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ABSTRACT

Min-max formulations have attracted great attention in the ML community due
to the rise of deep generative models and adversarial methods, and understanding
the dynamics of (stochastic) gradient algorithms for solving such formulations has
been a grand challenge. As a first step, we restrict to bilinear zero-sum games and
give a systematic analysis of popular gradient updates, for both simultaneous and
alternating versions. We provide exact conditions for their convergence and find
the optimal parameter setup and convergence rates. In particular, our results offer
formal evidence that alternating updates converge “better” than simultaneous ones.

1 INTRODUCTION

Min-max optimization has received significant attention recently due to the popularity of generative
adversarial networks (GANs) (Goodfellow et al., 2014) and adversarial training (Madry et al., 2018),
just to name some examples. Formally, given a bivariate function f(x,y), we aim to find a saddle
point (x∗,y∗) such that

f(x∗,y) ≤ f(x∗,y∗) ≤ f(x,y∗), ∀x ∈ Rn, ∀y ∈ Rn.
Since the beginning of game theory, various algorithms have been proposed for finding saddle points
(Arrow et al., 1958; Dem’yanov & Pevnyi, 1972; Gol’shtein, 1972; Korpelevich, 1976; Rockafellar,
1976; Bruck, 1977; Lions, 1978; Nemirovsky & Yudin, 1983; Freund & Schapire, 1999). Due to its
recent resurgence in ML, new algorithms specifically designed for training GANs were proposed
(Daskalakis et al., 2018; Kingma & Ba, 2015; Gidel et al., 2019b; Mescheder et al., 2017). However,
due to the inherent non-convexity in deep learning formulations, our current understanding of the
convergence behaviour of new and classic gradient algorithms is still quite limited, and existing
analysis mostly focused on bilinear games or strongly-convex-strongly-concave games (Tseng, 1995;
Daskalakis et al., 2018; Gidel et al., 2019b; Liang & Stokes, 2019; Mokhtari et al., 2019b). Non-
zero-sum bilinear games, on the other hand, are known to be PPAD-complete (Chen et al., 2009) (for
finding approximate Nash equilibria, see e.g. Deligkas et al. (2017)).

In this work, we study bilinear zero-sum games as a first step towards understanding general min-max
optimization, although our results apply to some simple GAN settings (Gidel et al., 2019a). It is
well-known that certain gradient algorithms converge at a linear rate on bilinear zero-sum games
(Liang & Stokes, 2019; Mokhtari et al., 2019b; Rockafellar, 1976; Korpelevich, 1976). These iterative
algorithms usually come with two versions: Jacobi style updates or Gauss-Seidel (GS) style. In
a Jacobi style, we update the two sets of parameters (i.e., x and y) simultaneously whereas in a
GS style we update them alternatingly (i.e., one after the other). Thus, Jacobi style updates are
naturally amenable to parallelization while GS style updates have to be implemented sequentially,
although the latter are usually found to converge faster (and more stable). In numerical linear algebra,
the celebrated Stein-Rosenberg theorem (Stein & Rosenberg, 1948) formally proves that in solving
certain linear systems, GS updates converge strictly faster than their Jacobi counterparts, and often
with a larger set of convergent instances. However, this result does not readily apply to bilinear
zero-sum games.

Our main goal here is to answer the following questions about solving bilinear zero-sum games:

• When exactly does a gradient-type algorithm converge?
• What is the optimal convergence rate by tuning the step size or other parameters?
• Can we prove something similar to the Stein-Rosenberg theorem for Jacobi and GS updates?
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Table 1: Comparisons between Jacobi and Gauss-Seidel updates. The second and third columns show
when exactly an algorithm converges, with Jacobi or GS updates. The last column shows whether the
convergence region of Jacobi updates is contained in the GS convergence region.

Algorithm Jacobi Gauss-Seidel Contained?

GD diverges limit cycle N/A
EG Theorem 3.2 Theorem 3.2 if β1 + β2 + α2 < 2/σ2

1
OGD Theorem 3.3 Theorem 3.3 yes
momentum does not converge Theorem 3.4 yes

Table 2: Optimal convergence rates. In the second column, β∗ denotes a specific parameter that
depends on σ1 and σn (cf. equation 4.2). In the third column, the linear rates are for large κ. The
optimal parameters for both Jacobi and Gauss-Seidel EG algorithms are the same.

Algorithm α β1 β2 rate exponent Comment

EG ∼ 0 2/(σ2
1 + σ2

n) β1 ∼ 1− 2/κ2 Jacobi and Gauss-Seidel
Jacobi OGD 2β1 β∗ β1 ∼ 1− 1/(6κ2) β1 = β2 = α/2
GS OGD

√
2/σ1

√
2σ1/(σ

2
1 + σ2

n) 0 ∼ 1− 1/κ2 β1 and β2 can interchange

Contributions We summarize our main results from §3 and §4 in Table 1 and 2 respectively, with
supporting experiments given in §5. We use σ1 and σn to denote the largest and the smallest singular
values of matrix E (cf. equation 2.1), and κ := σ1/σn denotes the condition number. The algorithms
will be introduced in §2. Note that we generalize gradient-type algorithms but retain the same names.
Table 1 shows that in most cases that we study, whenever Jacobi updates converge, the corresponding
GS updates converge as well (usually with a faster rate), but the converse is not true (§3). This
extends the well-known Stein-Rosenberg theorem to bilinear games. Furthermore, Table 2 tells us
that by generalizing our existing gradient algorithms, we can obtain faster convergence rates.

2 PRELIMINARIES

Mathematically, bilinear zero-sum games can be formulated as the following min-max problem:

minx∈Rn maxy∈Rn x>Ey + b>x+ c>y. (2.1)

(Throughout for simplicity we assume E to be invertible.) The set of all saddle points is:

{(x,y) |Ey + b = 0, ETx+ c = 0}. (2.2)

The linear terms are not essential in our analysis and we take b = c = 0 throughout the paper1. For
biliner games, it is well-known that simultaneous gradient descent does not converge (Nemirovsky
& Yudin, 1983) and other gradient-based algorithms tailored for min-max optimization have been
proposed (Korpelevich, 1976; Daskalakis et al., 2018; Gidel et al., 2019a; Mescheder et al., 2017).
These iterative algorithms all belong to the class of general linear dynamical systems (LDS, a.k.a.
matrix iterative processes). Using state augmentation z(t) := (x(t),y(t)) we define a general k-step
LDS as follows:

z(t) =
∑k
i=1Aiz

(t−i) + d, (2.3)

where the matrices Ai and vector d depend on the gradient algorithm (examples can be found in
Appendix C.1). Define the characteristic polynomial:

p(λ) := det(λkI −
∑k
i=1Aiλ

k−i), (2.4)

the following well-known result decides when such a k-step LDS converges for any initialization:
Theorem 2.1 (e.g. Gohberg et al. (1982)). The LDS in equation 2.3 converges for any initialization
(z(0), . . . ,z(k−1)) iff the spectral radius r := max{|λ| : p(λ) = 0} < 1, in which case {z(t)}
converges linearly with an (asymptotic) exponent r.

1If they are not zero, one can translate x and y to cancel the linear terms.
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Therefore, understanding the bilinear game dynamics reduces to spectral analysis. The (sufficient and
necessary) convergence condition reduces to that all roots of p(λ) lie in the (open) unit disk, which
can be conveniently analyzed through the celebrated Schur’s theorem (Schur, 1917):
Theorem 2.2 (Schur (1917)). The roots of a real polynomial p(λ) = a0λ

n + a1λ
n−1 + · · ·+ an are

within the (open) unit disk of the complex plane iff ∀k ∈ {1, 2, . . . , n}, det(PkP
>
k −Q>kQk) > 0,

where Pk,Qk are k × k matrices defined as: [Pk]i,j = ai−j1i≥j , [Qk]i,j = an−i+j1i≤j .

In the theorem above, we denoted 1S as the indicator function of the event S, i.e. 1S = 1 if S
holds and 1S = 0 otherwise. For a nice summary of related stability tests, see Mansour (2011). We
therefore define Schur stable polynomials to be those polynomials whose roots all lie within the
(open) unit disk of the complex plane. Schur’s theorem has the following corollary (proof included in
Appendix B.2 for the sake of completeness):
Corollary 2.1 (e.g. Mansour (2011)). A real quadratic polynomial λ2 + aλ + b is Schur stable
iff b < 1, |a| < 1 + b; A real cubic polynomial λ3 + aλ2 + bλ + c is Schur stable iff |c| < 1,
|a+ c| < 1 + b, b− ac < 1− c2; A real quartic polynomial λ4 + aλ3 + bλ2 + cλ+ d is Schur stable
iff |c− ad| < 1− d2, |a+ c| < b+ d+ 1, and b < (1 + d) + (c− ad)(a− c)/(d− 1)2.

Let us formally define Jacobi and GS updates: Jacobi updates take the form

x(t) = T1(x(t−1),y(t−1), . . . ,x(t−k),y(t−k)), y(t) = T2(x(t−1),y(t−1), . . . ,x(t−k),y(t−k)),

while Gauss-Seidel updates replace x(t−i) with the more recent x(t−i+1) in operator T2, where
T1, T2 : Rnk × Rnk → Rn can be any update functions. For LDS updates in equation 2.3 we find a
nice relation between the characteristic polynomials of Jacobi and GS updates in Theorem 2.3 (proof
in Appendix B.1), which turns out to greatly simplify our subsequent analyses:

Theorem 2.3 (Jacobi vs. Gauss-Siedel). Let p(λ, γ) = det(
∑k
i=1(γLi +Ui)λ

k−i − λkI), where
Ai = Li + Ui and Li is strictly lower block triangular. Then, the characteristic polynomial of
Jacobi updates is p(λ, 1) while that of Gauss-Siedel updates is p(λ, λ).

Compared to the Jacobi update, in some sense the Gauss-Siedel update amounts to shifting one
step to the left the strictly lower block triangular matrices Li, as p(λ, λ) can be rewritten as
det
(∑k

i=1(Li+1 +Ui)λ
k−i − λkI

)
, with Lk+1 := 0. This observation will significantly sim-

plify our comparison between Jacobi and Gauss-Siedel updates.

Next, we define some popular gradient algorithms for finding saddle points in the min-max problem

min
x

max
y

f(x,y). (2.5)

We present the algorithms for a general (bivariate) function f although our main results will specialize
f to the bilinear case in equation 2.1. Note that unlike their usual presentations, we introduced more
“step sizes” for refined analysis, as we find that the enlarged parameter space often contain choices
for faster linear convergence (see §4). We only define the Jacobi updates, while the GS counterparts
can be easily inferred from the general rule above. We always use α1 and α2 to define step sizes
(a.k.a. learning rates) which are positive.

Gradient descent (GD) The generalized GD update has the following form:

x(t+1) = x(t) − α1∇xf(x(t),y(t)), y(t+1) = y(t) + α2∇yf(x(t),y(t)). (2.6)

When α1 = α2, the convergence of averaged iterates (a.k.a. Cesari convergence) for convex-concave
games is analyzed in (Bruck, 1977; Nemirovski & Yudin, 1978; Nedić & Ozdaglar, 2009).

Extra-gradient (EG) We study a generalized version of EG, defined as follows:

x(t+1/2) = x(t) − γ1∇xf(x(t),y(t)), y(t+1/2) = y(t) + γ2∇yf(x(t),y(t)); (2.7)

x(t+1) = x(t) − α1∇xf(x(t+1/2),y(t+1/2)), y(t+1) = y(t) + α2∇yf(x(t+1/2),y(t+1/2)). (2.8)

EG was first proposed in Korpelevich (1976) with the restriction α1 = α2 = γ1 = γ2, under which
linear convergence was proved for bilinear games. A slightly more generalized version was analyzed
in Liang & Stokes (2019) where α1 = α2, γ1 = γ2, again with linear convergence proved. For later
convenience we define β1 = α2γ1 and β2 = α1γ2.

3



Under review as a conference paper at ICLR 2020

Optimistic gradient descent (OGD) We study a generalized version of OGD, defined as follows:

x(t+1) = x(t) − α1∇xf(x(t),y(t)) + β1∇xf(x(t−1),y(t−1)), (2.9)

y(t+1) = y(t) + α2∇yf(x(t),y(t))− β2∇yf(x(t−1),y(t−1)). (2.10)

The original version of OGD was given in Daskalakis et al. (2018) with α1 = α2 = 2β1 = 2β2, and
its linear convergence for bilinear games was proved in Liang & Stokes (2019). A slightly more
generalized version with α1 = α2 and β1 = β2 was analyzed in Mokhtari et al. (2019b), again with
linear convergence proved.

Momentum method Generalized heavy ball method was analyzed in Gidel et al. (2019b):

x(t+1) = x(t) − α1∇xf(x(t),y(t)) + β1(x(t) − x(t−1)), (2.11)

y(t+1) = y(t) + α2∇yf(x(t),y(t)) + β2(y(t) − y(t−1)). (2.12)

This is a modification of Polyak’s heavy ball (HB) (Polyak, 1964), which also motivated Nesterov’s
accelerated gradient algorithm (NAG) (Nesterov, 1983). For bilinear games, HB and NAG are the
same and hence we call both the momentum method. Note that for both x-update and the y-update,
we add a scale multiple of the successive difference (e.g. proxy of the momentum). For this algorithm
our result below improves those obtained in Gidel et al. (2019b), as will be discussed in §3.

EG and OGD as approximations of proximal point algorithm It has been observed recently in
Mokhtari et al. (2019b) that for convex-concave games, EG (α1 = α2 = γ1 = γ2 = η) and OGD
(α1/2 = α2/2 = β1 = β2 = η) can be treated as approximations of the proximal point algorithm
(Martinet, 1970; Rockafellar, 1976) when η is small. With this result, one can show that EG and OGD
converge to saddle points sublinearly for smooth convex-concave games (Mokhtari et al., 2019a).
We give a brief introduction of the proximal point algorithm in Appendix A (including a linear
convergence result for the slightly generalized version).

The above algorithms, when specialized to a bilinear function f (cf. equation 2.1), can be rewritten as
a 1-step or 2-step LDS (cf. equation 2.3). See Appendix C.1 for details.

3 EXACT CONDITIONS

With tools from §2, we formulate necessary and sufficient conditions under which a gradient-based
algorithm converges for bilinear games. We sometimes use “J" as a shorthand for Jacobi style updates
and “GS" for Gauss-Seidel style updates. For each algorithm, we first write down the characteristic
polynomials (see derivation in Appendix C.1) for both Jacobi and GS updates, and present the exact
conditions for convergence. Specifically, we show that in many cases the GS convergence regions
strictly include the Jacobi convergence regions. The proofs for Theorem 3.1, 3.2, 3.3 and 3.4 can be
found in Appendices C.2, C.3, C.4, and C.5, respectively.

GD The characteristic equations can be computed as:

J: (λ− 1)2 + α1α2σ
2 = 0, GS: (λ− 1)2 + α1α2σ

2λ = 0. (3.1)

Scaling symmetry From equation 3.1 we obtain a scaling symmetry (α1, α2) → (tα1, α2/t),
with t > 0. With this symmetry we can always fix α1 = α2 = α. This symmetry also holds for
EG and momentum. For OGD, the scaling symmetry is slightly different with (α1, β1, α2, β2) →
(tα1, tβ1, α2/t, β2/t), but we can still use this symmetry to fix α1 = α2 = α.

Theorem 3.1 (GD). Jacobi GD and Gauss-Seidel GD do not converge. However, Gauss-Seidel GD
can have a limit cycle while Jacobi GD always diverges.

EG The characteristic equations can be computed as:

J: (λ− 1)2 + (β1 + β2)σ2(λ− 1) + (α1α2σ
2 + β1β2σ

4) = 0, (3.2)

GS: (λ− 1)2 + (α1α2 + β1 + β2)σ2(λ− 1) + (α1α2σ
2 + β1β2σ

4) = 0. (3.3)
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Theorem 3.2 (EG). For generalized EG with α1 = α2 = α and γi = βi/α, Jacobi and Gauss-Seidel
updates achieve linear convergence iff for any singular value σ of E, we have:

J: |β1σ2 + β2σ
2 − 2| < 1 + (1− β1σ2)(1− β2σ2) + α2σ2, (1− β1σ2)(1− β2σ2) + α2σ2 < 1,

GS: |(β1 + β2 + α2)σ2 − 2| < 1 + (1− β1σ2)(1− β2σ2), (1− β1σ2)(1− β2σ2) < 1.

If β1 +β2 +α2 < 2/σ2
1 , the convergence region of GS updates strictly include that of Jacobi updates.

OGD The characteristic equations can be computed as:

J: λ2(λ− 1)2 + (λα1 − β1)(λα2 − β2)σ2 = 0, (3.4)

GS: λ2(λ− 1)2 + (λα1 − β1)(λα2 − β2)λσ2 = 0. (3.5)

Theorem 3.3 (OGD). For generalized OGD with α1 = α2 = α, Jacobi and Gauss-Seidel updates
achieve linear convergence iff for any singular value σ of E, we have:

J: |β1β2σ2| < 1, (α− β1)(α− β2) > 0, 4 + (α+ β1)(α+ β2)σ2 > 0,

α2
(
β2
1σ

2 + 1
) (
β2
2σ

2 + 1
)
< (β1β2σ

2 + 1)(2α(β1 + β2) + β1β2(β1β2σ
2 − 3)),

GS: (α− β1)(α− β2) > 0, (α+ β1)(α+ β2)σ2 < 4,

(αβ1σ
2 + 1)(αβ2σ

2 + 1) > (1 + β1β2σ
2)2.

The convergence region of GS updates strictly include that of Jacobi updates.

Momentum The characteristic equations can be computed as:

J: (λ− 1)2(λ− β1)(λ− β2) + α1α2σ
2λ2 = 0, (3.6)

GS: (λ− 1)2(λ− β1)(λ− β2) + α1α2σ
2λ3 = 0. (3.7)

Theorem 3.4 (momentum). For the generalized momentum method with α1 = α2 = α, the Jacobi
style updates never converge, while the GS style updates converge iff for any singular value σ of E,
we have:

|β1β2| < 1, | − α2σ2 + β1 + β2 + 2| < β1β2 + 3, 4(β1 + 1)(β2 + 1) > α2σ2,

α2σ2β1β2 < (1− β1β2)(2β1β2 − β1 − β2).

This condition implies that at least one of β1, β2 is negative.

Prior to our work, only sufficient conditions for linear convergence are given for the usual EG and
OGD; cf. §2 above. For the momentum method, our result improves upon Gidel et al. (2019b)
where the authors only considered specific cases of parameters. For example, they only considered
β1 = β2 ≥ −1/16 for Jacobi momentum, and β1 = −1/2, β2 = 0 for GS momentum. Our Theorem
3.4 gives a more complete picture and formally justifies the necessity of negative momentum.

In the theorems above, we used the term “convergence region" to denote a subset of the parameter
space (with parameters α, β or γ) where the algorithm converges. Our result shares similarity with the
celebrated Stein-Rosenberg theorem (Stein & Rosenberg, 1948), which only applies to solving linear
systems with non-negative matrices. If one were to apply it to our case, the matrix E in equation 2.1
would have to be the trivial zero matrix (see equation F.1 in Appendix F). In this sense, our results
extend the Stein-Rosenberg theorem to cover nontrivial bilinear games.

4 OPTIMAL EXPONENTS OF LINEAR CONVERGENCE

In this section we study the optimal convergence rates of EG and OGD. We define the exponent of
linear convergence as r = limt→∞ ||z(t)||/||z(t−1)|| which is the same as the spectral radius. For
ease of presentation we fix α1 = α2 = α > 0 (using scaling symmetry) and we use r∗ to denote
the optimal exponent of linear convergence (achieved by tuning the parameters α, β, γ). Our results
show that by generalizing gradient algorithms one can obtain better convergence rates.
Theorem 4.1 (EG optimal). Both Jacobi and GS EG achieve the optimal exponent of linear conver-
gence r∗ = (κ2 − 1)/(κ2 + 1) at α→ 0 and β1 = β2 = 2/(σ2

1 + σ2
n). As κ→∞, r∗ → 1− 2/κ2.
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Figure 1: Left: linear convergence of optimal EG, Jacobi OGD, Gauss-Seidel OGD in a bilinear
game with the log distance; Middle: comparison among Adam, SGD and EG in learning the mean of
a Gaussian with WGAN with the squared distance; Right: Comparison between EG with (α = 0.02,
γ = 2.0) and without scaling (α = γ = 0.2). We use the squared distance.

Note that we defined βi = γiα in Section 2. In other words, we are taking very large extra-gradient
steps (γi →∞) and very small gradient steps (α→ 0).
Theorem 4.2 (OGD optimal). For Jacobi OGD with β1 = β2 = β, to achieve the optimal exponent
of linear convergence, we must have α ≤ 2β. For the original OGD with α = 2β, the optimal
exponent of linear convergence r∗ satisfies

r2∗ =
1

2
+

1

4
√

2σ2
1

√
(σ2

1 − σ2
n)(5σ2

1 − σ2
n +

√
(σ2

1 − σ2
n)(9σ2

1 − σ2
n)), at (4.1)

β∗ =
1

4
√

2

√
3σ4

1 − (σ2
1 − σ2

n)3/2
√

9σ2
1 − σ2

n + 6σ2
1σ

2
n − σ4

n

σ4
1σ

2
n

. (4.2)

If κ→∞, r∗ ∼ 1− 1/(6κ2). For Gauss-Seidel OGD with β2 = 0, the optimal exponent of linear
convergence is r∗ =

√
(κ2 − 1)/(κ2 + 1), at α =

√
2/σ1 and β1 =

√
2σ1/(σ

2
1 + σ2

n). If κ→∞,
r∗ ∼ 1− 1/κ2.

Remark The original OGD (Daskalakis et al., 2018) with α = 2β may not always be optimal. For
example, take one-dimensional bilinear game and σ = 1, and denote the spectral radius given α, β as
r(α, β). If we fix α = 1/2, by numerically solving equation 3.4 we have

r(1/2, 1/4) ≈ 0.966, r(1/2, 1/3) ≈ 0.956, (4.3)

i.e, α = 1/2, β = 1/3 is a better choice than α = 2β = 1/2.

Numerical method We provide a numerical method for finding the optimal exponent of linear
convergence, by realizing that the unit disk in Theorem 2.2 is not special. Let us call a polynomial to
be r-Schur stable if all of its roots lie within an (open) disk of radius r in the complex plane. We can
scale the polynomial with the following lemma:
Lemma 4.1. A polynomial p(λ) is r-Schur stable iff p(rλ) is Schur stable.

With the lemma above, one can rescale the Schur conditions and find the convergence region where
the exponent of linear convergence is at most r (r < 1). A simple binary search would allow one to
find a better and better convergence region. See details in Appendix D.3.

5 EXPERIMENTS

Bilinear game We run experiments on a simple bilinear game and choose the optimal parameters
as suggested in Theorem 4.1 and 4.2. The results are shown in the left panel of Figure 1, which
confirm the predicted linear rates.

Density plots We show the density plots (heat maps) of the spectral radii in Figure 2. We make
plots for EG, OGD and momentum with both Jacobi and GS updates. These plots are made when
β1 = β2 = β and they agree with our theorems in Section 3.

6



Under review as a conference paper at ICLR 2020

Figure 2: Heat maps of the spectral radii of different algorithms. We take σ = 1 for convenience.
The x-axis is α and the y-axis is β. Top row: Jacobi updates; Bottom row: Gauss-Seidel updates.
Columns (left to right): EG; OGD; momentum. If the spectral radius is strictly less than one, it
means that our algorithm converges. In each column, the Jacobi convergence region is contained in
the GS convergence region (for EG we need an additional constraint, see Theorem 3.2).

Figure 3: Jacobi vs. GS updates. y-axis: Squared distance ||φ − v||2. x-axis: Number of epochs.
Left: EG with γ = 0.2, α = 0.02; Middle: OGD with α = 0.2, β1 = 0.1, β2 = 0; Right:
Momentum with α = 0.08, β = −0.1. We plot only a few epochs for Jacobi if it does not converge.

Wasserstein GAN As in Daskalakis et al. (2018), we consider a WGAN (Arjovsky et al., 2017)
that learns the mean of a Gaussian:

minφmaxθ f(φ,θ) := Ex∼N (v,σ2I)[s(θ
Tx)]− Ez∼N (0,σ2I)[s(θ

T (z + φ))], (5.1)

where s(x) is the sigmoid function. It can be shown that near the saddle point (θ∗,φ∗) = (0,v) the
min-max optimization can be treated as a bilinear game (Appendix E.1). With GS updates, we find
that Adam diverges, SGD goes around a limit cycle, and EG converges, as shown in the middle panel
of Figure 1. We can see that Adam does not behave well even in this simple task of learning a single
two-dimensional Gaussian with GAN.

Our next experiment shows that generalized algorithms may have an advantage over traditional ones.
Inspired by Theorem 4.1, we compare the convergence of two EGs with the same parameter β = αγ,
and find that with scaling, EG has better convergence, as shown in the right panel of Figure 1.

Finally, we compare Jacobi updates with GS updates. In Figure 3, we can see that GS updates
converge even if the corresponding Jacobi updates do not.

Mixtures of Gaussians Our last experiment is on learning mixtures of Gaussians with a vanilla
GAN (Goodfellow et al., 2014) that does not directly fall into our analysis. We choose a 3-hidden
layer ReLU network for both the generator and the discriminator, and each hidden layer has 256
units. We find that for GD and OGD, Jacobi style updates converge more slowly than GS updates,
and whenever Jacobi updates converge, the corresponding GS updates converges as well. These
comparisons can be seen found in Figures 4 and 5. This implies the possibility of extending our results
to non-bilinear games. Interestingly, we observe that even Jacobi GD converges on this example. We
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Figure 4: Test samples from the generator network trained with stochastic GD (step size α = 0.01).
Top row: Jacobi updates; Bottom row: Gauss-Seidel updates. Columns: epoch 0, 10, 15, 20.

Figure 5: Test samples from the generator network trained with stochastic OGD (α = 2β = 0.02).
Top row: Jacobi updates; Bottom row: Gauss-Seidel updates. Columns: epoch 0, 10, 60, 100.

provide additional comparison between the Jacobi and GS updates of Adam (Kingma & Ba, 2015) in
Appendix E.2.

6 CONCLUSIONS

In this work we focus on the convergence behaviour of gradient-based algorithms for solving bilinear
games. By drawing a connection to discrete linear dynamical systems (§2) and using Schur’s
theorem, we provide necessary and sufficient conditions for a variety of gradient algorithms, for both
simultaneous (Jacobi) and alternating (Gauss-Seidel) updates. Our results show that Gauss-Seidel
updates converge more easily than Jacobi updates. Furthermore, we find the optimal exponents of
linear convergence for EG and OGD, and provide a numerical method for searching that exponent. We
performed a number of experiments to validate our theoretical findings and suggest further analysis.

There are many future directions to explore. For example, our preliminary experiments on GANs
suggest that similar (local) results might be obtained for more general games. Indeed, the local
convergence behaviour of min-max nonlinear optimization can be studied through analyzing the
spectrum of the Jacobian matrix of the update operator (see, e.g., Nagarajan & Kolter (2017); Gidel
et al. (2019b)). We believe our framework that draws the connection to linear discrete dynamic
systems and Schur’s theorem is powerful machinery that can be applied in such problems and beyond.
Another interesting extension is to generalize our results to the constrained case (even for bilinear
games), initiated in the recent work of Daskalakis & Panageas (2019).

8



Under review as a conference paper at ICLR 2020

REFERENCES

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In ICML, 2017.

K.J. Arrow, L. Hurwicz, and H. Uzawa. Studies in linear and non-linear programming, 1958.

Ronald E. Bruck. On the weak convergence of an ergodic iteration for the solution of variational
inequalities for monotone operators in Hilbert space. Journal of Mathematical Analysis and
Applications, 61(1):159–164, 1977.

Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of computing two-player nash
equilibria. Journal of the ACM, 56(3):14, 2009.

Sui Sun Cheng and Shih Shan Chiou. Exact stability regions for quartic polynomials. Bulletin of the
Brazilian Mathematical Society, 38(1):21–38, 2007.

Constantinos Daskalakis and Ioannis Panageas. The limit points of (optimistic) gradient descent in
min-max optimization. In Advances in Neural Information Processing Systems, pp. 9236–9246,
2018.

Constantinos Daskalakis and Ioannis Panageas. Last-iterate convergence: Zero-sum games and
constrained min-max optimization. In ITCS, 2019.

Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgkanis, and Haoyang Zeng. Training gans with
optimism. In ICLR, 2018.

Argyrios Deligkas, John Fearnley, Rahul Savani, and Paul Spirakis. Computing approximate nash
equilibria in polymatrix games. Algorithmica, 77(2):487–514, 2017.

V. F. Dem’yanov and A. B. Pevnyi. Numerical methods for finding saddle points. USSR Computa-
tional Mathematics and Mathematical Physics, 12(5):11–52, 1972.

Yoav Freund and Robert E Schapire. Adaptive game playing using multiplicative weights. Games
and Economic Behavior, 29(1-2):79–103, 1999.

Gauthier Gidel, Hugo Berard, Gaëtan Vignoud, Pascal Vincent, and Simon Lacoste-Julien. A
variational inequality perspective on generative adversarial networks. In ICLR, 2019a.

Gauthier Gidel, Reyhane Askari Hemmat, Mohammad Pezeshki, Gabriel Huang, Remi Lepriol,
Simon Lacoste-Julien, and Ioannis Mitliagkas. Negative momentum for improved game dynamics.
In AISTATS, 2019b.

I. Gohberg, P. Lancaster, and L. Rodman. Matrix Polynomials. Academic Press, 1982.

E. G. Gol’shtein. A generalized gradient method for finding saddlepoints. Ekonomika i matematich-
eskie metody, 8(4):569–579, 1972.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural informa-
tion processing systems, pp. 2672–2680, 2014.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

GM Korpelevich. The extragradient method for finding saddle points and other problems. Matecon,
12:747–756, 1976.

Tengyuan Liang and James Stokes. Interaction matters: A note on non-asymptotic local convergence
of generative adversarial networks. In AISTATS, 2019.

P. L. Lions. Une methode iterative de resolution d’une inequation variationnelle. Israel Journal of
Mathematics, 31(2):204–208, 1978.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In ICLR, 2018.

9

https://doi.org/10.1016/0022-247X(77)90152-4
https://doi.org/10.1016/0022-247X(77)90152-4
https://doi.org/10.1016/0041-5553(72)90002-X
http://proceedings.mlr.press/v89/gidel19a
http://proceedings.mlr.press/v89/liang19b
http://proceedings.mlr.press/v89/liang19b
https://doi.org/10.1007/BF02760552


Under review as a conference paper at ICLR 2020

Mohamed Mansour. Discrete-time and sampled-data stability tests, 2011.

B. Martinet. Régularisation d’inéquations variationnelles par approximations successives. ESAIM:
Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse
Numérique, 4(R3):154–158, 1970.

Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. The numerics of gans. In Advances in
Neural Information Processing Systems, pp. 1825–1835, 2017.

Aryan Mokhtari, Asuman Ozdaglar, and Sarath Pattathil. Proximal point approximations achieving
a convergence rate of O(1/k) for smooth convex-concave saddle point problems: Optimistic
gradient and extra-gradient methods. arXiv preprint arXiv:1906.01115, 2019a.

Aryan Mokhtari, Asuman Ozdaglar, and Sarath Pattathil. A unified analysis of extra-gradient and
optimistic gradient methods for saddle point problems: Proximal point approach. arXiv preprint
arXiv:1901.08511, 2019b.

Vaishnavh Nagarajan and J Zico Kolter. Gradient descent gan optimization is locally stable. In
Advances in Neural Information Processing Systems, pp. 5585–5595, 2017.
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A PROXIMAL POINT (PP) ALGORITHM

The original form was given in Martinet (1970) where α1 = α2 and carefully studied in Rockafellar
(1976). The linear convergence for bilinear games was also proved in the same reference. Note that
we do not consider Gauss-Seidel PP since we do not get a meaningful solution after a shift of steps2.

x(t+1) = x(t) − α1∇xf(x(t+1),y(t+1)), y(t+1) = y(t) + α2∇yf(x(t+1),y(t+1)), (A.1)

where x(t+1) and y(t+1) are given implicitly by solving the equations above. For bilinear games, one
can derive that:

z(t+1) =

[
I α1E

−α2E
T I

]−1
z(t). (A.2)

One could definitely compute the exact form of the inverse matrix, but a better way is just to compute
the spectrum of the original matrix (the same as Jacobi GD except that we flip the signs of αi) and
take λ→ 1/λ. Using the fact that the eigenvalues of a matrix are reciprocals of the eigenvalues of its
inverse, the characteristic equation is:

(1/λ− 1)2 + α1α2σ
2 = 0. (A.3)

With the scaling symmetry (α1, α2) → (tα1, α2/t), we can take α1 = α2 = α > 0. With the
notations in Corollary 2.1, a = −2/(1+α2σ2) and b = 1/(1+α2σ2). It is easy to check |a| < 1+b
and b < 1 are always satisfied, which means linear convergence is always guaranteed. Hence, we
have the following theorem:

Theorem A.1. For bilinear games, the proximal point algorithm always converges linearly.

Although the proximal point algorithm behaves well, it is rarely used in practice since it is an implicit
method, i.e., one needs to solve (x(t+1),y(t+1)) from equation A.1.

B PROOFS IN SECTION 2

B.1 PROOF OF THEOREM 2.3

In this section we apply Theorem 2.1 to show Theorem 2.3, an interesting connection between Jacobi
and Gauss-Siedel updates:

Theorem 2.3 (Jacobi vs. Gauss-Siedel). Let p(λ, γ) = det(
∑k
i=1(γLi +Ui)λ

k−i − λkI), where
Ai = Li + Ui and Li is strictly lower block triangular. Then, the characteristic polynomial of
Jacobi updates is p(λ, 1) while that of Gauss-Siedel updates is p(λ, λ).

Let us first consider the block linear iterative process in the sense of Jacobi (i.e., all blocks are updated
simultaneously):

z(t) =

z
(t)
1
...
z
(t)
b

 =

k∑
i=1

Ai

z
(t−i)
1

...
z
(t−i)
b

 =

k∑
i=1

 l−1∑
j=1

Ai,jz
(t−i)
j +

b∑
j=l

Ai,jz
(t−i)
j

+ d, (B.1)

whereAi,j is the j-th column block ofAi. For each matrixAi, we decompose it into the sum

Ai = Li +Ui, (B.2)

where Li is the strictly lower block triangular part and Ui is the upper (including diagonal) block
triangular part. Theorem 2.1 indicates that the convergence behaviour of equation B.1 is governed by
the largest modulus of the roots of the characteristic polynomial:

det

(
−λkI +

k∑
i=1

Aiλ
k−i

)
= det

(
−λkI +

k∑
i=1

(Li +Ui)λ
k−i

)
. (B.3)

2If one uses inverse operators this is in principle doable but it is out of the scope of our current work.
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Alternatively, we can also consider the updates in the sense of Gauss-Siedel (i.e., blocks are updated
sequentially):

z
(t)
l =

k∑
i=1

 l−1∑
j=1

Ai,jz
(t−i+1)
j +

b∑
j=l

Ai,jz
(t−i)
j


l

+ dl, l = 1, . . . , b. (B.4)

We can rewrite the Gauss-Siedel update elegantly3 as:

(I −L1)z(t) =

k∑
i=1

(Li+1 +Ui)z
(t−i) + d, (B.5)

i.e.,

z(t) =

k∑
i=1

(I −L1)−1(Li+1 +Ui)z
(t−i) + (I −L1)−1d, (B.6)

where Lk+1 := 0. Applying Theorem 2.1 again we know the convergence behaviour of the Gauss-
Siedel update is governed by the largest modulus of roots of the characteristic polynomial:

det

(
−λkI +

k∑
i=1

(I −L1)−1(Li+1 +Ui)λ
k−i

)
(B.7)

= det

(
(I −L1)−1

(
− λkI + λkL1 +

k∑
i=1

(Li+1 +Ui)λ
k−i
))

(B.8)

= det(I −L1)−1 · det

(
−λkI +

k∑
i=1

(λLi +Ui)λ
k−i

)
(B.9)

Note that the factor det(I −L1)−1 can be discarded since multiplying a characteristic polynomial
by a non-zero constant factor does not change its roots.

B.2 PROOF OF COROLLARY 2.1

Corollary 2.1. A real quadratic polynomial λ2 +aλ+ b is Schur stable iff b < 1, |a| < 1 + b; A real
cubic polynomial λ3 +aλ2 +bλ+c is Schur stable iff |c| < 1, |a+c| < 1+b, b−ac < 1−c2; A real
quartic polynomial λ4 +aλ3 + bλ2 + cλ+d is Schur stable iff |c−ad| < 1−d2, |a+ c| < b+d+ 1,
and

b < (1 + d) +
(c− ad)(a− c)

(d− 1)2
.

Proof. It suffices to prove the result for quartic polynomials. We write down the matrices:

P1 = [1], Q1 = [d], (B.10)

P2 =

[
1 0
a 1

]
, Q2 =

[
d c
0 d

]
, (B.11)

P3 =

[
1 0 0
a 1 0
b a 1

]
,Q3 =

[
d c b
0 d c
0 0 d

]
, (B.12)

P4 =

1 0 0 0
a 1 0 0
b a 1 0
c b a 0

 ,Q4 =

d c b a
0 d c b
0 0 d c
0 0 0 d

 . (B.13)

We require det(PkP
>
k − Q>kQk) =: δk > 0, for k = 1, 2, 3, 4. If k = 1, we have 1 − d2 > 0,

namely, |d| < 1. δ2 > 0 reduces to (c− ad)2 < (1− d2)2 and thus |c− ad| < 1− d2 with the first
condition. δ4 > 0 simplifies to:

−((a+ c)2 − (b+ d+ 1)2)((b− d− 1)(d− 1)2 − (a− c)(c− ad))2 < 0, (B.14)
3This is well-known when k = 1, see e.g. Saad (2003).
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which yields |a+ c| < |b+ d+ 1|. Finally, δ3 > 0 reduces to:

((b− d− 1)(d− 1)2 − (a− c)(c− ad))((d2 − 1)(b+ d+ 1) + (c− ad)(a+ c)) > 0. (B.15)

In fact, from the Schur conditions in Cheng & Chiou (2007) (see also Theorem C.4), we know that
b+ d+ 1 > |a+ c|, and thus b+ d+ 1 > 0. Also, from |a+ c| < |b+ d+ 1| and |c− ad| < 1− d2,
we know that:

|c− ad| · |a+ c| < |b+ d+ 1|(1− d2) = (b+ d+ 1)(1− d2). (B.16)

So, the second factor in B.15 is negative and the positivity of the first factor reduces to:

b < (1 + d) +
(c− ad)(a− c)

(d− 1)2
. (B.17)

To obtain the Schur condition for cubic polynomials, we take d = 0, and the quartic Schur condition
becomes:

|c| < 1, |a+ c| < b+ 1, b− ac < 1− c2. (B.18)

To obtain the Schur condition for quadratic polynomials, we take c = 0 in the above and write:

b < 1, |a| < 1 + b. (B.19)

C PROOFS IN SECTION 3

Some of the following proofs in Section C.4 and C.5 rely on Mathematica code (mostly with the built-
in function Reduce) but in principle the code can be verified manually using cylindrical algebraic
decomposition4.

C.1 DERIVATION OF CHARACTERISTIC POLYNOMIALS

In this appendix, we derive the exact forms of LDSs (equation 2.3) and the characteristic polynomials
for all gradient-based methods introduced in Section 2, with equation 2.4. We apply the following
lemma:

Lemma C.1 (e.g. Zhang (2006, page 4)). GivenM ∈ R2n×2n,A ∈ Rn×n and

M =

[
A B
C D

]
, (C.1)

if C andD commutes, then detM = det(AD −BC).

Gradient descent From equation 2.6 the update equation of Jacobi GD can be derived as:

z(t+1) =

[
I −α1E

α2E
T I

]
z(t), (C.2)

and with Lemma C.1, we compute the characteristic polynomial as in equation 2.4:

det

[
(λ− 1)I α1E
−α2E

T (λ− 1)I

]
= det[(λ− 1)2I + α1α2EE

T ], (C.3)

With spectral decomposition we obtain equation 3.1. Taking α2 → λα2 and with Theorem 2.3 we
obtain the corresponding GS updates. Therefore, the characteristic polynomials for GD are:

J: (λ− 1)2 + α1α2σ
2 = 0, GS: (λ− 1)2 + α1α2σ

2λ = 0. (C.4)

4See the online Mathematica documentation.
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Extra-gradient From equation 2.7 and equation 2.8, the update of Jacobi EG is:

z(t+1) =

[
I − β2EET −α1E
α2E

T I − β1ETE

]
z(t), (C.5)

the characterstic polynomial is:

det

[
(λ− 1)I + β2EE

T α1E
−α2E

T (λ− 1)I + β1E
TE

]
. (C.6)

Since we assumed α2 > 0, we can left multiply the second row by β2E/α2 and add it to the first
row. Hence, we obtain:

det

[
(λ− 1)I α1E + (λ− 1)β2E/α2 + β1β2EE

TE/α2

−α2E
T (λ− 1)I + β1E

TE

]
. (C.7)

With Lemma C.1 the equation above becomes:

det[(λ− 1)2I + (β1 + β2)ETE(λ− 1) + (α1α2E
TE + β1β2E

TEETE)], (C.8)
which simplifies to equation 3.2 with spectral decomposition. Note that to obtain the GS polynomial,
we simply take α2 → λα2 in the Jacobi polynomial as shown in Theorem 2.3. For the ease of reading
we copy the characteristic equations for generalized EG:

J: (λ− 1)2 + (β1 + β2)σ2(λ− 1) + (α1α2σ
2 + β1β2σ

4) = 0, (C.9)

GS: (λ− 1)2 + (α1α2 + β1 + β2)σ2(λ− 1) + (α1α2σ
2 + β1β2σ

4) = 0. (C.10)

Optimistic gradient descent We can compute the LDS for OGD with equation 2.9 and equa-
tion 2.10:

z(t+2) =

[
I −α1E

α2E
T I

]
z(t+1) +

[
0 β1E

−β2ET 0

]
z(t), (C.11)

With equation 2.4, the characteristic polynomial for Jacobi OGD is

det

[
(λ2 − λ)I (λα1 − β1)E

(−λα2 + β2)ET (λ2 − λ)I

]
. (C.12)

Taking the determinant and with Lemma C.1 we obtain equation 3.4. The characteristic polynomial
for GS updates equation 3.5 can be subsequently derived with Theorem 2.3, by taking (α2, β2)→
(λα2, λβ2). For the ease of reading we copy the chacracterstic polynomials from the main text as:

J: λ2(λ− 1)2 + (λα1 − β1)(λα2 − β2)σ2 = 0, (C.13)

GS: λ2(λ− 1)2 + (λα1 − β1)(λα2 − β2)λσ2 = 0. (C.14)

Momentum method With equation 2.11 and equation 2.12, the LDS for the momentum method is:

z(t+2) =

[
(1 + β1)I −α1E
α2E

T (1 + β2)I

]
z(t+1) +

[
−β1I 0
0 −β2I

]
z(t), (C.15)

From equation 2.4, the characteristic polynomial for Jacobi momentum is

det

[
(λ2 − λ(1 + β1) + β1)I λα1E

−λα2E
T (λ2 − λ(1 + β2) + β2)I

]
. (C.16)

Taking the determinant and with Lemma C.1 we obtain equation 3.6, and equation 3.7 can be
derived with Theorem 2.3, by taking α2 → λα2. For the ease of reading we copy the characteristic
polynomials from the main text as:

J: (λ− 1)2(λ− β1)(λ− β2) + α1α2σ
2λ2 = 0, (C.17)

GS: (λ− 1)2(λ− β1)(λ− β2) + α1α2σ
2λ3 = 0. (C.18)

C.2 PROOF OF THEOREM 3.1: SCHUR CONDITIONS OF GD

Theorem 3.1 (GD). Jacobi GD and Gauss-Seidel GD do not converge. However, Gauss-Seidel GD
can have a limit cycle while Jacobi GD always diverges.

Proof. With the notations in Corollary 2.1, for Jacobi GD, b = 1 + α2σ2 > 1. For Gauss-Seidel GD,
b = 1. The Schur conditions are violated.
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C.3 PROOF OF THEOREM 3.2: SCHUR CONDITIONS OF EG

Theorem 3.2 (EG). For generalized EG with α1 = α2 = α and γi = βi/α, Jacobi and Gauss-Seidel
updates achieve linear convergence iff for any singular value σ of E, we have:

J: |β1σ2 + β2σ
2 − 2| < 1 + (1− β1σ2)(1− β2σ2) + α2σ2,

(1− β1σ2)(1− β2σ2) + α2σ2 < 1, (C.19)

GS: |(β1 + β2 + α2)σ2 − 2| < 1 + (1− β1σ2)(1− β2σ2),

(1− β1σ2)(1− β2σ2) < 1. (C.20)

If β1 +β2 +α2 < 2/σ2
1 , the convergence region of GS updates strictly include that of Jacobi updates.

Both polynomials can be written as a quadratic polynomial λ2 + aλ+ b, where:

J: a = (β1 + β2)σ2 − 2, b = (1− β1σ2)(1− β2σ2) + α2σ2, (C.21)

GS: a = (β1 + β2 + α2)σ2 − 2, b = (1− β1σ2)(1− β2σ2). (C.22)

Compared to Jacobi EG, the only difference between Gauss-Seidel and Jacobi updates is that the
α2σ2 in b is now at a, which agrees with Theorem 2.3. Using Corollary 2.1, we can derive the Schur
conditions equation C.19 and equation C.20.

More can be said if β1 + β2 + α2 < 2/σ2
1 . In this case, the first conditions of equation C.19 and

equation C.20 are equivalent, and the second condition of equation C.19 strictly implies the second
condition of equation C.20. Hence, the Schur region of Gauss-Seidel updates strictly include that of
Jacobi updates.

To show that the GS convergence region strictly contains that of the Jacobi convergence region,
simply take β1 = β2 = β. The Schur condition for Jacobi EG and Gauss-Seidel EG are separately:

J: α2σ2 + (βσ2 − 1)2 < 1, (C.23)

GS: 0 < βσ2 < 2 and |ασ| < 2− βσ2. (C.24)

It can be shown that if β = α2/3 and α→ 0, equation C.23 is always violated whereas equation C.24
is always satisfied.

C.4 PROOF OF THEOREM 3.3: SCHUR CONDITIONS OF OGD

In this subsection, we fill in the details of the proof of Theorem 3.3, by first deriving the Schur
conditions of OGD, and then studying the relation between Jacobi OGD and GS OGD.
Theorem 3.3 (OGD). For generalized OGD with α1 = α2 = α, Jacobi and Gauss-Seidel updates
achieve linear convergence iff for any singular value σ of E, we have:

J: |β1β2σ2| < 1, (α− β1)(α− β2) > 0, 4 + (α+ β1)(α+ β2)σ2 > 0,

α2
(
β2
1σ

2 + 1
) (
β2
2σ

2 + 1
)
< (β1β2σ

2 + 1)(2α(β1 + β2) + β1β2(β1β2σ
2 − 3)),(C.25)

GS: (α− β1)(α− β2) > 0, (α+ β1)(α+ β2)σ2 < 4,

(αβ1σ
2 + 1)(αβ2σ

2 + 1) > (1 + β1β2σ
2)2. (C.26)

The convergence region of GS updates strictly include that of Jacobi updates.

The Jacobi characteristic polynomial is now quartic in the form λ4 + aλ3 + bλ2 + cλ+ d, with

a = −2, b = α2σ2 + 1, c = −α(β1 + β2)σ2, d = β1β2σ
2. (C.27)

Comparably, the GS polynomial equation 3.5 can be reduced to a cubic one λ3 + aλ2 + bλ+ c with

a = −2 + α2σ2, b = −α(β1 + β2)σ2 + 1, c = β1β2σ
2. (C.28)

Schur conditions First we derive the Schur conditions equation C.25 and equation C.26. Note that
other than Corollary 2.1, an equivalent Schur condition can be read from Cheng & Chiou (2007)
(Theorem 1) as:
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Theorem C.4 (Cheng & Chiou (2007)). A real quartic polynomial λ4 + aλ3 + bλ2 + cλ + d is
Schur stable iff:

|d| < 1, |a| < d+ 3, |a+ c| < b+ d+ 1,

(1− d)2b+ c2 − a(1 + d)c− (1 + d)(1− d)2 + a2d < 0. (C.29)

With the following MATHEMATICA code5 and equation C.27:

{Abs[d]<1,Abs[a]<d+3, a+b+c+d+1>0,-a+b-c+d+1>0,
(1-d)^2 b +c^2-a(1+d)c-(1+d)(1-d)^2+a^2 d<0}
/.{a->-2,b->al^2+1,c->-al(b1 + b2),d->b1 b2}//Simplify

we obtain

{Abs[b1 b2]<1,1+b1 b2>0,(al-b1) (al-b2)>0,
4+al^2+b1 b2+al (b1+b2)>0,
al^2 (1+b1^2) (1+b2^2)+b1 b2 (3+2 b1 b2-b1^2 b2^2)<2 al *
(b1+b2+b1^2 b2+b1 b2^2)}.

We used al to represent ασ and b1, b2 as β1σ, β2σ. Hence, we have equation C.25. To get
equation C.26, we similarly use equation C.28 and Corollary 2.1, with the following code:

{Abs[c] < 1, - a - b - c < 1, a - b + c <1, b-a c < 1 -c^2}
/.{a->-2+al^2,b->-al(b1+b2)+1,c->b1 b2}//Simplify.

The result is:

{Abs[b1 b2]<1,(al-b1) (al-b2)>0,(al+b1) (al+b2)<4,
b1 b2 (2+b1 b2)<al (b1+b2+al b1 b2)}.

Remember we used al to represent ασ and b1, b2 as β1σ, β2σ. Note that the last equality can be
transformed to:

(αβ1σ
2 + 1)(αβ2σ

2 + 1) > (1 + β1β2σ
2)2, (C.30)

by adding one on both sides. Therefore, we retrieve equation C.26.

Now, let us study the relation between the convergence region of Jacobi OGD and GS OGD, as
given in equation C.25 and equation C.26. Namely, we want to prove the last sentence of Theorem
3.3. The outline of our proof is as follows. We first show that each region of (α, β1, β2) described
in equation C.25 (the Jacobi region) is contained in the region described in equation C.26 (the GS
region). Since we are only studying one singular value, we slightly abuse the notations and rewrite
βiσ as βi (i = 1, 2) and ασ as α. From equation 3.4 and equation 3.5, β1 and β2 can switch. WLOG,
we assume β1 ≥ β2. There are four cases to consider:

• β1 ≥ β2 > 0. The third Jacobi condition in equation C.25 now is redundant, and we have
α > β1 or α < β2 for both methods. Solving the quadratic feasibility condition for α gives:

0 < β2 < 1, β2 ≤ β1 <
β2 +

√
4 + 5β2

2

2(1 + β2
2)

, β1 < α <
u+
√
u2 + tv

t
, (C.31)

where u = (β1β2 + 1)(β1 + β2), v = β1β2(β1β2 + 1)(β1β2 − 3), t = (β2
1 + 1)(β2

2 + 1).
On the other hand, assume α > β1, the first and third GS conditions are automatic. Solving
the second gives:

0 < β2 < 1, β2 ≤ β1 <
−β2 +

√
8 + β2

2

2
, β1 < α < −1

2
(β1+β2)+

1

2

√
(β1 − β2)2 + 16.

(C.32)
Define f(β2) := −β2 +

√
8 + β2

2/2 and g(β2) := (β2 +
√

4 + 5β2
2)/(2(1 + β2

2)), and
one can show that

f(β2) ≥ g(β2). (C.33)
5This approach is standard. See, e.g., the appendix of Daskalakis & Panageas (2018).
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Furthermore, it can also be shown that given 0 < β2 < 1 and β2 ≤ β1 < g(β2), we have

(u+
√
u2 + 4v)/t < −(β1 + β2)/2 + (1/2)

√
(β1 − β2)2 + 16. (C.34)

• β1 ≥ β2 = 0. The Schur condition for Jacobi and Gauss-Seidel updates reduces to:

Jacobi: 0 < β1 < 1, β1 < α <
2β1

1 + β2
1

, (C.35)

GS: 0 < β1 <
√

2, β1 < α <
−β1 +

√
16 + β2

1

2
. (C.36)

One can show that given β1 ∈ (0, 1), we have 2β1/(1 + β2
1) < (−β1 +

√
16 + β2

1)/2.
• β1 ≥ 0 > β2. Reducing the first, second and fourth conditions of equation C.25 yields:

β2 < 0, 0 < β1 <
β2 +

√
4 + 5β2

2

2(1 + β2
2)

, β1 < α <
u+
√
u2 + tv

t
. (C.37)

This region contains the Jacobi region. It can be similarly proved that even within this larger
region, GS Schur condition equation C.26 is always satisfied.

• β2 ≤ β1 < 0. We have u < 0, tv < 0 and thus α < (u +
√
u2 + tv)/t < 0. This

contradicts our assumption that α > 0.

Combining the four cases above, we know that the Jacobi region is contained in the GS region.

To show the strict inclusion, take β1 = β2 = α/5 and α → 0. One can show that as long as α is
small enough, all the Jacobi regions do not contain this point, each of which is described with a
singular value in equation C.25. However, all the GS regions described in equation C.26 contain this
point.

The proof above is still missing some details. We provide the proofs of equation C.31, equation C.33,
equation C.34 and equation C.37 in the sub-sub-sections below, with the help of Mathematica, though
one can also verify these claims manually. Moreover, a one line proof of the inclusion can be given
with Mathematica code, as shown in Section C.4.5.

C.4.1 PROOF OF EQUATION C.31

The fourth condition of equation C.25 can be rewritten as:

α2t− 2uα− v < 0, (C.38)

where u = (β1β2 + 1)(β1 + β2), v = β1β2(β1β2 + 1)(β1β2 − 3), t = (β2
1 + 1)(β2

2 + 1). The
discriminant is 4(u2 + tv) = (1 − β1β2)2(1 + β1β2)(β2

1 + β2
2 + β2

1β
2
2 − β1β2) ≥ 0. Since if

β1β2 < 0,
β2
1 + β2

2 + β2
1β

2
2 − β1β2 = β2

1 + β2
2 + β1β2(β1β2 − 1) > 0,

If β1β2 ≥ 0,
β2
1 + β2

2 + β2
1β

2
2 − β1β2 = (β1 − β2)2 + β1β2(1 + β1β2) ≥ 0,

where we used |β1β2| < 1 in both cases. So, equation C.38 becomes:

u−
√
u2 + tv

t
< α <

u+
√
u2 + tv

t
. (C.39)

Combining with α > β1 or α < β2 obtained from the second condition, we have:

u−
√
u2 + tv

t
< α < β2 or β1 < α <

u+
√
u2 + tv

t
. (C.40)

The first case is not possible, with the following code:

u = (b1 b2 + 1) (b1 + b2); v = b1 b2 (b1 b2 + 1) (b1 b2 - 3);
t = (b1^2 + 1) (b2^2 + 1);
Reduce[b2 t > u - Sqrt[u^2 + t v] && b1 >= b2 > 0
&& Abs[b1 b2] < 1],

17



Under review as a conference paper at ICLR 2020

and we have:

False.

Therefore, the only possible case is β1 < α < (u+
√
u2 + tv)/t. Where the feasibility region can

be solved with:

Reduce[b1 t < u + Sqrt[u^2+t v]&&b1>=b2>0&&Abs[b1 b2] < 1].

What we get is:

0<b2<1 &&
b2<=b1<b2/(2 (1+b2^2))+1/2 Sqrt[(4+5 b2^2)/(1+b2^2)^2].

Therefore, we have proved equation C.31.

C.4.2 PROOF OF EQUATION C.33

With

Reduce[-(b2/2) + Sqrt[8 + b2^2]/2 >=
(b2 + Sqrt[4 + 5 b2^2])/(2 (1 + b2^2)) && 0 < b2 < 1],

we can remove the first constraint and get:

0 < b2 < 1.

C.4.3 PROOF OF EQUATION C.34

Given

Reduce[-1/2 (b1 + b2) + 1/2 Sqrt[(b1 - b2)^2 + 16] >
(u + Sqrt[u^2 + t v])/t &&

0 < b2 < 1 &&
b2 <= b1 < (b2 + Sqrt[4 + 5 b2^2])/(2 (1 + b2^2)), {b2, b1}],

we can remove the first constraint and get:

0 < b2 < 1 &&
b2 <= b1 < b2/(2 (1 + b2^2)) +
1/2 Sqrt[(4 + 5 b2^2)/(1 + b2^2)^2].

C.4.4 PROOF OF EQUATION C.37

The second Jacobi condition simplifies to α > β1 and the fourth simplifies to equation C.39.
Combining with the first Jacobi condition:

Reduce[Abs[b1 b2] < 1 &&
a > b1 && (u - Sqrt[u^2 + t v])/t < a < (u + Sqrt[u^2 + t v])/t
&& b1 >= 0 && b2 < 0, {b2, b1, a} ] // Simplify,

we have:

b2 < 0 && b1 > 0 &&
b2/(1 + b2^2) + Sqrt[(4 + 5 b2^2)/(1 + b2^2)^2] > 2 b1 &&
b1 < a < (b1 + b2 + b1^2 b2 + b1 b2^2)/((1 + b1^2) (1 + b2^2)) +

Sqrt[((-1 + b1 b2)^2 (b1^2 + b2^2 + b1 b2 (-1 + b2^2) +
b1^3 (b2 + b2^3)))/((1 + b1^2)^2 (1 + b2^2)^2)].

This can be further simplified to achieve equation C.37.
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C.4.5 ONE LINE PROOF

In fact, there is another very simple proof:

Reduce[ForAll[{b1, b2, a}, (a - b1) (a - b2) > 0
&& (a + b1) (a + b2) > -4 && Abs[b1 b2] < 1 &&
a^2 (b1^2 + 1) (b2^2 + 1) < (b1 b2 + 1) (2 a (b1 + b2) +
b1 b2 (b1 b2 - 3)), (a - b1) (a - b2) > 0 &&
(a + b1) (a + b2) < 4
&& (a b1 + 1) (a b2 + 1) > (1 + b1 b2)^2], {b2, b1, a}]
True.

However, this proof does not tell us much information about the range of our variables.

C.5 PROOF OF THEOREM 3.4: SCHUR CONDITIONS OF MOMENTUM

Theorem 3.4 (momentum). For the generalized momentum method with α1 = α2 = α, the Jacobi
style updates never converge, while the GS style updates converge iff for any singular value σ of E,
we have:

|β1β2| < 1, | − α2σ2 + β1 + β2 + 2| < β1β2 + 3, 4(β1 + 1)(β2 + 1) > α2σ2,

α2σ2β1β2 < (1− β1β2)(2β1β2 − β1 − β2). (C.41)

This condition implies that at least one of β1, β2 is negative.

C.5.1 SCHUR CONDITIONS OF JACOBI AND GS UPDATES

Jacobi condition We first rename ασ as al and β1, β2 as b1, b2. With Theorem C.4:

{Abs[d] < 1, Abs[a] < d + 3,
a + b + c + d + 1 > 0, -a + b - c + d + 1 >
0, (1 - d)^2 b - (c - a d) (a - c) - (1 + d) (1 - d)^2 <
0} /. {a -> -2 - b1 - b2, b -> al^2 + 1 + 2 (b1 + b2) + b1 b2,
c -> -b1 - b2 - 2 b1 b2, d -> b1 b2} // FullSimplify.

We obtain:

{Abs[b1 b2] < 1, Abs[2 + b1 + b2] < 3 + b1 b2, al^2 > 0,
al^2 + 4 (1 + b1) (1 + b2) > 0, al^2 (-1 + b1 b2)^2 < 0}.

The last condition is never satisfied and thus Jacobi momentum never converges.

Gauss-Seidel condition With Theorem C.4, we compute:

{Abs[d] < 1, Abs[a] < d + 3,
a + b + c + d + 1 > 0, -a + b - c + d + 1 >
0, (1 - d)^2 b + c^2 - a (1 + d) c - (1 + d) (1 - d)^2 + a^2 d <
0} /. {a -> al^2 - 2 - b1 - b2, b -> 1 + 2 (b1 + b2) + b1 b2,
c -> -b1 - b2 - 2 b1 b2, d -> b1 b2} // FullSimplify.

The result is:

{Abs[b1 b2] < 1, Abs[2 - al^2 + b1 + b2] < 3 + b1 b2, al^2 > 0,
4 (1 + b1) (1 + b2) > al^2,
al^2 (b1 + b2 + (-2 + al^2 - b1) b1 b2 + b1 (-1 + 2 b1) b2^2) < 0},

which can be further simplified to equation C.41.

C.5.2 NEGATIVE MOMENTUM

With Theorem 3.4, we can actually show that in general at least one of β1 and β2 must be negative.
There are three cases to consider, and in each case we simplify equation C.41:
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1. β1β2 = 0. WLOG, let β2 = 0, and we obtain

−1 < β1 < 0 and α2σ2 < 4(1 + β1). (C.42)

2. β1β2 > 0. We have

−1 < β1 < 0, −1 < β2 < 0 , α2σ2 < 4(1 + β1)(1 + β2). (C.43)

3. β1β2 < 0. WLOG, we assume β1 ≥ β2. We obtain:

−1 < β2 < 0, 0 < β1 < min

{
− 1

3β2
,
∣∣∣− β2

1 + 2β2

∣∣∣} . (C.44)

The constraints for α are α > 0 and:

max

{
(1− β1β2)(2β1β2 − β1 − β2)

β1β2
, 0

}
< α2σ2 < 4(1 + β1)(1 + β2). (C.45)

These conditions can be further simplified by analyzing all singular values. They only depend on σ1
and σn, the largest and the smallest singular values. Now, let us derive equation C.43, equation C.44
and equation C.45 more carefully. Note that we use a for ασ.

C.5.3 PROOF OF EQUATION C.43

Reduce[Abs[b1 b2] < 1 && Abs[-a^2 + b1 + b2 + 2] < b1 b2 + 3 &&
4 (b1 + 1) (b2 + 1) > a^2 &&
a^2 b1 b2 < (1 - b1 b2) (2 b1 b2 - b1 - b2) && b1 b2 > 0 &&
a > 0, {b2, b1, a}]

-1 < b2 < 0 && -1 < b1 < 0 && 0 < a < Sqrt[4 + 4 b1 + 4 b2 + 4 b1 b2]

C.5.4 PROOF OF EQUATIONS C.44 AND C.45

Reduce[Abs[b1 b2] < 1 && Abs[-a^2 + b1 + b2 + 2] < b1 b2 + 3 &&
4 (b1 + 1) (b2 + 1) > a^2 &&
a^2 b1 b2 < (1 - b1 b2) (2 b1 b2 - b1 - b2) && b1 b2 < 0 &&
b1 >= b2 && a > 0, {b2, b1, a}]

(-1 < b2 <= -(1/3) && ((0 < b1 <= b2/(-1 + 2 b2) &&
0 < a < Sqrt[4 + 4 b1 + 4 b2 + 4 b1 b2]) || (b2/(-1 + 2 b2) <
b1 < -(1/(3 b2)) &&

Sqrt[(-b1 - b2 + 2 b1 b2 + b1^2 b2 + b1 b2^2 - 2 b1^2 b2^2)/(
b1 b2)] < a < Sqrt[4 + 4 b1 + 4 b2 + 4 b1 b2]))) || (-(1/3) <

b2 < 0 && ((0 < b1 <= b2/(-1 + 2 b2) &&
0 < a < Sqrt[4 + 4 b1 + 4 b2 + 4 b1 b2]) || (b2/(-1 + 2 b2) <
b1 < -(b2/(1 + 2 b2)) &&

Sqrt[(-b1 - b2 + 2 b1 b2 + b1^2 b2 + b1 b2^2 - 2 b1^2 b2^2)/(
b1 b2)] < a < Sqrt[4 + 4 b1 + 4 b2 + 4 b1 b2])))

Some further simplication yields equation C.44 and equation C.45.

D PROOFS IN SECTION 4

For bilinear games and gradient-based methods, a Schur condition defines the region of convergence
in the parameter space, as we have seen in Section 3. However, it is unknown which setting of
parameters has the best convergence rate in a Schur stable region. We explore this problem now. Due
to Theorem 3.1, we do not need to study GD. The remaining cases are EG, OGD and GS momentum
(Jacobi momentum does not converge due to Theorem 3.4). Analytically (Section D.1 and D.2),
we study the optimal linear rates for EG and special cases of generalized OGD (Jacobi OGD with
β1 = β2 and Gauss-Seidel OGD with β2 = 0). The special cases include the original form of OGD.
We also provide details for the numerical method described at the end of Section 4.
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The optimal spectral radius is obtained by solving another min-max optimization problem:

min
θ

max
σ∈Sv(E)

r(θ, σ), (D.1)

where θ denotes the collection of all hyper-parameters, and r(θ, σ) is defined as the spectral radius
function that relies on the choice of parameters and the singular value σ. We also use Sv(E) to
denote the set of singular values of E.

In general, the function r(θ, σ) is non-convex and thus difficult to analyze. However, in the special
case of quadratic characteristic polynomials, it is possible to solve equation D.1. This is how we will
analyze EG and special cases of OGD, as r(θ, σ) can be expressed using root functions of quadratic
polynomials. For cubic and quartic polynomials, it is in principle also doable as we have analytic
formulas for the roots. However, these formulas are extremely complicated and difficult to optimize
and we leave it as future work. For EG and OGD, we will show that the optimal linear rates depend
only on the conditional number κ := σ1/σn.

For simplicity, we always fix α1 = α2 = α > 0 using the scaling symmetry studied in Section 3.

D.1 PROOF OF THEOREM 4.1: OPTIMAL CONVERGENCE RATE OF EG

Theorem 4.1 (EG optimal). Both Jacobi and GS EG achieve the optimal exponent of linear conver-
gence r∗ = (κ2 − 1)/(κ2 + 1) at α→ 0 and β1 = β2 = 2/(σ2

1 + σ2
n). As κ→∞, r∗ → 1− 2/κ2.

D.1.1 JACOBI EG

For Jacobi updates, if β1 = β2 = β, by solving the roots of equation 3.2, the min-max problem is:

min
α,β

max
σ∈Sv(E)

√
α2σ2 + (1− βσ2)2. (D.2)

If σ1 = σn = σ, we can simply take α→ 0 and β = 1/σ2 to obtain a super-linear convergence rate.
Otherwise, let us assume σ1 < σn. We obtain a lower bound by taking α → 0 and equation D.2
reduces to:

min
β

max
σ∈Sv(E)

|1− βσ2|. (D.3)

The optimal solution is given at 1− βσ2
n = βσ2

1 − 1, yielding β = 2/(σ2
1 + σ2

n). The optimal radius
is thus (σ2

1 − σ2
n)/(σ2

1 + σ2
n) since the lower bound equation D.3 can be achieved by taking α→ 0.

From general β1, β2, it can be verified that the optimal radius is achieved at β1 = β2 and the problem
reduces to the previous case. The optimization problem is:

min
α,β1,β2

max
σ∈Sv(E)

r(α, β1, β2, σ), (D.4)

where

r(α, β1, β2, σ) =

{√
(1− β1σ2)(1− β2σ2) + α2σ2 4α2 > (β1 − β2)2σ2,

|1− 1
2 (β1 + β2)σ2|+ 1

2

√
(β1 − β2)2σ4 − 4α2σ2 4α2 ≤ (β1 − β2)2σ2.

In the first case, a lower bound is obtained at α2 = (β1 − β2)2σ2/4 and thus the objective only
depends on β1 + β2. In the second case, the a lower bound is obtained at α → 0 and β1 → β2.
Therefore, the function is optimized at β1 = β2 and α→ 0.

Our analysis above does not mean that α → 0 and β1 = β2 = 2/(σ2
1 + σ2

n) is the only optimal
choice. For example, when σ1 = σn = 1, we can take β1 = 1 + α and β2 = 1 − α to obtain a
super-linear convergence rate.

D.1.2 GAUSS-SEIDEL EG

For Gauss-Seidel updates and β1 = β2 = β, we do the following optimization:

min
α,β

max
σ∈Sv(E)

r(α, β, σ), (D.5)
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where by solving equation 3.3:

r(α, β, σ) =

{
1− βσ2 α2σ2 < 4(1− βσ2),
α2

2 σ
2 − (1− βσ2) +

√
α2σ2(α2σ2 − 4(1− βσ2))/2 α2σ2 ≥ 4(1− βσ2).

r(σ, β, σ2) is quasi-convex in σ2, so we just need to minimize over α, β at both end points. Hence,
equation D.5 reduces to:

min
α,β

max{r(α, β, σ1), r(α, β, σn)}.

By arguing over three cases: α2 + 4β < 4/σ2
1 , α2 + 4β > 4/σ2

n and 4/σ2
1 ≤ α2 + 4β ≤ 4/σ2

n, we
find that the minimum (κ2 − 1)/(κ2 + 1) can be achieved at α→ 0 and β = 2/(σ2

1 + σ2
n), the same

as Jacobi EG. This is because α→ 0 decouples x and y and it does not matter whether the update is
Jacobi or GS.

For general β1, β2, it can be verified that the optimal radius is achieved at β1 = β2. We do the
following transformation: βi → ξi − α2/2, so that the characteristic polynomial becomes:

(λ− 1)2 + (ξ1 + ξ2)σ2(λ− 1) + α2σ2 + (ξ1 − α2/2)(ξ2 − α2/2)σ4 = 0. (D.6)

Denote ξ1 + ξ2 = φ, and (ξ1 − α2/2)(ξ2 − α2/2) = ν, we have:

λ2 − (2− σ2φ)λ+ 1− σ2φ+ σ4v + σ2α2 = 0. (D.7)

The discriminant is ∆ := σ2(σ2(φ2 − 4ν)− 4α2). We discuss two cases:

1. φ2 − 4ν < 0. We are minimizing:

min
α,u,v

√
1 + (α2 − φ)σ2

1 + σ4
1ν ∨

√
1 + (α2 − φ)σ2

n + σ4
nν,

with a ∨ b := max{a, b} a shorthand. A minimizer is at α → 0 and ν → φ2/4 (since
φ2 < 4ν), where β1 = β2 = 2/(σ2

1 + σ2
n) and α→ 0.

2. φ2 − 4ν ≥ 0. A lower bound is:

min
u
|1− φσ2

1/2| ∨ |1− φσ2
n/2|,

which is obtained iff 4α2 ∼ (φ2 − 4ν)t for all σ2. This is only possible if α → 0 and
φ2 → 4ν, which yields β1 = β2 = 2/(σ2

1 + σ2
n).

From what has been discussed, the optimal radius is (κ2 − 1)/(κ2 + 1) which can be achieved at
β1 = β2 = 2/(σ2

1 + σ2
n) and α → 0. Again, this might not be the only choice. For instance, take

σ1 = σ2
n = 1, from equation 3.3, a super-linear convergence rate can be achieved at β1 = 1 and

β2 = 1− α2.

D.2 PROOF OF THEOREM 4.2: OPTIMAL CONVERGENCE RATE OF OGD

Theorem 4.2 (OGD optimal). For Jacobi OGD with β1 = β2 = β, to achieve the optimal linear
rate, we must have α ≤ 2β. For the original OGD with α = 2β, the optimal linear rate r∗ satisfies

r2∗ =
1

2
+

1

4
√

2σ2
1

√
(σ2

1 − σ2
n)(5σ2

1 − σ2
n +

√
(σ2

1 − σ2
n)(9σ2

1 − σ2
n)), (D.8)

at

β∗ =
1

4
√

2

√
3σ4

1 − (σ2
1 − σ2

n)3/2
√

9σ2
1 − σ2

n + 6σ2
1σ

2
n − σ4

n

σ4
1σ

2
n

. (D.9)

If κ → ∞, r∗ ∼ 1 − 1/(6κ2). For Gauss-Seidel OGD with β2 = 0, the optimal linear rate is
r∗ =

√
(κ2 − 1)/(κ2 + 1), at α =

√
2/σ1 and β1 =

√
2σ1/(σ

2
1 + σ2

n). If κ→∞, r∗ ∼ 1− 1/κ2.

For OGD, the characteristic polynomials equation 3.4 and equation 3.5 are quartic and cubic separately,
and thus optimizing the spectral radii for generalized OGD is difficult. However, we can study two
special cases: for Jacobi OGD, we take β1 = β2; for Gauss-Seidel OGD, we take β2 = 0. In both
cases, the spectral radius functions can be obtained by solving quadratic polynomials.
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D.2.1 JACOBI OGD

We assume β1 = β2 = β in this subsection. The characteristic polynomial for Jacobi OGD
equation 3.4 can be written as:

λ2(λ− 1)2 + (λα− β)2σ2 = 0. (D.10)

Factorizing it gives two equations which are conjugate to each other:

λ(λ− 1)± i(λα− β)σ = 0. (D.11)

The roots of one equation are the conjugates of the other equation. WLOG, we solve λ(λ − 1) +
i(λα− β)σ = 0 which gives (1/2)(u± v), where

u = 1− iασ, v =
√

1− α2σ2 − 2i(α− 2β)σ. (D.12)

Denote ∆1 = 1− α2σ2 and ∆2 = 2(α− 2β)σ. If α ≥ 2β, v can be expressed as:

v =
1√
2

(√√
∆2

1 + ∆2
2 + ∆1 − i

√√
∆2

1 + ∆2
2 −∆1

)
=:

1√
2

(a− ib), (D.13)

therefore, the spectral radius r(α, β, σ) satisfies:

r(α, β, σ)2 =
1

4

(
(1 + a/

√
2)2 + (ασ + b/

√
2)2
)

=
1

4
(1 + α2σ2 +

√
∆2

1 + ∆2
2 +
√

2(bσα+ a)),

(D.14)

and the minimum is achieved at α = 2β. From now on, we assume α ≤ 2β, and thus v = a + ib.
We write:

r(α, β, σ)2 =
1

4
max{

(
(1 + a/

√
2)2 + (ασ − b/

√
2)2
)
,
(

(1− a/
√

2)2 + (ασ + b/
√

2)2
)
},

=
1

4
(1 + α2σ2 +

√
∆2

1 + ∆2
2 +
√

2|bσα− a|).

=

{
1
4 (1 + α2σ2 +

√
∆2

1 + ∆2
2 −
√

2(bσα− a)) 0 < ασ ≤ 1,
1
4 (1 + α2σ2 +

√
∆2

1 + ∆2
2 +
√

2(bσα− a)) ασ > 1.
(D.15)

This is a non-convex and non-differentiable function, which is extremely difficult to optimize.

At α = 2β, in this case, a =
√

1− 4β2σ2sign(1− 4β2σ2) and b =
√

4β2σ2 − 1sign(4β2σ2 − 1).
The sign function sign(x) is defined to be 1 if x > 0 and 0 otherwise. The function we are optimizing
is a quasi-convex function:

r(β, σ)2 =

{
1
2 (1 +

√
1− 4β2σ2) 4β2σ2 ≤ 1,

2β2σ2 + βσ
√

4β2σ2 − 1 4β2σ2 > 1.
(D.16)

We are maximizing over σ and minimizing over β. There are three cases:

• 4β2σ2
1 ≤ 1. At 4β2σ2

1 = 1, the optimal radius is:

r2∗ =
1

2

(
1 +

√
1− 1

κ2

)
.

• 4β2σ2
n ≥ 1. At 4β2σ2

n = 1, the optimal radius satisfies:

r2∗ =
κ2

2
+
κ

2

√
κ2 − 1.

• 4β2σ2
n ≤ 1 and 4β2σ2

1 ≥ 1. The optimal β is achieved at:

1

2

(
1 +

√
1− 4β2σ2

n

)
= 2β2σ2

1 + βσ1

√
4β2σ2

1 − 1.
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The solution is unique since the left is decreasing and the right is increasing. The optimal β
is:

β∗ =
1

4
√

2

√
3σ4

1 − (σ2
1 − σ2

n)3/2
√

9σ2
1 − σ2

n + 6σ2
1σ

2
n − σ4

n

σ4
1σ

2
n

. (D.17)

The optimal radius satisfies:

r2∗ =
1

2
+

1

4
√

2σ2
1

√
(σ2

1 − σ2
n)(5σ2

1 − σ2
n +

√
(σ2

1 − σ2
n)(9σ2

1 − σ2
n)). (D.18)

This is the optimal solution among the three cases. If σ2
n/σ

2
1 is small enough we have

r2 ∼ 1− 1/(3κ2).

D.2.2 GAUSS-SEIDEL OGD

In this subsection, we study Gauss-Seidel OGD and fix β2 = 0. The characteristic polynomial
equation 3.5 now reduces to a quadratic polynomial:

λ2 + (α2σ2 − 2)λ+ 1− αβ1σ2 = 0.

For convenience, we reparametrize β1 → β/α. So, the quadratic polynomial becomes:

λ2 + (α2σ2 − 2)λ+ 1− βσ2 = 0.

We are doing a min-max optimization minα,β maxσ r(α, β, σ), where r(α, β, σ) is:

r(α, β, σ) =

{√
1− βσ2 α4σ2 < 4(α2 − β)

1
2 |α

2σ2 − 2|+ 1
2

√
α4σ4 − 4(α2 − β)σ2 α4σ2 ≥ 4(α2 − β).

(D.19)

There are three cases to consider:

• α4σ2
1 ≤ 4(α2 − β). We are minimizing 1− βσ2

n over α and β. Optimizing over β1 gives
β = α2−α4σ2

1/4. Then we minimize over α and obtain α2 = 2/σ2
1 . The optimal β = 1/σ2

1

and the optimal radius is
√

1− 1/κ2.

• α4σ2
n > 4(α2 − β). Fixing α, the optimal β = α2 − α4σ2

n/4, and we are solving

min
α

max

{
1

2
|α2σ2

1 − 2|+ 1

2
α2
√
σ2
1(σ2

1 − σ2
n),

1

2
|α2σ2

n − 2|
}
.

We need to discuss three cases: α2σ2
n > 2, α2σ2

1 < 2 and 2/σ2
1 < α2 < 2/σ2

n. In the first
case, the optimal radius is

κ2 − 1 + κ
√

(κ2 − 1).

In the second case, α2 → 2/σ2
1 and the optimal radius is

√
1− 1/κ2. In the third case, the

optimal radius is also
√

1− 1/κ2 minimized at α2 → 2/σ2
1 .

• α4σ2
1 > 4(α2 − β) and α4σ2

n < 4(α2 − β). In this case, we have α2σ2
1 < 4. Otherwise,

r(α, β, σ1) > 1. We are minimizing over:

max{
√

1− βσ2
n,

1

2
|α2σ2

1 − 2|+ 1

2

√
α4σ4

1 − 4α2σ2
1 + 4βσ2

1}.

The minimum over α is achieved at α2σ2
1 = 2, and β = 2/(σ2

1 +σ2
n), this gives α =

√
2/σ1

and β1 =
√

2σ1/(σ
2
1 + σ2

n). The optimal radius is r∗ =
√

(κ2 − 1)/(κ2 + 1).

Out of the three cases, the optimal radius is obtained in the third case, where r ∼ 1− 1/κ2. This is
better than Jacobi OGD, but still worse than the optimal EG.
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D.3 NUMERICAL METHOD

We first prove Lemma 4.1:
Lemma 4.1. A polynomial p(λ) is r-Schur stable iff p(rλ) is Schur stable.

Proof. Denote p(λ) =
∏n
i=1(λ− λi). We have p(rλ) ∝

∏n
i=1(λ− λi/r), and:

∀i ∈ [n], |λi| < r ⇐⇒ ∀i ∈ [n], |λi/r| < 1. (D.20)

With Lemma 4.1 and Corollary 2.1, we have the following corollary:
Corollary D.1. A real quadratic polynomial λ2 + aλ+ b is r-Schur stable iff b < r2, |a| < r+ b/r;
A real cubic polynomial λ3 + aλ2 + bλ + c is r-Schur stable iff |c| < r3, |ar2 + c| < r3 + br,
br4 − acr2 < r6 − c2; A real quartic polynomial λ4 + aλ3 + bλ2 + cλ + d is r-Schur stable iff
|cr5 − adr3| < r8 − d2, |ar2 + c| < br + d/r + r3, and

b < r2 + dr−2 + r2
(cr2 − ad)(ar2 − c)

(d− r4)2
.

Proof. In Corollary 2.1, rescale the coefficients according to Lemma 4.1.

We can use the corollaries above to find the regions where r-Schur stability is possible, i.e., a linear
rate of r. A simple algorithm might be to start from r0 = 1, find the region S0. Then recursively
take rt+1 = srt and find the Schur stable region St+1 inside St. If the region is empty then stop the
search and return St. s can be taken to be, say, 0.99. Formally, this algorithm can be described as
follows in Algorithm 1:

r0 = 1, t = 0, s = 0.99;
Find the r0-Schur region S0;
while St is not empty do

rt+1 = srt;
Find the rt+1-Schur region St+1;
t = t+ 1;

end
Algorithm 1: Numerical method for finding the optimal convergence rate

In this algorithm, Corollary D.1 can be applied to obtain any r-Schur region.

E SUPPLEMENTARY MATERIAL FOR SECTIONS 5 AND 6

We provide supplementary material for Sections 5 and 6. We first prove that when learning the
mean of a Gaussian, WGAN is locally a bilinear game in Appendix E.1. For mixtures of Gaussians,
we provide supplementary experiments about Adam in Appendix E.2. This result implies that in
some cases, Jacobi updates are better than GS updates. We further verify this claim in Appendix E.3
by showing an example of OGD on bilinear games. Optimizing the spectral radius given a certain
singular value is possible numerically, as in Appendix E.4.

E.1 WASSERSTEIN GAN

Inspired by Daskalakis et al. (2018), we consider the following WGAN (Arjovsky et al., 2017):

f(φ,θ) = min
φ

max
θ
Ex∼N (v,σ2I)[s(θ

Tx)]− Ez∼N (0,σ2I)[s(θ
T (z + φ))], (E.1)

with s(x) := 1/(1 + e−x) the sigmoid function. We study the local behavior near the saddle point
(v,0), which depends on the Hessian:[

∇2
φφ ∇2

φθ

∇2
θφ ∇2

θθ

]
=

[
−Eφ[s′′(θTz)θθT ] −Eφ[s′′(θTz)θzT + s′(θTz)I]

(∇2
φθ)T Ev[s′′(θTx)xxT ]− Eφ[s′′(θTz)zzT ]

]
,
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Figure 6: Test samples generated from the generator network trained with stochastic Adam. Top row:
Jacobi updates; Bottom row: Gauss-Seidel updates. Columns (left to right): epoch 0, 5, 10, 20.
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Figure 7: Contour plot of spectral radius equal to 0.8. The red curve is for the Jacobi polynomial and
the blue curve is for the GS polynomial. The GS region is larger but for some parameter settings,
Jacobi OGD achieves a faster convergence rate.

with Ev a shorthand for Ex∼N (v,σ2I) and Eφ for Ez∼N (φ,σ2I). At the saddle point, the Hessian is
simplified as:

[
∇2
φφ ∇2

φθ

∇2
θφ ∇2

θθ

]
=

[
0 −s′(0)I

−s′(0)I 0

]
=

[
0 −I/4
−I/4 0

]
.

Therefore, this WGAN is locally a bilinear game.

E.2 MIXTURES OF GAUSSIANS WITH ADAM

Given the same parameter settings as in Section 5, we train the vanilla GAN using Adam, with the
step size α = 0.0002, and β1 = 0.9, β2 = 0.999. As shown in Figure 6, Jacobi updates converge
faster than the corresponding GS updates.
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E.3 JACOBI UPDATES MAY CONVERGE FASTER THAN GS UPDATES

Take α = 0.9625, β1 = β2 = β = 0.5722, and σ = 1, the Jacobi and GS OGD radii are separately
0.790283 and 0.816572 (by solving equation 3.4 and equation 3.5), which means that Jacobi OGD
has better performance for this setting of parameters. A more intuitive picture is given as Figure 7,
where we take β1 = β2 = β.

E.4 SINGLE SINGULAR VALUE

We minimize r(θ, σ) for a given singular value numerically. WLOG, we take σ = 1, since we can
rescale parameters to obtain other values of σ. We implement grid search for all the parameters within
the range [−2, 2] and step size 0.05. For the step size α, we take it to be positive. We use {a, b, s} as
a shorthand for {a, a+ s, a+ 2s, . . . , b}.

• We first numerically solve the characteristic polynomial for Jacobi OGD equation 3.4, fixing
α1 = α2 = α with scaling symmetry. With α ∈ {0, 2, 0.05}, βi ∈ {−2, 2, 0.05}, the best
parameter setting is α = 0.7, β1 = 0.1 and β2 = 0.6. β1 and β2 can be switched. The
optimal radius is 0.6.
• We also numerically solve the characteristic polynomial for Gauss-Seidel OGD equation 3.5,

fixing α1 = α2 = α with scaling symmetry. With α ∈ {0, 2, 0.05}, βi ∈ {−2, 2, 0.05},
the best parameter setting is α = 1.4, β1 = 0.7 and β2 = 0. β1 and β2 can be switched.
The optimal rate is 1/(5

√
2). This rate can be further improved to be zero where α =

√
2,

β1 = 1/
√

2 and β2 = 0.
• Finally, we numerically solve the polynomial for Gauss-Seidel momentum equation 3.7,

with the same grid. The optimal parameter choice is α = 1.8, β1 = −0.1 and β2 = −0.05.
β1 and β2 can be switched. The optimal rate is 0.5.

F SPLITTING METHOD

In this appendix, we interpret the gradient-based algorithms (except PP) we have studied in this paper
as splitting methods (Saad, 2003), for both Jacobi and Gauss-Seidel updates. By doing this, one can
understand our algorithms better in the context of numerical linear algebra and compare our results in
Section 3 with the Stein-Rosenberg theorem.

F.1 JACOBI UPDATES

From equation 2.2, finding a saddle point is equivalent to solving:

Sz :=

[
0 E
−ET 0

] [
x
y

]
=

[
−b
c

]
=: d. (F.1)

Now, we try to understand the Jacobi algorithms using splitting method. For GD and EG, the method
splits S intoM −N and solve

zt+1 = M−1Nzt +M−1d. (F.2)

For GD, we can obtain that:

M =

[
α−11 I 0
0 α−12 I

]
, N =

[
α−11 I −E
ET α−12 I

]
. (F.3)

For EG, we need to compute an inverse:

M−1 =

[
α1I −β1E
β2E

T α2I

]
, N = M − S. (F.4)

Given det(α1α2I + β1β2EE
T ) 6= 0, the inverse always exists.

The splitting method can also work for second-step methods, such as OGD and momentum. We split
S = M −N − P and solve:

zt+1 = M−1Nzt +M−1Pzt−1 +M−1d. (F.5)
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For OGD, we have:

M =

[
I

α1−β1
0

0 I
α2−β2

]
, N =

 I
α1−β1

− α1E
α1−β1

α2E
T

α2−β2

I
α2−β2

 , P =

[
0 β1E

α1−β1

− β2E
T

α2−β2
0

]
. (F.6)

For the momentum method, we can write:

M =

[
α−11 I 0
0 α−12 I

]
, N =

[
1+β1

α1
I −E

ET 1+β2

α2
I

]
, P =

[
− β1

α1
I 0

0 − β2

α2
I

]
. (F.7)

F.2 GAUSS-SEIDEL UPDATES

Now, we try to understand the GS algorithms using splitting method. For GD and EG, the method
splits S intoM −N and solve

zt+1 = M−1Nzt +M−1d. (F.8)

For GD, we can obtain that:

M =

[
α−11 I 0
−ET α−12 I

]
, N =

[
α−11 I −E
0 α−12 I

]
. (F.9)

For EG, we need to compute an inverse:

M−1 =

[
α1I −β1E

(β2 + α1α2)ET α2(I − β1ETE)

]
, N = M − S. (F.10)

The splitting method can also work for second-step methods, such as OGD and momentum. We split
S = M −N − P and solve:

zt+1 = M−1Nzt +M−1Pzt−1 +M−1d. (F.11)

For OGD, we obtain:

M =

 I
α1−β1

0

− α2E
T

α2−β2

I
α2−β2

 , N =

 I
α1−β1

− α1E
α1−β1

− β2E
T

α2−β2

I
α2−β2

 , P =

0 β1E
α1−β1

0 0

 . (F.12)

For the momentum method, we can write:

M =

[
α−11 I 0
−ET α−12 I

]
, N =

[
1+β1

α1
I −E

0 1+β2

α2
I

]
, P =

[
− β1

α1
I 0

0 − β2

α2
I

]
. (F.13)
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