especially apparent for neural network based
systems. As proof of concept, we describe a well-known music identification
method and implement this system in the form of a neural net. We then attack
this system using simple gradient methods. Adversarial music created this way
successfully fools industrial systems, including the AudioTag copyright detector
and YouTube’s Content ID system. Our goal is to raise awareness of the threats
posed by adversarial examples in this space and to highlight the importance of
hardening copyright detection systems to attacks.

1 INTRODUCTION

Machine learning systems are easily manipulated by adversarial attacks, in which small perturba-
tions to input data cause large changes to the output of a model. Such attacks have been demonstrated
on a number of potentially sensitive systems, largely in an idealized academic context, and occasion-
ally in the real-world (Tencent, 2019; Kurakin et al., 2016; Athalye et al., 2017; Eykholt et al., 2017;
Yakura & Sakuma, 2018; Qin et al., 2019).

Copyright detection systems are among the most widely used machine learning systems in industry,
and the security of these systems is of foundational importance to some of the largest companies in
the world. Despite their importance, copyright systems have gone largely unstudied by the ML se-
curity community. Common approaches to copyright detection extract features, called fingerprints,
from sampled video or audio, and then match these features with a library of known fingerprints.
Examples include YouTube’s Content ID, which flags copyrighted material on YouTube and enables
copyright owners to monetize and control their content. At the time of writing this paper, more than
100 million dollars have been spent on Content ID, which has resulted in more than 3 billion dollars
in revenue for copyright holders (Manara, 2018). Closely related tools such as Google Jigsaw detect
and remove videos that promote terrorism or jeopardized national security. There is also a regula-
tory push for the use of copyright detection systems; the recent EU Copyright Directive requires any
service that allows users to post text, sound, or video to implement a copyright filter.

A wide range of copyright detection systems exist, most of which are proprietary. It is not possible
to demonstrate attacks against all systems, and this is not our goal. Rather, the purpose of this paper
is to discuss why copyright detectors are especially vulnerable to adversarial attacks and establish
how existing attacks in the literature can potentially exploit audio and video copyright systems.

As a proof of concept, we demonstrate an attack against real-world copyright detection systems for
music. To do this, we reinterpret a simple version of the well-known “Shazam” algorithm for music
fingerprinting as a neural network and build a differentiable implementation of it in TensorFlow
(Abadi et al., 2016). By using a gradient-based attack and an objective that is designed to achieve
good transferability to black-box models, we create adversarial music that is easily recognizable to
a human, while evading detection by a machine. With sufficient perturbations, our adversarial music

1

Under review as a conference paper at ICLR 2020

successfully fools industrial systems,1 including the AudioTag music recognition service (AudioTag,
2009), and YouTube’s Content ID system(Google, 2019).

2 WHAT MAKES COPYRIGHT DETECTION SYSTEMS VULNERABLE TO
ATTACKS?

Work on adversarial examples has been focused largely on imaging problems, including image clas-
sification, object detection, and semantic segmentation (Szegedy et al., 2013; Goodfellow et al.,
2014; Moosavi-Dezfooli et al., 2016; 2017; Shafahi et al., 2018; Xie et al., 2017; Fischer et al.,
2017). More recently, adversarial examples have been studied for non-vision applications such as
speech recognition (i.e., speech-to-text) (Carlini & Wagner, 2018; Alzantot et al., 2018; Taori et al.,
2018; Yakura & Sakuma, 2018). Attacks on copyright detection systems are different from these
applications in a number of important ways that result in increased potential for vulnerability.

First, digital media can be directly uploaded to a server without passing through a microphone or
camera. This is drastically different from physical-world attacks, where adversarial perturbations
must survive a data measurement process. For example, a perturbation to a stop sign must be ef-
fective when viewed through different cameras, resolutions, lighting conditions, viewing angles,
motion blurs, and with different post-processing and compression algorithms. While attacks exist
that are robust to these nuisance variables (Athalye et al., 2017), this difficulty makes even white-
box attacks difficult, leaving some to believe that physical world attacks are not a realistic threat
model (Lu et al., 2017a;b). In contrast, a manipulated audio file can be uploaded directly to the web
without passing it through a microphone that may render perturbations ineffective.

Second, copyright detection is an open-set problem, in which systems process media that does not
fall into any known class (i.e., doesn’t correspond to any protected audio/video). This is different
from the closed-set detection problem in which everything is assumed to correspond to a class.
For example, a mobile phone application for music identification may solve a closed-set problem;
the developers can assume that every uploaded audio clip corresponds to a known song, and when
results are uncertain there is no harm in guessing. By contrast, when the same algorithm is used
for copyright detection on a server, developers must solve the open-set problem; nearly all uploaded
content is not copyright protected, and should be labeled as such. In this case, there is harm in
“guessing” an ID when results are uncertain, as this may bar users from uploading non-protected
material. Copyright detection algorithms must be tuned conservatively to operate in an environment
where most content does not get flagged.

Finally, copyright detection systems must handle a deluge of content with different labels despite
strong feature similarities. Adversarial attacks are known to succeed easily in an environment where
two legitimately different audio/video clips may share strong similarities at the feature level. This
has been recognized for the ImageNet classification task (Russakovsky et al., 2015), where feature
overlap between classes (e.g., numerous classes exist for different types of cats/dogs/birds) makes
systems highly vulnerable to untargeted attacks in which the attacker perturbs an object from its
home class into a different class of high similarity. As a result, state of the art defenses for untargeted
attacks on ImageNet achieve far lower robustness than classifiers for simpler tasks (Shafahi et al.,
2019; Cohen et al., 2019). Copyright detection systems may suffer from a similar problem; they must
discern between protected and non-protected content even when there is a strong feature overlap
between the two.

3 TYPES OF COPYRIGHT DETECTION SYSTEMS

Fingerprinting algorithms typically work by extracting an ensemble of feature vectors (also called
a “hash” in the case of audio tagging) from source content, and then matching these vectors to a li-
brary of known vectors associated with copyrighted material. If there are enough matches between a
source sample and a library sample, then the two samples are considered identical. Most audio, im-
age, and video fingerprinting algorithms either train a neural network to extract fingerprint features,
or extract hand-crafted features. In the former case, standard adversarial methods lead to immediate

1Affected parties were notified before publication of this article.

2

Under review as a conference paper at ICLR 2020

susceptibility. In the latter case, feature extractors can often be re-interpreted and implemented as
shallow neural networks, and then attacked (we will see an example of this below).

For video fingerprinting, one successful approach by Saviaga & Toxtli (2018) is to use object detec-
tors to identify objects entering/leaving video frames. An extracted hash then consists of features de-
scribing the entering/leaving objects, in addition to the temporal relationships between them. While
effective at labeling clean video, recent work has shown that object detectors and segmentation en-
gines are easily manipulated to adversarially place/remove objects from frames (Wang et al., 2019;
Xie et al., 2017).

Works such as Li et al. (2019) build “robust” fingerprints by training networks on commonly used
distortions (such as adding a border, adding noise, or flipping the video), but do not consider adver-
sarial perturbations. While such networks are robust against pre-defined distortions, they will not be
robust against white-box (or even black-box) adversarial attacks.

Similarly, recent plagiarism detection systems such as Yasaswi et al. (2017) rely on neural networks
to generate a fingerprint for a document. While using the deep feature representations of a document
as a fingerprint might result in a higher accuracy for the plagiarism model, it potentially leaves the
system open to adversarial attacks.

Audio fingerprinting might appear to be more secure than the domains described above because
practitioners typically rely on hand-crafted features rather than deep neural nets. However, we will
see below that even hand-crafted feature extractors are susceptible to attacks.

4 CASE STUDY: EVADING AUDIO FINGERPRINTING

We now describe a commonly used audio fingerprinting/detection algorithm and show how one can
build a differentiable neural network resembling this algorithm. This model can then be used to
mount black-box attacks on real-world systems.

4.1 AUDIO FINGERPRINTING MODELS

An acoustic fingerprint is a feature vector that is useful for quickly locating a sample or finding sim-
ilar samples in an audio database. Audio fingerprinting plays a central role in detection algorithms
such as Content ID. Therefore, in this section, we describe a generic audio fingerprinting model that
will ultimately help us generate adversarial examples.

4.1.1 IMPORTANT FINGERPRINTING GUIDELINES FROM SHAZAM

Due to the financially sensitive nature of copyright detection, there are very few publicly available
fingerprinting models. One of the few widely used publicly known models is from the Shazam team
(Wang et al., 2003). Shazam is a popular mobile phone app for identifying music. According to the
Shazam paper, a good audio fingerprint should have the following properties:

• Temporally localized: every fingerprint hash is calculated using audio samples that span a
short time interval. This enables hashes to be matched to a short sub-sample of a song.

• Translation invariant: fingerprint hashes are (nearly) the same regardless of where in the
song a sample starts and ends.

• Robust: hashes generated from the original clean database track should be reproducible
from a degraded copy of the audio.

4.1.2 THE HANDCRAFTED FINGERPRINTING MODEL

The spectrogram of a signal, also called the short-time Fourier transform, is a plot that shows the
frequency content (Fourier transform) of the waveform over time. After experimenting with various
features for fingerprinting, Wang et al. (2003) chose to form hashes from the locations of spectro-
gram peaks. Spectrogram peaks have nice properties such as robustness in the presence of noise and
approximate linear superposability.

In the next subsection, we build a shallow neural network that captures the key ideas of Wang et al.
(2003), while adding extra layers that help produce transferable adversarial examples. In particular,

3

Under review as a conference paper at ICLR 2020

1x
N

1 C
on

v,
 1

m
xm

 M
ax

 P
oo

l

=

Fi
ng

er
pr

in
t

1x
N

2 C
on

v,
 K

Figure 1: An audio fingerprinting model with two convolution layers and a max pooling layer. This
model produces binary fingerprints by finding local maxima of the spectrogram of the input signal.

we add an extra smoothing layer that makes our model difficult to attack and helps us craft strong
attacks that can transfer to other black-box models.

4.2 INTERPRETING THE FINGERPRINT EXTRACTOR AS A CNN

Here we describe the details of the generic neural network model we use for generating the audio
fingerprints. Each layer of the network can be seen as a transformation that is applied to its input. We
treat the output representation of our network as the fingerprint of the input audio signal. Ideally, we
would like to extract features that can uniquely identify a signal while being independent of the exact
start or end time of the sample. Convolutional neural networks maintain the temporally localized
and translation invariant properties mentioned in section 4.1.1, and so we model the fingerprinting
procedure using fully convolutional neural networks.

The first network layer convolves with a normalized Hann function, which is a filter of the form

f1(n) =
sin2

(
πn
N

)∑N
i=0 sin

2
(
πi
N

)
,

(1)

where N is the width of the kernel. Convolving with a normalized Hann window smooths the
adversarially perturbed audio waveform and the output of this layer is a perturbed but smooth audio
sample that is then fingerprinted. This layer removes discontinuities and bad spectral properties
that may be introduced into the signal during adversarial optimization and also makes the black-box
attacks more efficient by preventing perturbations that do not transfer well to other models.

The next convolutional layer computes the spectrogram (aka Short Term Fourier Transform) of the
waveform and converts the audio signal from its original domain to a representation in the frequency
domain. This is accomplished by convolving with an ensemble of N Fourier kernels of different
frequencies, each with N output channels. This convolution has filters of the form

f2(k, n) = e−i2πkn/N , (2)

where k ∈ 0, 1, · · · , N − 1 is an output channel index and n ∈ 0, 1, · · · , N − 1 is the index of the
filter coefficient. After this convolution is computed, we apply |x| on the output to get the magnitude
of the STFT.

After the convolutional layers, we get a feature representation of the audio signal. We call this
feature representation φ(x), where x is the input signal. This representation is susceptible to noise
and a slight perturbation in the audio signal can change it. Furthermore, this representation is very
dense which makes it relatively hard to store and search against all audio signals in the database.
To address these issues, Wang et al. (2003) suggest using the local maxima of the spectrogram as
features.

We can find local maxima within our neural net framework by applying a max pooling function over
the feature representation φ(x). We then find the places where the output of the maxpool equals the
original feature representation (i.e., the locations where φ(x) = maxpool (φ(x))). The resulting
binary map of local maxima locations is the fingerprint of the signal and can be used to search for a
signal against a database of previously processed signals. We will refer to this binary fingerprint as
ψ (x) where x is the input signal. Figure 1 depicts the 2-layer convolutional network we use in this
work for generating signal fingerprints.

4

Under review as a conference paper at ICLR 2020

4.3 FORMULATING THE ADVERSARIAL LOSS FUNCTION

To craft an adversarial perturbation, we need a differentiable surrogate loss that measures how well
an extracted fingerprint matches a reference. The CNN described in section 4.2 uses spectrogram
peaks to generate fingerprints, but we did not yet specify a loss for quantifying how close two finger-
prints are. Once we have such a loss, we can use standard gradient methods to find a perturbation δ
that can be added to an audio signal to prevent copyright detection. To ensure the similarity between
perturbed and clean audio, we bound the perturbation δ. That is, we enforce ‖δ‖p ≤ ε. Here ‖.‖p
is the `p-norm of the perturbation and ε is the perturbation budget available to the adversary. In our
experiments, we use the `∞-norm as our measure of perturbation size.

The simplest similarity measure between two binary fingerprints is simply the Hamming distance.
Since the fingerprinting model outputs a binary fingerprint ψ(x), we can simply measure the number
of local maxima that the signals x and y share by |ψ(x)·ψ(y)|. To make a differentiable loss function
from this similarity measure, we use

J(x, y) = |φ(x) · ψ(x) · ψ(y)|. (3)

In the white box case where the fingerprinting system is known, attacks using the loss (3) are ex-
tremely effective. However, attacks using this loss are extremely brittle and do not transfer well; one
can minimize this loss by changing the locations of local maxima in the spectrogram by just one
pixel. Such small changes in the spectrogram are unlikely to transfer reliably to black-box industrial
systems.

To improve the transferability of our adversarial examples, we propose a robust loss that promotes
large movements in the local maxima of the spectrogram. We do this by moving the locations
of local maxima in φ(x) outside of any neighborhood of the local maxima of φ(y). To efficiently
implement this constraint within a neural net framework, we use two separate max pooling layers,
one with a bigger width w1 (the same width used in fingerprint generation), and the other with a
smaller width w2. If a location in the spectrogram yields output of the w1 pooling strictly larger
than the output of the w2 pooling2, we can be sure that there is no spectrogram peak within radius
w2 of that location.

Equation 4 describes a loss function that penalizes the local maxima of x that are in the w2 neigh-
borhood of local maxima of y. This loss function forces the output of the max pooling layers to be
different by at least a margin c.

J(x, y) =
∑
i

(
ReLU

(
c−

(
max
|j|≤w1

φ(i+ j;x)− max
|j|≤w2

φ(i+ j;x)

))
· ψ(i; y)

)
(4)

Finally, we make our loss function differentiable by replacing the maximum operator with the
smoothed max function

Sα (x1, x2, · · · , xn) =
∑n
i=1 xie

αxi∑n
i=1 e

αxi
, (5)

where α is a smoothing hyper parameter. As α → ∞, the smoothed max function more accurately
approximates the exact max function. For simplicity, we chose α = 1 for all experiments.

4.4 CRAFTING THE EVASION ATTACK

We solve the bounded optimization problem

min
δ
J(x+ δ, x) s.t. ‖δ‖∞ ≤ ε, (6)

where x is the benign audio sample, and J is the loss function defined in equation 4 with the
smoothed max function. Note that unlike common adversarial example generation problems from
the literature, our formulation is a minimization problem because of how we defined the objective.
We solve (6) using projected gradient descent (Goldstein et al., 2014) in which each iteration updates
the perturbation using Adam (Kingma & Ba, 2014), and then clips the perturbation to ensure that
the `∞ constraint is satisfied.

2The first maxpool layer’s output is always greater than or equal to the output of the second maxpool layer.

5

Under review as a conference paper at ICLR 2020

4.5 REMIX ADVERSARIAL EXAMPLES

The optimization problem defined in equation 6 tries to create an adversarial example with a finger-
print that does not look like the original signal’s fingerprint. While this approach can trick the search
algorithm used in copyright detection systems by lowering its confidence, it can result in unnatural
sounding perturbations. Alternatively, we can try to enforce the perturbed signal’s fingerprint to be
similar to a different audio signal. Due to the approximate linear superposability characteristic of
the spectrogram peaks, this will make the adversarial example sound more natural and like the target
signal audio.

To achieve this goal, we will first introduce a loss function that tries to make two signals look similar
rather than different. As described in equation 7, such a loss can be obtained by replacing the order
of max over big and small neighborhoods in equation 4. Note that we will still use the smooth
maximum from equation 5.

Jremix(x, y) =
∑
i

(
ReLU

(
c−

(
max
|j|≤w2

φ(i+ j;x)− max
|j|≤w1

φ(i+ j;x)

))
· ψ(i; y)

)
(7)

Using this loss function, we define the optimization problem in equation 8, which not only tries
to make the adversarial example different from the original signal x, but also forces similarity to
another signal y.

min
δ
J(x+ δ, x) + λJremix(x+ δ, y) s.t. ‖δ‖p ≤ ε. (8)

Here λ is a scale parameter that controls how much we enforce the similarity between the finger-
prints of x+ δ and y. We call adversarial examples generated using equation 8 “remix” adversarial
examples as they sound more like a remix, and refer to examples generated using equation 6 as
default adversarial examples. While a successful attack’s adversarial perturbation may be larger in
the case of remix adversarial examples (due to the additional term in the objective function), the
perturbation sounds more natural.

5 EVALUATING TRANSFER ATTACKS ON INDUSTRIAL SYSTEMS

We test the effectiveness of our black-box attacks on two real-world audio search/copyright detection
systems. The inner workings of both systems are proprietary, and therefore it is necessary to attack
these systems with black-box transfer attacks. Both systems claim to be robust against noise and
other input signal distortions.

We test our system on a dataset containing the top billboard songs from the past 10 years. We ex-
tract a 30-second fragment of these songs and craft both our default and remix adversarial examples
for them. Although both types of adversarial examples can dodge detection, they have very dif-
ferent characteristics. The default adversarial examples (equation 6) work by removing identifiable
frequencies from the original signal, while the remix adversarial examples (equation 8) work by
introducing new frequencies to the signal that will confuse the real-world systems.

5.1 WHITE-BOX ATTACK RESULTS

Before evaluating black-box transfer attacks against real-world systems, we evaluate the effective-
ness of a white-box attack against our own proposed model. Doing so will allow us to have a baseline
of how effective an adversarial example can be if the details of a model are ever released or leaked.

To create white-box attacks against our model, we use the loss function defined in equation 3. By
optimizing this function, we can remove almost all of the fingerprints identified by our model with
perturbations that are unnoticeable by humans. Table 1 shows the norms of the perturbations re-
quired to remove 90%, 95%, and 99% of the fingerprint hashes.

5.2 TRANSFER ATTACKS ON AUDIOTAG

AudioTag3 is a free music recognition service with millions of songs in its database. When a user
uploads a short audio fragment on this website, AudioTag compares the audio fragment against a

3https://audiotag.info/

6

https://audiotag.info/

Under review as a conference paper at ICLR 2020

Percentage of removed hashes 90% 95% 99%
Perturbation norm (`∞) 0.012 0.023 0.038
Perturbation norm (`2) 0.004 0.005 0.006

Table 1: Norms of the perturbations for white-box attacks. Before computing the norms, we have
normalized the signals to have samples that lie in [0, 1].

database of songs and identifies what song this audio fragment belongs to. AudioTag claims to be
“robust to sound distortions, noises and even speed variation, and will therefore recognize songs even
in low quality audio recordings”.4 Therefore, one would expect that low-amplitude non-adversarial
noise should not affect this system.

As shown in Figure 2, AudioTag can accurately detect the songs corresponding to the benign signal.
However, the system fails to detect both the default and remix adversarial examples built for them.
During our experiments with AudioTag, we realized that this system is relatively sensitive to our
proposed attacks and it can be fooled with relatively small perturbation budgets. Qualitatively,
the magnitude of the noise required to fool this system is small and it is not easily noticeable by
humans. Based on this observation, we suspect that the architecture of the fingerprinting model used
in AudioTag may have similarities to our surrogate model in section 4.2.

Figure 2: AudioTag can identify the benign audio signals, but fails to detect adversarial examples.

Table 2 shows the `∞ and `2 norms of the perturbations required to fool AudioTag on 90% of the
songs in our dataset. We also verified AudioTag’s claim of being robust to input distortions by
applying random perturbations to the audio recordings. To fool AudioTag with random noise, the
magnitude (`∞) of the noise must be roughly 4 times larger than the noise we craft using equation 6.

Target model AudioTag YouTube
Type of perturbation default remix random noise default remix random noise

Perturbation norm (`∞) 0.03 0.03 0.12 0.10 0.10 0.32
Perturbation norm (`2) 0.02 0.02 0.06 0.07 0.08 0.19

Table 2: Norms of the perturbations in adversarial examples that can evade each real-world system.
Before computing the norms, we have normalized the signals to [0, 1].

5.3 YOUTUBE

YouTube5 is a video sharing website that allows users to upload their own video files. YouTube
has developed a system called “Content ID6” to automatically tag user-uploaded content that con-
tains copyrighted material. Using this system, copyright owners can submit their content and have
YouTube scan uploaded videos against it.

As shown in the screenshot in Figure 4, YouTube Content ID can successfully identify the benign
songs we use in our experiment. At the time of writing this paper both our default and remix attacks

4https://audiotag.info/faq
5https://www.youtube.com/
6https://support.google.com/youtube/answer/2797370?hl=en

7

https://audiotag.info/faq
https://www.youtube.com/
https://support.google.com/youtube/answer/2797370?hl=en

Under review as a conference paper at ICLR 2020

Figure 4: YouTube can successfully identify the benign/original audio signal while it fails to detect
the adversarial examples.

successfully evade Content ID and go undetected. However, YouTube Content ID is significantly
more robust to our attacks than AudioTag. To fool Content ID, we had to use a larger value for ε.
This makes perturbations quite noticeable, although songs are still immediately recognizable by a
human. Furthermore, a perturbation with non-adversarial random noise must have an `∞ norm 3
times larger than our adversarial perturbations to successfully avoid being detected.

0 5 · 10−2 0.1 0.15 0.2
0

0.25

0.5

0.75

1

`∞ (ε)

R
ec

al
l

Figure 3: YouTube’s copyright detection recall
against the magnitude of noise on top Billboard
songs dataset

We repeated our experiments with identi-
cal hyper-parameters on the songs from our
dataset. Table 2 shows the `∞ norms (i.e., the
parameter ε) and `2 norms of the perturbations
required to fool YouTube on 67% of the songs
in our dataset. Furthermore, figure 3 shows the
recall of YouTube’s copyright detection tool on
our dataset for different magnitudes of pertur-
bations.

6 CONCLUSION

Copyright detection systems are an important
category of machine learning methods, but the
robustness of these systems to adversarial at-
tacks has not been addressed yet by the machine
learning community. We discussed the vulner-
ability of copyright detection systems, and ex-
plain how different kinds of systems may be
vulnerable to attacks using known methods. As
a proof of concept, we build a simple song iden-
tification method using neural network primitives and attack it using well-known gradient methods.
Surprisingly, attacks on this model transfer well to online systems.

Note that none of the authors of this paper are experts in audio processing or fingerprinting systems.
The implementations used in this study are far from optimal, and we expect that attacks can be
strengthened using sharper technical tools, including perturbation types that are less perceptible to
the human ear. Furthermore, we are doing transfer attacks using fairly rudimentary surrogate models
that rely on hand-crafted features, while commercial system likely rely on full trainable neural nets.

Our goal here is not to facilitate copyright evasion, but rather to raise awareness of the threats
posed by adversarial examples in this space, and to highlight the importance of hardening copyright
detection and content control systems to attack. A number of defenses already exist that can be
utilized for this purpose, including adversarial training.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-
scale machine learning. In 12th {USENIX} Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 16), pp. 265–283, 2016.

Moustafa Alzantot, Bharathan Balaji, and Mani Srivastava. Did you hear that? adversarial examples
against automatic speech recognition. arXiv preprint arXiv:1801.00554, 2018.

Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing robust adversarial
examples. arXiv preprint arXiv:1707.07397, 2017.

AudioTag. Audiotag – free music recognition robot, 2009. URL https://audiotag.info/.

Nicholas Carlini and David Wagner. Audio adversarial examples: Targeted attacks on speech-to-
text. In 2018 IEEE Security and Privacy Workshops (SPW), pp. 1–7. IEEE, 2018.

Jeremy M Cohen, Elan Rosenfeld, and J Zico Kolter. Certified adversarial robustness via randomized
smoothing. arXiv preprint arXiv:1902.02918, 2019.

Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul
Prakash, Tadayoshi Kohno, and Dawn Song. Robust physical-world attacks on deep learning
models. arXiv preprint arXiv:1707.08945, 2017.

Volker Fischer, Mummadi Chaithanya Kumar, Jan Hendrik Metzen, and Thomas Brox. Adversarial
examples for semantic image segmentation. arXiv preprint arXiv:1703.01101, 2017.

Tom Goldstein, Christoph Studer, and Richard Baraniuk. A field guide to forward-backward splitting
with a fasta implementation. arXiv preprint arXiv:1411.3406, 2014.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Google. How content id works – youtube help, 2019. URL https://support.google.com/
youtube/answer/2797370?hl=en.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
arXiv preprint arXiv:1607.02533, 2016.

Y. Li, D. Wang, and L. Tang. Robust and secure image fingerprinting learned by neural network.
IEEE Transactions on Circuits and Systems for Video Technology, pp. 1–1, 2019. ISSN 1051-
8215. doi: 10.1109/TCSVT.2019.2890966.

Jiajun Lu, Hussein Sibai, Evan Fabry, and David Forsyth. No need to worry about adversarial
examples in object detection in autonomous vehicles. arXiv preprint arXiv:1707.03501, 2017a.

Jiajun Lu, Hussein Sibai, Evan Fabry, and David Forsyth. Standard detectors aren’t (currently)
fooled by physical adversarial stop signs. arXiv preprint arXiv:1710.03337, 2017b.

Cedric Manara. Protecting what we love about the internet: our efforts to stop online piracy,
2018. https://www.blog.google/outreach-initiatives/public-policy/
protecting-what-we-love-about-internet-our-efforts-stop-online-piracy/
[Accessed: 05/21/2019].

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and
accurate method to fool deep neural networks. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 2574–2582, 2016.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Universal
adversarial perturbations. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1765–1773, 2017.

9

https://audiotag.info/
https://support.google.com/youtube/answer/2797370?hl=en
https://support.google.com/youtube/answer/2797370?hl=en
https://www.blog.google/outreach-initiatives/public-policy/protecting-what-we-love-about-internet-our-efforts-stop-online-piracy/
https://www.blog.google/outreach-initiatives/public-policy/protecting-what-we-love-about-internet-our-efforts-stop-online-piracy/

Under review as a conference paper at ICLR 2020

Yao Qin, Nicholas Carlini, Ian Goodfellow, Garrison Cottrell, and Colin Raffel. Imperceptible,
robust, and targeted adversarial examples for automatic speech recognition. arXiv preprint
arXiv:1903.10346, 2019.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115(3):211–252, 2015.

Claudia Saviaga and Carlos Toxtli. Deepiracy: Video piracy detection system
by using longest common subsequence and deep learning, 2018. https:
//www.blog.google/outreach-initiatives/public-policy/
protecting-what-we-love-about-internet-our-efforts-stop-online-piracy/
[Accessed: 05/21/2019].

Ali Shafahi, Mahyar Najibi, Zheng Xu, John Dickerson, Larry S Davis, and Tom Goldstein. Uni-
versal adversarial training. arXiv preprint arXiv:1811.11304, 2018.

Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu, John Dickerson, Christoph Studer, Larry S
Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! arXiv preprint
arXiv:1904.12843, 2019.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Rohan Taori, Amog Kamsetty, Brenton Chu, and Nikita Vemuri. Targeted adversarial examples for
black box audio systems. arXiv preprint arXiv:1805.07820, 2018.

Tencent. Experimental security research of tesla autopilot, 2019.

Avery Wang et al. An industrial strength audio search algorithm. In Ismir, volume 2003, pp. 7–13.
Washington, DC, 2003.

Derui Wang, Chaoran Li, Sheng Wen, Surya Nepal, and Yang Xiang. Daedalus: Break-
ing non-maximum suppression in object detection via adversarial examples. arXiv preprint
arXiv:1902.02067, 2019.

Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi Xie, and Alan Yuille. Adversarial
examples for semantic segmentation and object detection. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pp. 1369–1378, 2017.

Hiromu Yakura and Jun Sakuma. Robust audio adversarial example for a physical attack. arXiv
preprint arXiv:1810.11793, 2018.

J. Yasaswi, S. Purini, and C. V. Jawahar. Plagiarism detection in programming assignments using
deep features. In 2017 4th IAPR Asian Conference on Pattern Recognition (ACPR), pp. 652–657,
Nov 2017. doi: 10.1109/ACPR.2017.146.

10

https://www.blog.google/outreach-initiatives/public-policy/protecting-what-we-love-about-internet-our-efforts-stop-online-piracy/
https://www.blog.google/outreach-initiatives/public-policy/protecting-what-we-love-about-internet-our-efforts-stop-online-piracy/
https://www.blog.google/outreach-initiatives/public-policy/protecting-what-we-love-about-internet-our-efforts-stop-online-piracy/

	Introduction
	What makes copyright detection systems vulnerable to attacks?
	Types of copyright detection systems
	Case study: evading audio fingerprinting
	Audio fingerprinting models
	Important fingerprinting guidelines from Shazam
	The handcrafted fingerprinting model

	Interpreting the fingerprint extractor as a CNN
	Formulating the adversarial loss function
	Crafting the evasion attack
	Remix adversarial examples

	Evaluating transfer attacks on industrial systems
	White-box attack results
	Transfer attacks on AudioTag
	YouTube

	Conclusion

