
Under review as a conference paper at ICLR 2020

BLOCKWISE ADAPTIVITY: FASTER TRAINING AND
BETTER GENERALIZATION IN DEEP LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Stochastic methods with coordinate-wise adaptive stepsize (such as RMSprop and
Adam) have been widely used in training deep neural networks. Despite their
fast convergence, they can generalize worse than stochastic gradient descent. In
this paper, by revisiting the design of Adagrad, we propose to split the network
parameters into blocks, and use a blockwise adaptive stepsize. Intuitively, block-
wise adaptivity is less aggressive than adaptivity to individual coordinates, and
can have a better balance between adaptivity and generalization. We show the-
oretically that the proposed blockwise adaptive gradient descent has comparable
regret in online convex learning and convergence rate for optimizing nonconvex
objective as its counterpart with coordinate-wise adaptive stepsize, but is better
up to some constant. We also study its uniform stability and show that blockwise
adaptivity can lead to lower generalization error than coordinate-wise adaptiv-
ity. Experimental results show that blockwise adaptive gradient descent converges
faster and improves generalization performance over Nesterov’s accelerated gra-
dient and Adam.

1 INTRODUCTION

Deep networks have achieved excellent performance in a variety of domains such as computer vision
(He et al., 2016), language modeling (Zaremba et al., 2014), and speech recognition (Graves et al.,
2013). The most popular optimizer is stochastic gradient decent (SGD) (Robbins & Monro, 1951),
which is simple and has low per-iteration complexity. Its convergence rate is also well-established
(Ghadimi & Lan, 2013; Bottou et al., 2018). However, vanilla SGD is sensitive to the choice of
stepsize, and requires careful tuning.

To improve the efficiency and robustness of SGD, many variants based on coordinate-wise adaptive
stepsize (Almeida et al., 1999; Duchi et al., 2011; Schaul et al., 2013; Kingma & Ba, 2015; Tieleman
& Hinton, 2012; Zeiler, 2012; Zheng & Kwok, 2017; Reddi et al., 2018; Zaheer et al., 2018; Zou
& Shen, 2018; Chen et al., 2019; Zou et al., 2019) have been proposed. Though this is effective
in accelerating convergence, its generalization performance is often worse than SGD (Wilson et al.,
2017). Recently, it is shown that coordinate-wise adaptive gradient descent is closely related to sign-
based gradient descent (Balles & Hennig, 2018; Bernstein et al., 2018). Theoretical arguments and
empirical evidence suggest that the gradient sign impedes generalization (Balles & Hennig, 2018).
To contract the generalization gap, a partial adaptive parameter for the second-order momentum is
proposed (Chen & Gu, 2018). By using a smaller partial adaptive parameter, the adaptive gradient
algorithm behaves less like sign descent and more like SGD. Based on the similar motivation, Luo
et al. (2019) proposed to gradually transform Adam Kingma & Ba (2015) to SGD. Moreover, to
avoid numerical problems in practical implementation, a small ε (= 10−8) parameter is typically
used in these methods. This ε parameter controls adaptivity of the algorithm (Zaheer et al., 2018). A
larger value (say, ε = 10−3) can reduce adaptivity and empirically helps Adam to match its general-
ization performance with SGD. This implies that coordinate-wise adaptivity may be too aggressive
for good generalization performance.

To improve generalization performance, attempts have been made to use a layer-wise stepsize (Singh
et al., 2015; You et al., 2017; Yu et al., 2017; Zhou et al., 2018), which assign different stepsizes to
different layers or normalize the layer-wise gradient. However, there has been no theoretical analysis
for its empirical success.

1

Under review as a conference paper at ICLR 2020

In this paper, we consider the more general case in which model parameters are partitioned into
blocks, instead of simply into layers. By revisiting the derivation of Adagrad, we propose the use
of a blockwise stepsize which depends on the corresponding gradient block. Such blockwise adap-
tivity is less aggressive than coordinate-wise adaptivity, as it adapts to parameter blocks instead of
to individual parameters. This can thus have a better balance between adaptivity and generaliza-
tion. Moreover, unlike coordinate-wise adaptivity, blockwise adaptivity is not sign-based gradient
descent, and so does not suffer from its performance deterioration.

As in (Bernstein et al., 2018; Ghadimi & Lan, 2013; Ward et al., 2018; Zaheer et al., 2018; Zou &
Shen, 2018; Zou et al., 2019), we will focus on the expected risk minimization problem:

min
θ
F (θ) = Ez[f(θ; z)], (1)

where f is some possibly nonconvex loss function, z is a random sample, θ is the model parameter,
and the expectation is taken w.r.t. the underlying sample distribution. The expected risk measures
the generalization performance on unseen data (Bottou et al., 2018), and reduces to the empirical risk
when a finite training set is considered. We show theoretically that the proposed blockwise adaptive
gradient descent can be faster than its coordinate-wise counterpart. Using tools on uniform stability
(Bousquet & Elisseeff, 2002; Hardt et al., 2016), we also show that blockwise adaptivity has poten-
tially lower generalization error than coordinate-wise adaptivity. Empirically, blockwise adaptive
gradient descent converges faster and obtains better generalization performance than coordinate-
wise descent (Adam) and Nesterov’s accelerated gradient (NAG) (Sutskever et al., 2013).

Notations. For an integer n, [n] = {1, 2, . . . , n}. For a vector x, xT denotes its transpose, Diag(x)
is a diagonal matrix with x on its diagonal,

√
x is the element-wise square root of x, x2 is the

coordinate-wise square of x, ‖x‖2 =
√
xTx, ‖x‖∞ = maxi |xi|, ‖x‖2Q = xTQx, where Q is a

positive semidefinite (psd) matrix, and x ≥ 0 means xi ≥ 0 for all i. For two vectors x and y, x/y,
and 〈x, y〉 denote the element-wise division and dot product, respectively. For a square matrix X ,
X−1 is its inverse, and X � 0 means that X is psd. Moreover, 1d = [1, 1, . . . , 1]T ∈ Rd.

2 RELATED WORK

2.1 ADAGRAD

Adagrad (shown in Algorithm 1) is an adaptive gradient method in online convex learning with
coordinate-wise stepsize (Duchi et al., 2011; McMahan & Streeter, 2010). It is particularly useful for
sparse learning, as parameters for the rare features can take large steps. Recently, Ward et al. (2018)
established its convergence properties with a global adaptive stepsize in nonconvex optimization. It
is shown that Adagrad converges to a stationary point at the optimal O(1/

√
T) rate (up to a factor

log(T)), where T is the total number of iterations.

Recall that the SGD iterate is the solution to the problem: θt+1 = arg minθ〈gt, θ〉 + 1
2η‖θ − θt‖

2
2,

where gt is the gradient of the loss ft at iteration t, and θt ∈ Rd is the parameter vector. To
incorporate information about the curvature of sequence {ft}, the `2-norm in the SGD update can
be replaced by the Mahalanobis norm, leading to (Duchi et al., 2011):

θt+1 = arg min
θ
〈gt, θ〉+

1

2η
‖θ − θt‖2Diag(st)−1 , (2)

where st ≥ 0. This is an instance of mirror descent (Nemirovski & Yudin, 1983). Its regret bound
has a gradient-related term

∑T
t=1 ‖gt‖2Diag(st)−1 . Adagrad’s stepsize can be obtained by examining

a similar objective (Duchi et al., 2011):

min
s∈S

T∑
t=1

‖gt‖2Diag(s)−1 , (3)

where S = {s : s ≥ 0, 〈s, 1〉 ≤ c}, and c is some constant. At optimality, s∗,i =

c‖g1:T,i‖2/
∑d
j=1 ‖g1:T,j‖2, where g1:T,i = [g1,i, . . . , gT,i]

T . As st cannot depend on gj’s with
j > t, this suggests st,i ∝ ‖g1:t,i‖2. Theoretically, this choice of st leads to a regret bound that is
competitive with the best post-hoc optimal bound (McMahan & Streeter, 2010).

2

Under review as a conference paper at ICLR 2020

To solve the expected risk minimization problem in (1), an Adagrad variant called weighted
AdaEMA is recently proposed in (Zou et al., 2019). It employs weighted averaging of g2

t,i’s for
stepsize. Moreover, weighted AdaEMA is a general coordinate-wise adaptive method and includes
many Adagrad variants, including Adam and RMSprop, as special cases.

2.2 UNIFORM STABILITY

Given n samples S = {zi}ni=1 drawn i.i.d. from an underlying data distribution D, one often learns
the model by minimizing the empirical risk: minθ ΦS(θ) ≡ 1

n

∑n
i=1 f(θ; zi). Let M(S) be the

output of a possibly randomized algorithm M (e.g., SGD) running on data S.
Definition 1. (Hardt et al., 2016) Let S and S′ be two data sets of size n that differ in only
one sample. Algorithm M is εu-uniformly stable if εstab ≡ supS,S′ supz∈D EM [f(M(S); z) −
f(M(S′); z)] ≤ εu.

The generalization error is defined as εgen ≡ ES,M [ΦS(M(S))−F (M(S))], where the expectation
is taken w.r.t. the set S and randomness of M (Hardt et al., 2016). It is shown that the generalization
error is bounded by the uniform stability of M , i.e., |εgen| ≤ εstab (Hardt et al., 2016). In other
words, the more uniformly stable an algorithm is, the lower is its generalization error.

3 BLOCKWISE ADAPTIVE DESCENT

Consider the under-determined least squares problem:

min
θ
‖Xθ − y‖22, (4)

whereX ∈ Rn×d is the input matrix (with sample size n, and dimensionality d > n), and output y ∈
Rn. We assume that XXT is invertible. As pointed out in (Zhang et al., 2017; Wilson et al., 2017),
any stochastic gradient descent method on problem (4) with a global stepsize outputs a trajectory
with iterates lying in the span of the rows of X . One solution of (4) is XT (XXT)−1y, which
happens to be the solution with minimum `2-norm among all possible global minimizers. This
minimum-norm solution has the largest margin, and maximizing margin typically leads to lower
generalization error (Boser et al., 1992).

It is known that SGD converges to the minimum `2-norm solution of problem (4) (Zhang et al.,
2017). On the other hand, coordinate-wise adaptive methods (such as Adagrad, RMSprop, and
Adam) fail to find the minimum `2-norm solution, but converge to solutions with low `∞-norm
instead (Wilson et al., 2017). Examples in (Wilson et al., 2017) show that solutions obtained by
these adaptive methods can generalize arbitrarily poorly, while the SGD solution makes no error.

In Section 3.1, we first show that blockwise adaptivity, unlike coordinate-wise adaptivity, can find
the minimum `2-norm solution of a nonlinear least squares problem in layer-wise training of a neural
network. This motivates us to further exploit blockwise adaptivity in end-to-end neural network
training (Section 3.2). To provide more analysis, Section 3.3 studies the proposed algorithm in the
online convex learning setting as in (Duchi et al., 2011; Kingma & Ba, 2015; Reddi et al., 2018).

3.1 BLOCKWISE VS COORDINATE-WISE ADAPTIVITY

Consider a L-layer neural network with output φL−1(· · ·φ2(φ1(XW1)W2) · · ·WL−1)WL, where
{Wl ∈ Rdl−1×dl}Ll=1 are weight matrices with d0 = d and dL = m, the output dimensionality.
Assume that the nonlinear activation functions {φl}L−1

l=1 are bijective with nonzero derivatives on
R (e.g., tanh and leaky ReLU). For simplicity, we further assume that dl = d = m > n for all l.
Training this neural network with the square loss corresponds to solving the nonlinear optimization
problem: min{Wl}Ll=1

‖φL−1(· · ·φ2(φ1(XW1)W2) · · ·WL−1)WL − Y ‖22, where Y ∈ Rn×m is the
label matrix. Consider training the network layer-by-layer, starting from the bottom one. For layer
l, its optimization subproblem can be rewritten as

min
Wl

‖Φl(Hl−1Wl)− Y ‖22, (5)

where Φl(·) = φL−1(· · ·φl+1(φl(·)Wl+1) · · ·WL−1)WL, Hl−1 = φl−1(· · ·φ1(XW1) · · ·Wl−1) is
the input activation to the lth layer, and H0 = X . Note that (4) is a special case of (5) with L = 1

3

Under review as a conference paper at ICLR 2020

and identity mapping. To minimize (5), the weights for this layer are updated as

Wt+1,l = Wt,l − ηt,lgt,l, (6)

where gt,l is a stochastic gradient evaluated at Wt,l at time t, and ηt,l is the stepsize which may be
adaptive in that it depends on gt,l.

Proposition 1. Assume that Wl′ ’s (with l′ > l) are invertible. If Wl is initialized to zero, and Hl−1

has full row rank, the critical point that (6) converges to is the minimum `2-norm solution of (5) in
expectation.

Another benefit of using a blockwise stepsize is that the optimizer’s extra memory cost can be
reduced. Using a coordinate-wise stepsize requires an additionalO(d) memory for storing estimates
of the second moment, while the blockwise stepsize only needs an extra O(B) memory, where B is
the number of blocks. A deep network generally has millions of parameters but only tens of layers.
If we set B to be the number of layers, memory reduction can be significant.

3.2 BLOCKWISE ADAPTIVE GRADIENT (BAG)

Let the gradient gt ∈ Rd be partitioned to {gt,Gb ∈ Rdb : b = 1, . . . , B}, where Gb is the set of
indices in block b, and gt,Gb is the corresponding subvector of gt. Inspired by problem (3) in the
derivation of Adagrad, we consider the following variant which imposes a block structure on s:

min
s∈S′

T∑
t=1

‖gt‖2Diag(s)−1 , (7)

where S ′ = {s : s = [q11Td1 , . . . , qB1TdB]T ≥ 0, 〈s, 1〉 ≤ c} for some qi ∈ R. We assume the
indices in Gb are consecutive; otherwise, we can simply reorder the elements of the gradient. Note
that reordering does not change the result, as the objective is invariant to ordering of the coordinates.
It can be easily shown that at optimality of (7), qb = c‖g1:T,Gb‖2/(

√
db
∑B
i=1

√
di‖g1:T,Gi‖2), where

g1:T,Gb = [gT1,Gb , . . . , g
T
T,Gb]T . The optimal qb is thus proportional to ‖g1:T,Gb‖2/

√
db. When st in

(2) is partitioned by the same block structure, the optimal qb suggests to incorporate ‖g1:t,Gb‖2/
√
db

into st for block b at time t.

Algorithm 1 Adagrad: Adaptive gradient for
online convex learning (Duchi et al., 2011).

1: Input: η > 0; ε > 0.
2: initialize θ1; v0 ← 0
3: for t = 1, 2, . . . , T do
4: Receive subgradient gt ∈ ∂ft(θt)
5: for i = 1, 2, . . . , d do
6: vt,i = vt−1,i + ‖gt,i‖22
7: θt+1,i = θt,i − ηgt,i/(

√
vt,i + ε)

8: end for
9: end for

Algorithm 2 BAG: Blockwise adaptive gradient
for online convex learning.

1: Input: η > 0; ε > 0.
2: initialize θ1; v0 ← 0
3: for t = 1, 2, . . . , T do
4: Receive subgradient gt ∈ ∂ft(θt)
5: for b = 1, 2, . . . , B do
6: vt,b = vt−1,b + ‖gt,Gb‖22/db
7: θt+1,Gb = θt,Gb − ηgt,Gb/(

√
vt,b + ε)

8: end for
9: end for

The proposed procedure, which will be called blockwise adaptive gradient (BAG), is shown in
Algorithm 2. Compared to Adagrad, each block, instead of each coordinate, has its own learn-
ing rate. When B = d (i.e., each block has only one coordinate), BAG reduces to Adagrad.
When B = 1 (i.e., all coordinates are grouped together), Algorithm 2 produces the update:
θt+1 = θt − η(gt/(‖g1:t‖2/

√
d + ε)) with a global adaptive learning rate, which is equivalent

to AdaGrad-Norm (Ward et al., 2018).

Returning to the underdetermined least squares problem in (4), the following Proposition shows that
when B > 1, BAG finds the minimum `2-norm solution in each subspace induced by the group
structure. When B = 1, BAG converges to the minimum `2-norm solution of (4).

Proposition 2. Assume that for each b ∈ [B], each submatrix X:,Gb ∈ Rn×db has full row rank.
BAG (with θ1 initialized to 0) converges to an optimal solution θ∗ of (4). For each b ∈ [B], the
subvector θ∗,Gb of θ∗ equals XT

:,Gb(X:,GbX
T
:,Gb)−1ub for some ub ∈ Rn and

∑
b∈[B] ub = y.

4

Under review as a conference paper at ICLR 2020

3.3 REGRET ANALYSIS

To further illustrate the advantages of blockwise adaptivity over coordinate-wise adaptivity, we con-
sider the online convex learning setting. At round t, the learner picks θt, and suffers a loss ft(θt).
After T rounds, the learner wants to achieve a low regret w.r.t. an optimal θ∗ = arg minθ

∑T
t=1 ft(θ)

in hindsight:

R(T) ≡
T∑
t=1

ft(θt)−
T∑
t=1

ft(θ∗) ≡
T∑
t=1

ft(θt)− inf
θ

T∑
t=1

ft(θ). (8)

We make the following assumptions.
Assumption 1. Each ft in (8) is convex but possibly nonsmooth. There exists a subgradient g ∈
∂ft(θ) such that ft(θ′) ≥ ft(θ) + 〈g, θ′ − θ〉 for all θ, θ′.
Assumption 2. Each parameter block is in a ball of the corresponding optimal block throughout
the iterations. In other words, for all b ∈ [B], maxt ‖θt,Gb − θ∗,Gb‖2 ≤ Db for some Db, where
θ∗,Gb is the subvector of θ∗ in block b.

When B = 1, this reduces to the common assumption in online convex learning Duchi & Singer
(2009). When B > 1, it naturally encodes the heterogeneity of model parameters.
Theorem 1. Suppose that Assumptions 1 and 2 hold. Then,

R(T) ≤
B∑
b=1

[
1

2η
√
db
D2
b + η

√
db

]
‖g1:T,Gb‖2. (9)

Assume that maxt ‖θt−θ∗‖∞ ≤ D∞ for some constantD∞. WhenB = d, the above regret bound
reduces to that of Adagrad (Theorem 5 of (Duchi et al., 2011)) by setting Db = D∞ for all b ∈ [B].

In the following, we show that when gradient magnitudes for elements in the same block have the
same upper bound, blockwise adaptive learning can have lower regret than coordinate-wise adap-
tive learning. As a deep network can be naturally divided into blocks (examples will be given in
Section 5.2) and parameters in the same block are likely to have gradients with similar magnitudes
(which is verified empirically in Appendix B), blockwise adaptivity can be more beneficial.
Corollary 1. Assume that E[g2

t,i] ≤ σ2
b for all i ∈ Gb. The expectation of (9) can be bounded as:

E[R(T)] ≤
B∑
b=1

σb

[
1

2η
D2
b + ηdb

]√
T . (10)

When B = d (which corresponds to Adagrad), Assumption 2 becomes maxt(θt,i − θ∗,i) ≤ Di for
some Di. Expectation of the bound in (9) then reduces to

E[R(T)] ≤
B∑
b=1

σb

[
1

2η

∑
i∈Gb

D2
i + ηdb

]
√
T . (11)

Assuming that Assumption 2 is tight in the sense that D2
b ≤

∑
i∈Gb D

2
i . The bound in (10) is

then smaller than that in (11). Intuitively, when gradients in a block have similar magnitudes in
expectation, we have from the weak law of large numbers that vt,b =

∑
i∈Gb vt,i/db (where vt,b and

vt,i are as defined in Algorithms 2 and 1, respectively) is a better estimate of E[vt,i] than vt,i for a
single coordinate i. This implies using blockwise adaptivity may lead to better performance.

4 BLOCKWISE ADAPTIVE GRADIENT WITH MOMENTUM (BAGM)

In Algorithm 2, vt,b’s are increasing w.r.t. t. The update suffers from vanishing stepsize, making
slow progress on nonconvex problems such as deep network training. To alleviate this problem,
many Adagrad variants (such as RMSprop, Adam and weighted AdaEMA (Zou et al., 2019)) use
weighted moving average momentum. In this paper, we extend the use of blockwise adaptive step-
size to weighted AdaEMA (Section 4.1), which includes Adam and RMSprop as special cases.
The proposed algorithm will be called blockwise adaptive gradient with momentum (BAGM). Sec-
tions 4.2 and 4.3 then study its convergence and generalization properties. Note that as BAG is a
special case of BAGM, the analysis there also apply to BAG.

5

Under review as a conference paper at ICLR 2020

4.1 PROPOSED ALGORITHM

The proposed BAGM is shown in Algorithm 4. Here, mt serves as an exponential moving averaged
momentum, {βt} is a sequence of momentum parameters, and at’s assign different weights to the
past gradients in the accumulation of variance. Note from Algorithm 4 that the variance estimate
can be rewritten as

v̂t,b =

t∑
i=1

ai
At

‖gi,Gb‖22
db

=
1∑t
j=1 aj

t∑
i=1

ai
‖gi,Gb‖22
db

. (12)

In particular, we will consider the three weight sequences {at} introduced in (Zou & Shen, 2018).
S.1: at = a for some a > 0; S.2: at = tτ for some τ > 0; The fraction at/At in (12) then decreases
as O(1/t). S.3: at = α−t for some 0 < α < 1: It can be shown that this is equivalent to using the

exponential moving average estimate: vt,b = αvt−1,b + (1− α)
‖gt,Gb‖

2
2

db
, and v̂t,b =

vt,b
1−αt .

With βt = 0, weight sequence S.1, and ε = 0, BAGM reduces BAG. When B = d and ε = 0,
BAGM reduces to weighted AdaEMA. As weighted AdaEMA includes many Adagrad variants, the
proposed BAGM also covers the corresponding blockwise variants.

Algorithm 3 Weighted AdaEMA for stochastic
nonconvex optimization.

1: Input: {ηt}; {at}; {βt}; ε > 0.
2: initialize θ1; v0 ← 0; m0 ← 0; A0 ← ε
3: for t = 1, 2, . . . , T do
4: Sample an unbiased stochastic gradient

gt
5: At = At−1 + at
6: for i = 1, 2, . . . , d do
7: vt,i = vt−1,i + atg

2
t,i

8: v̂t,i = vt,i/At
9: mt,i = βtmt−1,i + (1− βt)gt,i

10: θt+1,i = θt,i − ηtmt,i/
√
v̂t,i

11: end for
12: end for

Algorithm 4 BAGM: Blockwise adaptive gra-
dient with momentum for stochastic nonconvex
optimization.

1: Input: {ηt}; {at}; {βt}; ε > 0.
2: initialize θ1; v0 ← 0; m0 ← 0; A0 ← 0
3: for t = 1, 2, . . . , T do
4: Sample an unbiased stochastic gradient

gt
5: At = At−1 + at
6: for b = 1, 2, . . . , B do
7: vt,b = vt−1,b + at‖gt,Gb‖22/db
8: v̂t,b = vt,b/At
9: mt,Gb = βtmt−1,Gb + (1− βt)gt,Gb

10: θt+1,Gb = θt,Gb−ηtmt,Gb/(
√
v̂t,b+ε)

11: end for
12: end for

4.2 CONVERGENCE ANALYSIS ON NONCONVEX PROBLEMS

Assumption 3. F in (1) is lower-bounded (i.e., F (θ∗) = infθ F (θ) > −∞) and L-smooth.
Assumption 4. Each block of stochastic gradient has bounded second moment, i.e.,
Et[‖gt,Gb‖22]/db ≤ σ2

b ,∀b ∈ [B],∀t, where the expectation is taken w.r.t. the random ft.

Assumption 4 implies the variance of each block of stochastic gradient is upper-bounded by dbσ2
b

(i.e., Et[‖gt,Gb−∇GbF (θt)‖22] = Et[‖gt,Gb‖22]−‖∇GbF (θt)‖22 ≤ dbσ2
b). This naturally encodes the

notion of heterogeneous gradient in a multi-layer neural network. When B = 1, this reduces to the
usual second moment bound in stochastic approximation (Shamir & Zhang, 2013; Zou et al., 2019).
Assumption 5. 0 ≤ βt ≤ β for some 0 ≤ β < 1.

Assumption 5 allows us to use, for example, a constant βt = β, a decreasing sequence βt = β/tτ ,
or an increasing sequence βt = β(1− 1/tτ).
Assumption 6. (i) {at} is non-decreasing; (ii) at grows slowly such that {At−1/At} is non-
decreasing and At/(At−1 + a1) ≤ ω for some ω ≥ 0; (iii) p ≡ limt→∞At−1/At > β2.

Assumption 6 is satisfied by the three weight sequences introduced above. Specifically, for S.1:
ω = 1 and p = 1; S.2: ω = (1 + 2τ)/2 and p = 1; S.3: ω = (1 + 1/α)/2 and p = α > β2.

Assumption 7. (Zou et al., 2019) The stepsize ηt is chosen such that wt = ηt/
√
at/At is “almost”

non-increasing, i.e., there exists a non-increasing sequence {zt} and positive constants C1 and C2

such that C1zt ≤ wt ≤ C2zt for all t.

6

Under review as a conference paper at ICLR 2020

Assumption 7 is satisfied by the weights sequences S.1, S.2, S.3 when

ηt = η/
√
t (13)

for some η > 0. Interested readers are referred to (Zou et al., 2019) for details.
Proposition 3. Suppose that Assumptions 3-7 hold. With probability at least 1 − δ2/3,
min1≤t≤T ‖∇F (θt)‖22 ≤ 1

δO(log(T)/
√
T) for S.1 and S.2; and min1≤t≤T ‖∇F (θt)‖22 ≤ 1

δO(1)
for S.3.

Note that SGD, with the decreasing stepsize in (13), converges at a rate of O(log(T)/T) (Ghadimi
& Lan, 2013). Thus, the rates for S.1 and S.2 are as good as SGD. Though S.3 only leads to anO(1)
bound, it has good performance in practice (Kingma & Ba, 2015; Zaheer et al., 2018). Moreover,
recall that whenB = d and ε = 0, BAGM reduces to weighted AdaEMA. In this case, Proposition 3
obtains the same convergence rates as in (Zou et al., 2019).

Next, we consider B = B̃ for some B̃ 6= d (blockwise stepsize), and compare it with B = d
(coordinate-wise stepsize). This requires the following assumption, which is slightly stronger than
Assumption 4 (that only bounds the expectation).
Assumption 8. ‖gt,Gb‖22/db ≤ G2

b ,∀b ∈ [B] and ∀t.

Note that when B = d, Assumption 8 becomes g2
t,i ≤ G2

i for some Gi, and Assumption 4 becomes
Et[g

2
t,i] ≤ σ2

i for some σi. Let G̃b be the set of indices in block b when B = B̃. The follow-
ing Corollary shows that BAGM has faster convergence than its coordinate-wise counterpart when
{σ2

i }i∈G̃b have low variability. This also agrees with our observation in Section 3.3 that blockwise
adaptivity can have lower regret under this condition.

Corollary 2. Suppose that Assumptions 3-8 hold. Define r1 ≡
∑B̃

b=1

∑
i∈G̃b

log(σ2
i /ε

2+1)∑B̃
b=1 db log(σ2

b/ε
2+1)

, r2 ≡∑B̃
b=1

∑
i∈G̃b

σi∑B̃
b=1 σbdb

and r3 ≡
∑B̃

b=1

∑
i∈G̃b

σi log(σ2
i /ε

2+1)∑B̃
b=1 σbdb log(σ2

b/ε
2+1)

. Let C̃d(T)/δ (resp. C̃B̃(T)/δ) be the

high probability upper bound on min1≤t≤T ‖∇F (θt)‖22 when B = d (resp. B = B̃). If

min(1, r1, r2, r3)

√
maxb maxi∈G̃b

G2
i +ε2

maxbG2
b+ε2

≥ 1, then C̃d(T) ≥ C̃B̃(T).

Note that

√
maxb maxi∈G̃b

G2
i +ε2

maxbG2
b+ε2

≥ 1 when Assumption 8 is tight. By comparing the denominator

and numerator in r1, r2, r3, it can be seen that min(r1, r2, r3) is close to or greater than 1 when
{σ2

i }i∈G̃b have low variability. These will be verified empirically in Appendix B.

4.3 UNIFORM STABILITY AND GENERALIZATION ERROR

As in Definition 1, let S, S′ be two data sets of size n that differ in only one sample, and the tth
iterates of BAGM on S and S′ by θt and θ′t, respectively. Let ∆t = ‖θt − θ′t‖2, and ∆̃t(z) =
|f(θt; z) − f(θ′t; z)|. The following Proposition allows us to study how B affects the growth of
E[∆̃t(z)], where the expectation is taken w.r.t. randomness of the algorithm.
Proposition 4. Suppose that Assumptions 3-7 hold. Assume that f is γ̃-Lipschitz1,
βt = 0, and the initial θ1, θ

′
1 values are the same. We have supS,S′ supz E[∆̃t+1(z)] ≤

2γ̃C2

nC1

√[
w2

1

∑B
b=1 db log (σ2

b/ε
2 + 1) + dω

∑t
k=1 η

2
k

]
t +

(
1− 1

n

)
γ̃Wt, where Wt =

γ̃
∑t
k=1 ηkE

[
maxb

∣∣∣1/(√v̂k,b + ε)− 1/(
√
v̂′k,b + ε)

∣∣∣]+ L
∑t
k=1 ηkE

[
∆k/(

√
minb v̂k,b + ε)

]
.

Recall that σ2
b ≤ 1

db

∑
i∈G̃b σ

2
i . If σ2

b = 1
db

∑
i∈G̃b σ

2
i , the first term on the RHS of the above bound

is smallest when B = d; otherwise, some B < d will make this term smallest. For the minb v̂k,b

term inside Wt, this reduces to 1
B̃

∑B̃
b=1 v̂k,b when B = 1, and to minb mini∈G̃b

v̂k,i when B = d.

1In other words, |f(θ; z)− f(θ′; z)| ≤ γ̃‖θ − θ′‖2 for any z.

7

Under review as a conference paper at ICLR 2020

As 1
B̃

∑B̃
b=1 v̂k,b ≥ minb v̂k,b ≥ minb mini∈G̃b

v̂k,i, this minb v̂k,b term is the smallest whenB = d,
and is largest when B = 1. As for the other terms in Wt, the first term is small when B is close
to d, and the second term is small when B approaches 1. Hence, for B equals some 1 < B̃ < d,
supS,S′ supz E[∆̃t+1(z)], and thus the generalization error, grows slower than those of B = d and
B = 1. Besides, Proposition 4 also indicates that a larger ε makes the bound smaller.

Note that the uniform stability bound of SGD (Theorem 3.8 in [12]) is not directly comparable with
our Proposition 4. However, as SGD and B = 1 both depend on the same second moment upper
bound (Assumption 4), by showing B = B̃ is better than B = 1, we expect blockwise adaptivity to
be also better than SGD.

5 EXPERIMENTS

In Section 5.1, we first empirically validate the regret analysis results of BAG (Section 3.3) on a
linear model. In Section 5.2, we run deep networks on a number of standard benchmark data sets
including CIFAR-10 (Section 5.2.1), ImageNet (Section 5.3), and WikiText-2 (Section 5.4). As the
focus is on deep learning, we only use BAGM (instead of BAG) in this section.

5.1 ILLUSTRATION OF THE REGRET ANALYSIS RESULTS

In this section, we use BAG on the linear model ft(θt) = max(0, 1−yt〈θt, xt〉), with input xt ∈ Rd
generated in a blockwise manner and yt ∈ {−1, 1} is the label for xt. Assume that xt is partitioned
into B̃ blocks, whose structure may be different from that of theB gradient blocks. With probability
pb, each element xt,i in input block b is sampled from N (cbyt, γ

2
b) for some scaling factor cb and

variance γ2
b , and xt,i = 0 otherwise. It can be easily shown that for elements in the same input block

b, their expected gradient magnitudes have the same upper bound (E[g2
t,i] ≤ pb(c2b + γ2

b)).

We generate a synthetic data set, with d = 100, using the above procedure. The first 50 features of
xt are sampled independently fromN (10yt, 100) with probability 0.5, and zero otherwise. The last
50 features are sampled independently from N (−5yt, 25) with probability 0.4, and zero otherwise.
The class label yt ∈ {−1, 1} are sampled randomly with equal probabilities.

We study BAG with B = 1, 2, 3, 4 and 100. For
B = 2, gradient gt is partitioned in the same way as
the input. For B = 3, we form the first block using
the first 35 coordinates, the second block with the
next 30 coordinates, and the third block with the
remaining 35 elements. For B = 4, gt is divided
into four blocks each of 25 elements. We initialize
θ1 to zero, fix ε = 10−8 and η = 0.01.
Figure 1 compares the expected regret, which is
estimated by averaging the regrets over 100 rep-
etitions. BAG with B = 2 and 4 achieve lower
regrets than the others (as B = 4 covers the case
for B = 2). BAG with B = 3 is a little worse as
its block structure is different from the input block
structure, but still performs better than B = d. For
B = 1, the mismatch in block structures is severe
and its performance is worst.

Figure 1: Expected regret with different B’s
(note that curves for B = 2 and 4 overlap).

5.2 REAL-WORLD DATA SETS

We introduce four block construction strategies: B.1: Use a single adaptive stepsize for each pa-
rameter tensor/matrix/vector. A parameter tensor can be the kernel tensor in a convolution layer, a
parameter matrix can be the weight matrix in a fully-connected layer, and a parameter vector can be a
bias vector; B.2: Use an adaptive stepsize for each output dimension of the parameter matrix/vector
in a fully connected layer, and an adaptive stepsize for each output channel in the convolution layer;
B.3: Use an adaptive stepsize for each output dimension of the parameter matrix/vector in a fully

8

Under review as a conference paper at ICLR 2020

connected layer, and an adaptive stepsize for each kernel in the convolution layer; B.4: Use an adap-
tive stepsize for each input dimension of the parameter tensor/matrix, and an adaptive stepsize for
each parameter vector. More details on the implementation can be found in Appendix A

We compare the proposed BAGM (with block construction approaches B.1, B.2, B.3, B.4) with
the following baselines: (i) Nesterov’s accelerated gradient (NAG) (Sutskever et al., 2013); and
(ii) Adam (Kingma & Ba, 2015). These two algorithms are widely used in deep networks. NAG
provides a strong baseline with good generalization performance, while Adam serves as a fast coun-
terpart with coordinate-wise adaptive stepsize.

As grid search for all hyper-parameters is very computationally expensive, we only tune the most
important ones using a validation set and fix the rest. We use a constant βt = β (momentum
parameter) and exponential increasing sequence S.3 with α = 0.999 for BAGM. For Adam, we
fix its second moment parameter to 0.999 and tune its momentum parameter. Note that with such
configurations, Adam is a special case of BAGM with B = d (i.e., weighted AdaEMA). For all the
adaptive methods, we use ε = 10−3 as suggested in (Zaheer et al., 2018). All the experiments are
run on a AWS p3.16 instance with 8 NVIDIA V100 GPUs.

5.2.1 CIFAR-10

We train a deep residual network from the MXNet Gluon CV model zoo Guo et al. (2019) on the
CIFAR-10 data set. We use the 56-layer and 110-layer networks as in (He et al., 2016). 10% of
the training data are carved out as validation set. We perform grid search using the validation set
for the initial stepsize η and momentum parameter β on ResNet56. The obtained hyperparameters
are then also used on ResNet110. We follow a similar setup as in (He et al., 2016). Details are in
Appendix A.2. To reduce statistical variance, results are averaged over 5 repetitions.

ResNet56 ResNet110
NAG 6.91± 0.15 6.28± 0.23
Adam 6.64± 0.30 6.35± 0.18

BAGM-B.1 6.26± 0.12 5.94± 0.09
BAGM-B.2 6.51± 0.14 6.27± 0.18
BAGM-B.3 6.52± 0.33 6.31± 0.06
BAGM-B.4 6.38± 0.40 6.02± 0.15

Table 1: Testing errors (%) on CIFAR-10.
The best results are bolded.

top-1 error (%) top-5 error (%)
NAG 20.94 5.51
Adam 21.04 5.47

BAGM-B.1 20.79 5.43
BAGM-B.2 20.90 5.39
BAGM-B.3 20.88 5.52
BAGM-B.4 20.82 5.48

Table 2: Validation set errors on ImageNet. The
best results are bolded.

Table 1 shows the testing errors of the various methods. With a large ε = 10−3, the testing perfor-
mance of Adam matches that of NAG. This agrees with (Zaheer et al., 2018) that a larger ε reduces
adaptivity and improves generalization performance. It also agrees with Proposition 4 that the bound
is smaller when ε is larger. As for BAGM, it outperforms Adam for all block construction schemes
used. It also outperforms NAG with schemes B.1, B.2 and B.4.

Convergence of the training, testing, and generalization errors (absolute difference between training
error and testing error) are shown in Figure 2.2 As can be seen, on both ResNet models, BAGM-B.1
converges to a lower training error rate than Adam. This agrees with Corollary 2 that blockwise
adaptive methods can have faster convergence than their counterparts with element-wise adaptivity.
Moreover, the generalization error of BAGM-B.1 is smaller than Adam, which agrees with Proposi-
tion 4 that blockwise adaptivity can have a slower growth of generalization error. On both models,
BAGM-B.1 gives the smallest generalization error, while NAG has the highest generalization error
on ResNet56. Hence, the proposed methods can accelerate convergence and improve generalization.

5.3 IMAGENET

In this experiment, we train a 50-layer ResNet model on ImageNet (Russakovsky et al., 2015). The
data set has 1000 classes, 1.28M training samples, and 50,000 validation images. As the data set
does not come with labels for its test set, we evaluate its generalization performance on the validation

2To reduce clutterness, we only show results of the block construction scheme BAGM-B.1, which gives the
lowest testing error among the proposed block schemes. The full results are shown in Figure 3.

9

Under review as a conference paper at ICLR 2020

(a) Training error. (b) Testing error. (c) Generalization error.

(d) Training error. (e) Testing error. (f) Generalization error.

Figure 2: Results on CIFAR-10. Top: ResNet56; Bottom: ResNet110. Note that the training error
(%) is plotted in log scale.

set. We use the ResNet50 v1d network from the MXNet Gluon CV model zoo. We train the FP16
(half precision) model on 8 GPUs, each of which processes 128 images in each iteration. More
details are in Appendix A.3. As it takes long time to train on ImageNet, we only run each algorithm
once.

Performance on the validation set is shown in Table 2. As can be seen, BAGM with all the block
schemes (particularly BAGM-B.1) achieve lower top-1 errors than Adam and NAG. As for the top-5
error, BAGM-B.2 obtains the lowest, which is then followed by BAGM-B.1. Overall, BAGM-B.1
has the best performance on both CIFAR-10 and ImageNet.

5.4 WORD-LEVEL LANGUAGE MODELING

In this section, we train the AWD-LSTM word-level language model (Merity et al., 2018) on the
WikiText-2 (WT2) data set (Merity et al., 2017). We use the publicly available implementation in
the Gluon NLP toolkit Guo et al. (2019). We perform grid search on the initial learning rate and
momentum parameter as in Section 5.2.1, and set the weight decay to 1.2×10−6 as in (Merity et al.,
2018). Results are averaged over 3 repetitions. More details on the setup are in Appendix A.4. As
there is no convolutional layer, B.2 and B.3 are the same.

Table 3 shows the testing perplexities, the lower the better. As can be seen, all adaptive methods
achieve lower test perplexities than NAG, and BAGM-B.2 obtains the best result.

NAG Adam BAGM-B.1 BAGM-B.2 BAGM-B.4
65.75± 0.10 65.40± 0.13 65.42± 0.10 65.29± 0.14 65.55± 0.07

Table 3: Testing perplexities on the WikiText-2 data set. The best results are bolded.

6 CONCLUSION

In this paper, we proposed adapting the stepsize for each parameter block, instead of for each in-
dividual parameter as in Adam and RMSprop. Regret, convergence and uniform stability analyses
show that it can have lower regret, faster convergence and lower generalization error than its counter-
part with coordinate-wise adaptive stepsize. Experiments on synthetic dataset, image classification
and language modeling confirm these theoretical results.

10

Under review as a conference paper at ICLR 2020

REFERENCES

L. B. Almeida, T. Langlois, J. D. Amaral, and A. Plakhov. Parameter adaptation in stochastic
optimization. In On-line learning in neural networks, pp. 111–134. Cambridge University Press,
1999.

L. Balles and P. Hennig. Dissecting adam: The sign, magnitude and variance of stochastic gradients.
In Proceedings of the International Conference on Machine Learning, pp. 404–413, 2018.

J. Bernstein, Y. Wang, K. Azizzadenesheli, and A. Anandkumar. signSGD: Compressed optimi-
sation for non-convex problems. In Proceedings of the International Conference on Machine
Learning, pp. 560–569, 2018.

B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin classifiers.
In Proceedings of the annual workshop on Computational learning theory, pp. 144–152. ACM,
1992.

L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for large-scale machine learning.
SIAM Review, 60(2):223–311, 2018.

O. Bousquet and A. Elisseeff. Stability and generalization. Journal of Machine Learning Research,
2(3):499–526, 2002.

N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization ability of on-line learning
algorithms. IEEE Transactions on Information Theory, 50(9):2050–2057, 2004.

J. Chen and Q. Gu. Closing the generalization gap of adaptive gradient methods in training deep
neural networks. arXiv preprint arXiv:1806.06763, 2018.

X. Chen, S. Liu, R. Sun, and M. Hong. On the convergence of a class of adam-type algorithms for
non-convex optimization. In Proceedings of the International Conference for Learning Represen-
tations, 2019.

J. Duchi and Y. Singer. Efficient online and batch learning using forward backward splitting. Journal
of Machine Learning Research, 10(12):2899–2934, 2009.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, 12(7):2121–2159, 2011.

B. S. Everitt. The Cambridge dictionary of statistics. Cambridge University Press, 2006.

S. Ghadimi and G. Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic pro-
gramming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

A. Graves, A. Mohamed, and G. Hinton. Speech recognition with deep recurrent neural networks.
In Proceedings of the International Conference on Acoustics, Speech and Signal Processing, pp.
6645–6649, 2013.

J. Guo, H. He, T. He, L. Lausen, M. Li, H. Lin, X. Shi, C. Wang, J. Xie, S. Zha, A. Zhang, H. Zhang,
Z. Zhang, Z. Zhang, and S. Zheng. Gluoncv and gluonnlp: Deep learning in computer vision and
natural language processing. arXiv preprint arXiv:1907.04433, 2019.

M. Hardt, B. Recht, and Y. Singer. Train faster, generalize better: Stability of stochastic gradient
descent. In Proceedings of the International Conference on Machine Learning, pp. 1225–1234,
2016.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings
of the International Conference on Computer Vision and Pattern Recognition, pp. 770–778, 2016.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proceedings of the Interna-
tional Conference for Learning Representations, 2015.

I. Loshchilov and F. Hutter. SGDR: Stochastic gradient descent with warm restarts. In Proceedings
of the International Conference on Learning Representations, 2017.

11

Under review as a conference paper at ICLR 2020

L. Luo, Y. Xiong, Y. Liu, and X. Sun. Adaptive gradient methods with dynamic bound of learning
rate. Proceedings of the International Conference on Learning Representations, 2019.

H. B. McMahan and M. Streeter. Adaptive bound optimization for online convex optimization. In
Proceedings of the Annual Conference on Computational Learning Theory, pp. 244, 2010.

S. Merity, C. Xiong, J. Bradbury, and R. Socher. Pointer sentinel mixture models. In Proceedings
of the International Conference on Learning Representations, 2017.

S. Merity, N. S. Keskar, and R. Socher. Regularizing and optimizing LSTM language models. In
Proceedings of the International Conference on Learning Representations, 2018.

A. Nemirovski and D.B. Yudin. Problem Complexity and Method Efficiency in Optimization. Wiley,
1983.

S. J. Reddi, S. Kale, and S. Kumar. On the convergence of adam and beyond. In Proceedings of the
International Conference for Learning Representations, 2018.

J. D. Rennie and N. Srebro. Loss functions for preference levels: Regression with discrete ordered
labels. In Proceedings of the IJCAI Multidisciplinary Workshop on Advances in Preference Han-
dling, 2005.

H. Robbins and S. Monro. A stochastic approximation method. The Annals of Mathematical Statis-
tics, 22(3):400–407, 1951.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, A. C. Berg, and L. Fei-Fei. Imagenet large scale visual recognition challenge.
International journal of computer vision, 115(3):211–252, 2015.

T. Schaul, S. Zhang, and Y. Lecun. No more pesky learning rates. In Proceedings of the International
Conference on Machine Learning, pp. 343–351, 2013.

O. Shamir and T. Zhang. Stochastic gradient descent for non-smooth optimization: Convergence re-
sults and optimal averaging schemes. In Proceedings of the International Conference on Machine
Learning, pp. 71–79, 2013.

B. Singh, S. De, Y. Zhang, T. Goldstein, and G. Taylor. Layer-specific adaptive learning rates
for deep networks. In Proceedings of the International Conference on Machine Learning and
Applications, pp. 364–368, 2015.

I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initialization and momentum
in deep learning. In Proceedings of the International Conference on Machine Learning, pp. 1139–
1147, 2013.

T. Tieleman and G. Hinton. Lecture 6.5 - RMSProp, COURSERA: Neural networks for machine
learning, 2012.

R. Ward, X. Wu, and L. Bottou. Adagrad stepsizes: Sharp convergence over nonconvex landscapes,
from any initialization. arXiv preprint arXiv:1806.01811, 2018.

A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht. The marginal value of adaptive
gradient methods in machine learning. In Advances in Neural Information Processing Systems,
pp. 4148–4158, 2017.

Y. You, I. Gitman, and B. Ginsburg. Large batch training of convolutional networks. arXiv preprint
arXiv:1707.03888, 2017.

A. W. Yu, Q. Lin, R. Salakhutdinov, and J. Carbonell. Normalized gradient with adaptive stepsize
method for deep neural network training. arXiv preprint arXiv:1707.04822, 2017.

M. Zaheer, S. Reddi, D. Sachan, S. Kale, and S. Kumar. Adaptive methods for nonconvex optimiza-
tion. In Advances in Neural Information Processing Systems, pp. 9793–9803, 2018.

W. Zaremba, I. Sutskever, and O. Vinyals. Recurrent neural network regularization. arXiv preprint
arXiv:1409.2329, 2014.

12

Under review as a conference paper at ICLR 2020

M. D. Zeiler. ADADELTA: An adaptive learning rate method. Preprint arXiv:1212.5701, 2012.

C. Zhang, Q. Liao, A. Rakhlin, K. Sridharan, B. Miranda, N. Golowich, and T. Poggio. Theory of
deep learning iii: Generalization properties of sgd. Technical report, Center for Brains, Minds
and Machines (CBMM), 2017.

H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz. mixup: Beyond empirical risk minimization.
In Proceedings of the International Conference on Learning Representations, 2018.

S. Zheng and J. T. Kwok. Follow the moving leader in deep learning. In Proceedings of the Inter-
national Conference on Machine Learning, pp. 4110–4119, 2017.

Z. Zhou, Q. Zhang, G. Lu, H. Wang, W. Zhang, and Y. Yu. Adashift: Decorrelation and convergence
of adaptive learning rate methods. arXiv preprint arXiv:1810.00143, 2018.

F. Zou and L. Shen. On the convergence of weighted adagrad with momentum for training deep
neural networks. arXiv preprint arXiv:1808.03408v2, 2018.

F. Zou, L. Shen, Z. Jie, W. Zhang, and W. Liu. A sufficient condition for convergences of adam and
rmsprop. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 11127–11135, 2019.

A EXPERIMENTAL SETUP

A.1 IMPLEMENTATION DETAILS

As {at} is non-decreasing, the accumulated sum At can grow significantly, which may potentially
cause some numerical issue. In practice, using steps 7 and 8 in Algorithms 4, we equivalently rewrite
the update in (12) as the following exponentially moving update:

v̂t,b = αtv̂t−1,b + (1− αt)
‖gt,Gb‖22
db

,

where αt = 1 − at/At. If at = α−t, then αt = α(1 − αt−1)/(1 − αt). Based on Proposition 3,
this setting leads to an O(1) bound. On the other hand, if at = tτ , then we have at/At = O(1/t).
This suggests that we can use polynomial-decay averaging αt = 1− (c+ 1)/(t+ c) for some c ≥ 0
(Shamir & Zhang, 2013), whereas c > 0 reduces the weight of earlier iterates compared to later
ones. The larger c corresponds to the larger τ . In this case, as

∑T
t=1 at = O(T γ) for some γ > 0,

we have a convergence rate of O(log(T)/T).

A.2 CIFAR-10

The CIFAR-10 data set has 50,000 training images and 10,000 testing images. As in (He et al.,
2016), we employ data augmentation for training. We first pad the input picture by adding 4 pixels
on each side of the image. Then, a 32 × 32 crop is randomly sampled from the padded image with
random horizontal flipping. A mini-batch size of 128 is used. The stepsize is divided by 10 at the
39k-th and 59k-th iterations. We use a weight decay of 0.0001.

For NAG, the initial stepsize η is chosen from {0.01, 0.05, 0.1, 0.5, 1}. For the adaptive methods,
we have η ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01}. The momentum parameter is searched over
{0, 0.5, 0.9}. The learning rate is multiplied by 0.1 at the 100th and 150th epochs. We perform
grid search on the hyper-parameters by running each algorithm for 200 epochs on ResNet56. The
hyper-parameters that give the highest accuracy on the validation set are employed. The testing
performance is obtained by running each algorithm with its best hyper-parameters on full training
set for 400 epochs. The same obtained hyperparameters are then used on training ResNet110. When
NAG is applied to ResNet110, we use a smaller learning rate at the beginning to warm up the
training. Specifically, the obtained learning rate is divided by 10 in the first 4000 iterations, and then
go back to the original one and continue training. The grid search results are shown in Table 4.

Figure 3 shows that, on ResNet56, BAGM converges to a lower training error rate than Adam for all
schemes used. For the deeper ResNet100 model, BAGM-B.1 and B.4 have faster convergence than
Adam, while BAGM-B.2 and B.3 show the same convergence speed with Adam.

13

Under review as a conference paper at ICLR 2020

η β
NAG 0.5 0.9
Adam 0.005 0

BAGM-B.1 0.005 0
BAGM-B.2 0.005 0
BAGM-B.3 0.005 0
BAGM-B.4 0.005 0

Table 4: The best η and β obtained by grid search on CIFAR-10.

(a) Training error. (b) Testing error. (c) Generalization error.

(d) Training error. (e) Testing error. (f) Generalization error.

Figure 3: Results on CIFAR-10 for the proposed method with all four block construction schemes
and the baselines. Top: ResNet56; Bottom: ResNet110. The training error (%) is plotted on a
logarithmic scale.

A.3 IMAGENET

In this experiment, we employ label smoothing and mixup (Zhang et al., 2018). The cosine schedule
(Loshchilov & Hutter, 2017) for learning rate is used. A warmup of 5 epochs is applied. During
validation, we use the center crop. Hyperparameter tuning is based on the obtained results in Sec-
tion A.2. Specifically, for NAG, the initial learning rate is chosen from {0.4, 0.5}, and momentum
parameter is fixed to 0.9. For Adam and BAGM, we have the initial learning rate η ∈ {0.004, 0.005},
and we use momentum parameter β = 0. A weight decay of 0.0001 is used (weight decay is not
applied to bias vectors, and parameters for batch normalization layers) 3. The best learning rates for
each method are shown in Table 5.

A.4 WORD LANGUAGE MODELING

In this experiment, we follow the same setting in (Merity et al., 2018). A 3-layer AWD-LSTM
is considered. The model is unrolled for 70 steps, and a mini-batch of size 80 is used. We
clip the norm of the gradients at 0.25. The details of the configuration used in this experiment
can be found in https://github.com/dmlc/gluon-nlp/blob/master/scripts/

3The example script for running NAG with η = 0.4 can be found in https://raw.
githubusercontent.com/dmlc/web-data/master/gluoncv/logs/classification/
imagenet/resnet50_v1d-mixup.sh. Details of the data augmentation can be found in
https://github.com/dmlc/gluon-cv/blob/master/scripts/classification/
imagenet/train_imagenet.py.

14

https://github.com/dmlc/gluon-nlp/blob/master/scripts/language_model/word_language_model.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/language_model/word_language_model.py
https://raw.githubusercontent.com/dmlc/web-data/master/gluoncv/logs/classification/imagenet/resnet50_v1d-mixup.sh
https://github.com/dmlc/gluon-nlp/blob/master/scripts/language_model/word_language_model.py
https://raw.githubusercontent.com/dmlc/web-data/master/gluoncv/logs/classification/imagenet/resnet50_v1d-mixup.sh
https://github.com/dmlc/gluon-nlp/blob/master/scripts/language_model/word_language_model.py
https://raw.githubusercontent.com/dmlc/web-data/master/gluoncv/logs/classification/imagenet/resnet50_v1d-mixup.sh
https://github.com/dmlc/gluon-nlp/blob/master/scripts/language_model/word_language_model.py
https://github.com/dmlc/gluon-cv/blob/master/scripts/classification/imagenet/train_imagenet.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/language_model/word_language_model.py
https://github.com/dmlc/gluon-cv/blob/master/scripts/classification/imagenet/train_imagenet.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/language_model/word_language_model.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/language_model/word_language_model.py

Under review as a conference paper at ICLR 2020

η
NAG 0.4
Adam 0.004

BAGM-B.1 0.004
BAGM-B.2 0.004
BAGM-B.3 0.004
BAGM-B.4 0.004

Table 5: The best η obtained by grid search on ImageNet.

language_model/word_language_model.py. For completeness, we show the model con-
figuration in Table 6.

dimensionality/dropout rate
embedding size 400

hidden size 1150
dropout 0.4

dropout for RNN layers 0.2
dropout for input embedding layers 0.65

dropout to remove words from embedding layer 0.1
weight dropout 0.5

Table 6: Model configuration of AWD-LSTM model.

As the WikiText-2 data set comes with a validation set, we perform grid search by evaluating the
performance on the validation set. For NAG, the initial stepsize is chosen from {1, 3, 10, 30}. For
the adaptive methods, we select η ∈ {0.1, 0.03, 0.01, 0.003}. The momentum parameter varies
in {0, 0.5, 0.9}. The learning rate is multiplied by 0.1 when the validation performance does not
improve for 30 consecutive epochs. We tie the word embeddings and softmax weights. For each
algorithm, we employ the iterate averaging scheme proposed in (Merity et al., 2018). The model
is trained for 750 epochs. The hyper-parameters obtained by grid search are shown in Table 7. In
general, B.1 and B.4 are not suitable for updating the word embedding matrix as word frequency
varies a lot and thus the gradient is highly sparse. However, the gradient becomes dense when we
use weight tying. In modern toolkits such as Tensorflow, MXNet, and Pytorch, the weight matrices
of the LSTM gates are concatenated to speed up matrix-vector multiplication. We need to apply B.1
and B.4 to these weight matrices separately.

η β
NAG 30 0
Adam 0.03 0.5

BAGM-B.1 0.03 0.9
BAGM-B.2 0.03 0.5
BAGM-B.4 0.03 0.5

Table 7: The best η and β obtained by grid search on the word language modeling experiment.

B GRADIENTS IN PARAMETER BLOCK

As discussed in Corollary 2, BAGM can have faster convergence than its coordinate-wise counter-
part when {σ2

i }i∈G̃b have low variability. In this section, we verify this experimentally. Using the
setup in Section 5.2.1, we focus on BAGM-B.1, which shows the fastest convergence. At the end of
each epoch, we perform 10 full data passes with random shuffle and data augmentation (as described
in Appendix A.2) to compute E[g2

i] and E[‖gG̃b‖
2
2]/db. We then approximate σ2

i and σ2
b by their

empirical maxima over all epochs. Figure 4 shows the coefficient of variation of {σ2
i }i∈G̃b , which

is defined as the ratio of the standard deviation to the mean (Everitt, 2006). As can be seen, around
86% (resp. 75%) of all blocks for ResNet56 (resp. ResNet110) have coefficient of variation smaller
than 1, indicating that {σ2

i }i∈G̃b have low variance and concentrate around the mean.

15

https://github.com/dmlc/gluon-nlp/blob/master/scripts/language_model/word_language_model.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/language_model/word_language_model.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/language_model/word_language_model.py

Under review as a conference paper at ICLR 2020

We also compute the empirical values of rmin ≡ min(r1, r2, r3) and

√
maxb maxi∈G̃b

G2
i +ε2

maxbG2
b+ε2

in

Corollary 2. We use the two symbols (v̄T,B and C(T)) that are defined in Appendix F for the

corresponding main theorem. Moreover, we estimate
√

v̄T,d+ε2

v̄T,B̃+ε2 , where v̄T,d = v̄T,B=d and

v̄T,B̃ = v̄T,B=B̃ , instead of

√
maxb maxi∈G̃b

G2
i +ε2

maxbG2
b+ε2

, as C(T) is tighter than C̃(T). We estimate

v̄T,B̃ using max1≤t≤T maxb v̂t,b. Empirically, we obtain rmin ≡ min(r1, r2, r3) ≈ 1.02 and√
v̄T,d+ε2

v̄T,B̃+ε2 ≈ 3.70 for ResNet56, and rmin ≈ 1.01 and
√

v̄T,d+ε2

v̄T,B̃+ε2 ≈ 3.30 for ResNet110. These
agree with Corollary 2, and explain why the proposed blockwise adaptivity leads to faster conver-
gence.

(a) ResNet56. (b) ResNet110.

Figure 4: Coefficient of variation of {σ2
i }i∈G̃b for all the blocks with B.1. The blocks with higher

indices in the abscissa belong to deeper layers.

C PROOF OF PROPOSITION 1

Proof. In this proof, we use denominator layout for matrix calculus. As all the activation func-
tions are bijective and {Wk}Lk=l+1 are invertible, Φl is bijective and has an inverse function Φ−1

l .
Specifically, Φ−1

l is given by

Φ−1
l (Y) = φ−1

l (· · ·φ−1
L−2(φ−1

L−1(YW−1
L)W−1

L−1) · · ·W−1
l+1).

Then, with the assumption that Hl−1 has full row rank, the nonconvex objective (5) can be reformu-
lated as the following convex problem:

min
Wl

‖Hl−1Wl − Φ−1
l (Y)‖22. (14)

It is obvious that its large margin solution is HT
l−1(Hl−1H

T
l−1)−1Φ−1

l (Y). In the sequel, we will
see that every critical point of (5) is a global optimal solution. Let hi,l−1 denotes a column vector
that is the i-th row of Hl−1 and Z:,i be the i-th column of matrix Z. The gradient of (5) is

2HT
l−1

d∑
k=1

Diag(Φl(Hl−1Wl):,k − Y:,k)Gk,l = HT
l−1El,

where Gk,l = [∇x=hT
1,l−1Wl

Φl(x)k; · · · ;∇x=hT
n,l−1Wl

Φl(x)k] ∈ Rn×d and El =

2
∑d
k=1 Diag(Φl(Hl−1Wl):,k − Y:,k)Gk,l to be the error matrix. As Hl−1 has full row rank, then

clearly gradient is zero if only and if El = 0. By the definition of Gk,l, we can see that El = 0 if
only and if Φl(Hl−1Wl) = Y when ∇x=hT

i,l−1Wl
Φl(x) has full row rank for all i ∈ [n]. Note that

the gradient ∇x=hT
i,l−1Wl

Φl(x) is of the following form:

∇x=hT
i,l−1Wl

Φl(x) = (WL ◦ φ′L−1(hTi,L−2WL−1)T 1Td)T · · · (Wl+1 ◦ φ′l(hTi,l−1Wl)
T 1Td)T ,

16

Under review as a conference paper at ICLR 2020

where ◦ is the Hadamard product. For all k ∈ {l, . . . , L− 1}, as Wk+1 has full rank and φ′k(z) 6= 0
for any z ∈ R, we have thatWk+1◦φ′k(hTi,k−1Wk)T 1Td has full rank. Applying the fact that the mul-
tiplication of a number of invertible matrices preserves full rank, we obtain that ∇x=hT

i,l−1Wl
Φl(x)

has full rank. Therefore, every critical point satisfies Φl(Hl−1Wl) = Y and every critical point is a
global optimal solution.

Let it be the index chosen at iteration t and yit be the it-th row of Y . Let us define et,l =

2
∑d
k=1(Φl(h

T
it,l−1Wt,l)k−yit,k)∇x=hT

it,l−1Wt,l
Φl(x)k. Now, we prove that if the following update

rule applied on (5) finds a critical point, then the iterate converges to the largest margin solution.

Wt+1,l = Wt,l − ηt,lhit,l−1et,l = HT
l−1

− t∑
j=1

ηj,lẼj,l

 , (15)

where we use Wl,1 = 0, ηt,l is the stepsize for l-th layer at iteration t, and Ẽj,l is a matrix in which
its ik-th row is ej,l and all the other rows are zeros. Then, the solution found by (15) lies in the span
of rows of Hl−1. In other words, the solution has the following parametric form:

Wl = HT
l−1αl

for some αl ∈ Rn. Thus, if (15) is converging to a critical point in expectation, then we have
Wt,l → W∗,l as t → ∞, where W∗,l = HT

l−1α∗,l for some optimal α∗,l. Since every critical point
is an optimal solution, then W∗,l is also a solution to (14), and we have

Φ−1
l (Y) = Hl−1W∗,l = Hl−1H

T
l−1α∗,l.

We solve for α∗,l and obtain

α∗,l = (Hl−1H
T
l−1)−1Φ−1

l (Y).

Therefore, W∗,l = HT
l−1(Hl−1H

T
l−1)−1Φ−1

l (Y).

D PROOF OF PROPOSITION 2

Proof. Let (xit , yit) be the pair of sample selected at iteration t. The stochastic gradient of least
square problem (4) at the t-th iteration is

2(xTitθt − yit)xit = XT et,

where we define et to be the error vector with value 2(xTitθt − yit) in the it-th coordinate and zeros
elsewhere. For each block b, BAG with θ1 = 0 uses the following update rule:

θt+1,Gb = θt,Gb − ηt,bXT
:,Gbet = XT

:,Gb

(
−

t∑
i=1

ηi,bei

)
,

where ηt,b = η/(
√∑t

i=1 ‖XT
:,Gbei‖

2
2/db + ε). Then, each subvector of the solution found by BAG

lies in the span of rows of X:,Gb . In other words, each subvector of the solution is of the following
parametric form:

θGb = XT
:,Gbαb

for some αb ∈ Rn. Combining with Theorem 1 and online-to-batch conversion (Cesa-Bianchi et al.,
2004), BAG is converging in expectation 1

t

∑t
i=1 θi → θ∗ as t → ∞, where θ∗,Gb = XT

:,Gbα∗,b for
some optimal α∗,b. Since θ∗ is a solution to (4), we have

y = Xθ∗ =

B∑
b=1

X:,GbX
T
:,Gbα∗,b.

Assume that each submatrix X:,Gb has full row rank, then X:,GbX
T
:,Gb is invertible, we can solve for

α∗,b’s and obtain

α∗,b = (X:,GbX
T
:,Gb)−1ub

for some ub ∈ Rn and
∑B
b=1 ub = y.

17

Under review as a conference paper at ICLR 2020

E PROOF OF THEOREM 1

Lemma 1. Let {θt} be the sequence generated by the Algorithm 2. Define st = [(
√
vt,1 +

ε)1Td1 , . . . , (
√
vt,B + ε)1TdB]T . Let Ht = Diag(st). Then, for any θ, we have

ft(θt)− ft(θ) ≤
1

2η
‖θt − θ‖2Ht

− 1

2η
‖θt+1 − θ‖2Ht

+
η

2
‖gt‖2H−1

t
.

Proof. For any θ, the convexity of ft indicates that

ft(θt)− ft(θ)
≤ 〈gt, θt − θ〉
= 〈gt, θt+1 − θ〉+ 〈gt, θt − θt+1〉

=
1

η
〈θt+1 − θ,Ht(θt − θt+1)〉+ 〈gt, θt − θt+1〉

=
1

2η
‖θt − θ‖2Ht

− 1

2η
‖θt+1 − θ‖2Ht

− 1

2η
‖θt+1 − θt‖2Ht

+ 〈gt, θt − θt+1〉

≤ 1

2η
‖θt − θ‖2Ht

− 1

2η
‖θt+1 − θ‖2Ht

− 1

2η
‖θt+1 − θt‖2Ht

+
1

2η
‖θt+1 − θt‖2Ht

+
η

2
‖gt‖2H−1

t

=
1

2η
‖θt − θ‖2Ht

− 1

2η
‖θt+1 − θ‖2Ht

+
η

2
‖gt‖2H−1

t
,

where the second to last inequality follows from Fenchel’s inequality applied to the conjugate func-
tions 1

2η‖ · ‖
2
Ht

and η
2‖ · ‖

2
H−1

t

.

Lemma 2. Considering an arbitrary R-valued sequence {ai} and its vector representation a1:t =
[a1, . . . , at], we have

T∑
t=1

a2
t

‖a1:t‖2
≤ 2‖a1:T ‖2.

Proof. The lemma can be proved by induction. The lemma trivially holds when T = 1. Assume the
lemma holds for T − 1, we get

T∑
t=1

a2
t

‖a1:t‖2
≤ 2‖a1:T−1‖2 +

a2
T

‖a1:T ‖2

= 2
√
Z − x+

x√
Z
,

where we define Z = ‖a1:T ‖22 and x = a2
T . As the RHS is non-increasing for x ≥ 0. We can set

x = 0 to maximize the bound and obtain 2
√
Z.

Lemma 3. Let Ht be defined as in Lemma 1. Denote g1:t,Gb = [gT1,Gb , . . . , g
T
t,Gb]T . We have

T∑
t=1

‖gt‖2H−1
t
≤ 2

B∑
b=1

√
db‖g1:T,Gb‖2.

18

Under review as a conference paper at ICLR 2020

Proof.
T∑
t=1

‖gt‖2H−1
t

≤
T∑
t=1

〈gt,Diag(st)
−1gt〉

=

T∑
t=1

B∑
b=1

√
db‖gt,Gb‖22
‖g1:t,Gb‖2

=

B∑
b=1

√
db

T∑
t=1

‖gt,Gb‖22
‖g1:t,Gb‖2

≤ 2

B∑
b=1

√
db‖g1:T,Gb‖2.

where the last inequality follows from the Lemma 2 by setting ai = ‖gi,Gb‖22.

E.1 PROOF OF THEOREM 1

Proof. By summing up the equation in Lemma 1 with θ = θ∗, we obtain
T∑
t=1

ft(θt)− ft(θ∗) ≤
1

2η
‖θ1 − θ∗‖2H1

+
1

2η

T−1∑
t=1

[
‖θt+1 − θ∗‖2Ht+1

− ‖θt+1 − θ∗‖2Ht

]
+
η

2

T∑
t=1

‖gt‖2H−1
t
.

By the construction of Ht, we have that Ht+1 � Ht. Then, we get

‖θt+1 − θ∗‖2Ht+1
− ‖θt+1 − θ∗‖2Ht

= 〈θt+1 − θ∗,Diag(st+1 − st)(θt+1 − θ∗)〉

=

B∑
b=1

‖θt+1,Gb − θ∗,Gb‖22(
√
vt+1,b −

√
vt,b).

Given the above result, we have
T−1∑
t=1

[
‖θt+1 − θ∗‖2Ht+1

− ‖θt+1 − θ∗‖2Ht

]
=

B∑
b=1

T−1∑
t=1

‖θt+1,Gb − θ∗,Gb‖22(
√
vt+1,b −

√
vt,b)

=

B∑
b=1

T−1∑
t=1

‖θt+1,Gb − θ∗,Gb‖22(
√
vt+1,b −

√
vt,b) +

B∑
b=1

‖θ1,Gb − θ∗,Gb‖22(
√
v1,b −

√
v1,b)

≤
B∑
b=1

D2
b
√
vT,b −

B∑
b=1

‖θ1,Gb − θ∗,Gb‖22
√
v1,b.

Recall that vT,b = ‖g1:T,Gb‖22/db. Let ε = 0. Combining Lemma 3 with the fact that ‖θ1−θ∗‖2H1
=∑B

b=1 ‖θ1,Gb − θ∗,Gb‖22
√
v1,b, we have

T∑
t=1

ft(θt)− ft(θ∗) ≤ 1

2η

B∑
b=1

D2
b√
db
‖g1:T,Gb‖2 + η

B∑
b=1

√
db‖g1:T,Gb‖2.

E.2 PROOF OF COROLLARY 1

Proof. Taking expectation of the gradient terms in (9), we have, for all b’s,

E[‖g1:T,Gb‖2] ≤

√√√√∑
i∈Gb

T∑
t=1

E[g2
t,i] ≤ σb

√
dbT .

19

Under review as a conference paper at ICLR 2020

Let B = B̃. Then, (9) reduces to

E[R(T)] ≤
B̃∑
b=1

σb

[
1

2η
D2
b + ηdb

]√
T .

F MAIN THEOREM

Let σt,b =
√
Et[|gt,Gb‖22]. We define a sequence of virtual estimates of the second moment:

ṽt,b =
1

At
(vt−1,b +

at
db

Et[‖gt,Gb‖22])

=
1

At

(
t−1∑
i=1

ai
‖gi,Gb‖22
db

+ at
σ2
t,b

db

)
∀b ∈ [B]. (16)

Let v̂T,B ≡ max1≤t≤T E[maxb ṽt,b]

Theorem 2. Suppose that Assumptions 3-7 hold. Let ρ = β2/p̃. We have

min
1≤t≤T

(E[‖∇F (θt)‖4/32])3/2 ≤ C(T),

where4

C(T) =

√
2 (v̄T,B + ε2)

ηTT

[
2C2

(1− β)C1
C0 + C4

[
β√

Ca(1− ρ)

B∑
b=1

σbdb

T∑
t=2

wt

(√
At
At−1

− 1

)

+

B∑
b=1

C ′b

[
w1 log

(
σ2
b

ε2
+ 1

)
+ ω

T∑
t=1

ηt

√
at
At

]]]
, (17)

C0 = F (θ1) − F (θ∗), C4 =
2C2

2

C2
1

√
Ca(1−√ρ)(1−β)

, C ′b =
LC3

2w1db
C3

1Ca(1−√ρ)2 +
2C2

3C2σbdb
C1

, and C3 =

β/(1−β)√
CaA1/A2(1−ρ)

+ 1.

When B = d, the bound here is tighter than that in (Zou et al., 2019), as we exploit heteroge-
neous second-order upper bound (Assumption 4). Note that constants C0, C3, C4 are not related to
block partition. They only depend on initial optimality gap and sequences {ηt}, {at}, {βt}. In the
following, we introduce several lemmas to prove the Theorem 2.

In the sequel, we define Ht as
Ht = Diag(st),

where
st = [(

√
v̂t,1 + ε)1Td1 , . . . , (

√
v̂t,B + ε)1TdB]T .

Let δt = θt+1 − θt = −ηtmt/st. We introduce H̃t as

H̃t = Diag(s̃t),

where ṽt,b is defined in (16) and

s̃t = [(
√
ṽt,1 + ε)1Td1 , . . . , (

√
ṽt,B + ε)1TdB]T .

Assume that σt,b/
√
db ≤ σb for all t and let Σ = Diag([σ2

11Td1 , . . . , σ
2
B1TdB]T).

Lemma 4. Let St = S0 +
∑t
i=1 ai, where {at} is a non-negative sequence and S0 > 0. We have

T∑
t=1

at
St
≤ log(ST)− log(S0)

4When T = 1, the second term in C(T) (involving summation from t = 2 to T) disappears.

20

Under review as a conference paper at ICLR 2020

Proof. The concavity of log leads to log(b) ≤ log(a) + 1
a (b− a) for all a, b > 0. This suggests that

a− b
a
≤ log(a)− log(b) = log

(a
b

)
.

Hence, we have

T∑
t=1

at
St

=

T∑
t=1

St − St−1

St
≤

T∑
t=1

log

(
St
St−1

)
= log(ST)− log(S0).

Lemma 5. Let {at} and {st} be two real number sequences, and let St =
∑t
i=1 si. Then, we have

T∑
t=1

atst =

T−1∑
t=1

(at − at+1)St + aTST .

Proof. Let S0 = 0. Expanding the summation, we obtain

T∑
t=1

atst =

T∑
t=1

at(St − St−1)

=

T−1∑
t=1

atSt −
T−1∑
t=1

at+1St + aTST

=

T−1∑
t=1

(at − at+1)St + atST

Lemma 6. Assume {at} is non-decreasing such that {At−1/At} is non-decreasing. Define wt =

ηt/
√

at
At

. Assume wt is ”almost” non-increasing. This means there exists another non-increasing

sequence {zt} and positive constants C1 and C2 such that C1zt ≤ wt ≤ C2zt. Then,

wt ≤ C2/C1wi and ηt ≤ C2/C1ηi

for all i < t.

Proof. For any i < t,

wt ≤ C2zt ≤ C2zi ≤ C2/C1wi.

Then,

ηt ≤
C2

√
at/At

C1

√
ai/Ai

ηi =
C2

√
1−At−1/At

C1

√
1−Ai−1/Ai

ηi ≤ C2/C1ηi.

Lemma 7. Assume that {at} is non-decreasing. For any block diagonal matrix C =
Diag([c11Td1 , . . . , cB1TdB]T) with cb ≥ 0 for all b, we have

T∑
t=1

E

[
at
At
‖H−1

t gt‖2C
]
≤

B∑
b=1

cbdb

[
log

(
σ2
b

ε2
+ 1

)
+ log

(
1

a1

T∑
i=1

ai + 1

)]
.

21

Under review as a conference paper at ICLR 2020

Proof.

T∑
t=1

at
At
‖H−1

t gt‖2C =

T∑
t=1

B∑
b=1

cb
at
At
‖gt,Gb‖22

(
√
v̂t,b + ε)2

≤
T∑
t=1

B∑
b=1

cb
at
At
‖gt,Gb‖22

v̂t,b + ε2

=

B∑
b=1

T∑
t=1

cbat‖gt,Gb‖22∑t
i=1 ai‖gi,Gb‖22/db +Atε2

=

B∑
b=1

cbdb

T∑
t=1

at‖gt,Gb‖22∑t
i=1 ai‖gi,Gb‖22 + dbAtε2

≤
B∑
b=1

cbdb

T∑
t=1

at‖gt,Gb‖22∑t
i=1 ai‖gi,Gb‖22 + dba1ε2

.

Hence,

T∑
t=1

at
At
‖H−1

t gt‖2C ≤
B∑
b=1

cbdb

[
log

(
T∑
i=1

ai‖gi,Gb‖22 + dba1ε
2

)
− log(dba1ε

2)

]
,

where the inequality follows from Lemma 4. Using Jensen’s inequality, we get

T∑
t=1

E

[
at
At
‖H−1

t gt‖2C
]
≤

B∑
b=1

cbdbE

[
log

(
T∑
i=1

ai‖gi,Gb‖22 + dba1ε
2

)
− log(dba1ε

2)

]

≤
B∑
b=1

cbdb

[
log

(
T∑
i=1

aiE[‖gi,Gb‖22] + dba1ε
2

)
− log(dba1ε

2)

]

≤
B∑
b=1

cbdb

[
log

(
dbσ

2
b

T∑
i=1

ai + dba1ε
2

)
− log(dba1ε

2)

]

=

B∑
b=1

cbdb log

(
σ2
b

a1ε2

T∑
i=1

ai + 1

)
.

Using the inequality log(1 + ab) ≤ log(1 + a+ b+ ab) = log(1 + a) + log(1 + b) for a, b ≥ 0, we
have

T∑
t=1

E

[
at
At
‖H−1

t gt‖2C
]
≤

B∑
b=1

cbdb

[
log

(
σ2
b

ε2
+ 1

)
+ log

(
1

a1

T∑
i=1

ai + 1

)]
.

Lemma 8. Assume that {at} is non-decreasing. Define wt = ηt/
√

at
At

. Assume wt is ”al-

most” non-increasing. This means there exists another non-increasing sequence {zt} and posi-
tive constants C1 and C2 such that C1zt ≤ wt ≤ C2zt for all t. For any block diagonal matrix
C = Diag([c11Td1 , . . . , cB1TdB]T) with cb ≥ 0 for all b, we have

T∑
t=1

ηtE

[√
at
At
‖H−1

t gt‖2C
]
≤ C2

C1

[
w1

B∑
b=1

cbdb log

(
σ2
b

ε2
+ 1

)
+

B∑
b=1

cbdb

T∑
t=1

ηt

√
at
At

At
At−1 + a1

]
.

22

Under review as a conference paper at ICLR 2020

Proof. Let ξt = at
At
‖H−1

t gt‖2C , then ζt =
∑t
i=1 ξi. Lemma 5 indicates that we have

T∑
t=1

ηt

√
at
At
‖H−1

t gt‖2C =

T∑
t=1

wtξt

≤ C2

T∑
t=1

ztξt

= C2

[
T−1∑
t=1

(zt − zt+1)ζt + zT ζT

]
.

Define Mt =
∑B
b=1 cbdb

[
log
(
σ2
b

ε2 + 1
)

+ log
(

1
a1

∑t
i=1 ai + 1

)]
. By Lemma 7, we have E[ζt] ≤

Mt. Then,

T∑
t=1

ηtE

[√
at
At
‖H−1

t gt‖2C
]
≤ C2

[
T−1∑
t=1

(zt − zt+1)E[ζt] + zTE[ζT]

]

≤ C2

[
T−1∑
t=1

(zt − zt+1)Mt + zTMT

]
,

where the last inequality follows from the assumption that zt ≥ zt+1. Then,

T∑
t=1

ηtE

[√
at
At
‖H−1

t gt‖2C
]
≤ C2

[
T−1∑
t=1

(zt − zt+1)Mt + zTMT

]

= C2

[
T∑
t=1

zt(Mt −Mt−1) + z1M0

]

= C2

[
z1

B∑
b=1

cbdb log

(
σ2
b

ε2
+ 1

)
+

T∑
t=1

zt

B∑
b=1

cbdb log

(
At + a1

At−1 + a1

)]

≤ C2

C1

[
w1

B∑
b=1

cbdb log

(
σ2
b

ε2
+ 1

)
+

T∑
t=1

wt

B∑
b=1

cbdb log

(
At + a1

At−1 + a1

)]
.

As log(1 + x) ≤ x for x > −1 and the fact that At ≥ At−1, we get

log

(
At + a1

At−1 + a1

)
= log

(
1 +

At + a1

At−1 + a1
− 1

)
≤ At + a1

At−1 + a1
− 1 =

at
At−1 + a1

.

Hence,

T∑
t=1

ηtE

[√
at
At
‖H−1

t gt‖2C
]
≤ C2

C1

[
w1

B∑
b=1

cbdb log

(
σ2
b

ε2
+ 1

)
+

T∑
t=1

wt

B∑
b=1

cbdb log

(
At + a1

At−1 + a1

)]

≤ C2

C1

[
w1

B∑
b=1

cbdb log

(
σ2
b

ε2
+ 1

)
+

B∑
b=1

cbdb

T∑
t=1

ηt

√
at
At

At
At−1 + a1

]
.

Lemma 9. Let η̃t,b = ηt√
ṽt,b+ε

. For each block b and t ≥ 2, we have

(
δt −

βtηt√
1− at/Atηt−1

δt−1

)
Gb

= −(1− βt)η̃t,bgt,Gb + η̃t,b

at
Atdb
‖gt,Gb‖22√
v̂t,b + ε

Xt,b + η̃t,b
σt,b√
db
Yt,b + Zt,b,

23

Under review as a conference paper at ICLR 2020

where

Xt,b =
βtmt−1,Gb√

v̂t,b +
√
At−1v̂t−1,b/At

+
(1− βt)gt,Gb√
ṽt,b +

√
v̂t,b

,

Yt,b =

at
At

√
db
‖gt,Gb‖2√

v̂t,b + ε

βtmt−1,Gb√
At−1v̂t−1,b/At + ε

√
at
Atdb
‖gt,Gb‖2√

v̂t,b +
√
At−1v̂t−1,b/At

√
at
Atdb

σt,b√
ṽt,b +

√
At−1v̂t−1,b/At

−
at
At
gt,Gb√

v̂t,b + ε

(1− βt) σt,b√
db√

ṽt,b +
√
v̂t,b

,

Zt,b = βtηtmt−1,Gb

(
1−

√
At−1/At

)
ε

(
√
At−1v̂t−1,b/At + ε)(

√
At−1v̂t−1,b/At +

√
At−1/Atε)

.

Proof. For any t ≥ 2,

δt −
βtηt√

At−1/Atηt−1

δt−1

= −ηtmt

st
+

βtηtmt−1√
At−1/Atst−1

= −ηt

[
mt

st
− βtmt−1√

At−1/Atst−1

]

= − (1− βt)ηtgt√
vt + ε

− βtηtmt−1

[
1

√
vt + ε

− 1√
At−1vt−1/At + ε

]

−βtηtmt−1

[
1√

At−1st−1/At + ε
− 1√

At−1st−1/At +
√
At−1/Atε

]

= − (1− βt)ηtgt√
vt + ε

− βtηtmt−1

[
1

√
vt + ε

− 1√
At−1vt−1/At + ε

]
(18)

+βtηtmt−1

(
1−

√
At−1/At

)
ε

(
√
At−1vt−1/At + ε)(

√
At−1vt−1/At +

√
At−1/Atε)

Let expand the first term of (18) as

(1− βt)ηtgt√
vt + ε

=
(1− βt)ηtgt√

ṽt + ε
+ (1− βt)ηtgt

[
1

√
vt + ε

− 1√
ṽt + ε

]
=

(1− βt)ηtgt√
ṽt + ε

+ (1− βt)ηtgt
ṽt − vt

(
√
vt + ε)(

√
ṽt + ε)(

√
ṽt +

√
vt)

.

For each block b, we have

(1− βt)ηtgt,Gb√
v̂t,b + ε

=
(1− βt)ηtgt,Gb√

ṽt,b + ε
+ (1− βt)ηtgt,Gb

at
Atdb

(σ2
t,b − ‖gt,Gb‖22)

(
√
v̂t,b + ε)(

√
ṽt,b + ε)(

√
ṽt,b +

√
v̂t,b)

= (1− βt)η̃t,bgt,Gb + η̃t,b
σt,b√
db

at
At
gt,Gb√

v̂t,b + ε

(1− βt) σt,b√
db√

ṽt,b +
√
v̂t,b
− η̃t,b

at
Atdb
‖gt,Gb‖22√
v̂t,b + ε

(1− βt)gt,Gb√
ṽt,b +

√
v̂t,b

.(19)

24

Under review as a conference paper at ICLR 2020

Then, we expand the second term of (18):

βtηtmt−1

[
1

√
vt + ε

− 1√
At−1vt−1/At + ε

]

= βtηtmt−1

√
At−1vt−1/At −

√
vt

(
√
vt + ε)(

√
At−1vt−1/At + ε)

= βtηtmt−1
At−1vt−1/At − vt

(
√
vt + ε)(

√
At−1vt/At + ε)(

√
vt +

√
At−1vt−1/At)

.

Similarly, for each block b, we have

βtηtmt−1,Gb

[
1√

v̂t,b + ε
− 1√

At−1v̂t−1,b/At + ε

]

= −βtηtmt−1,Gb
at‖gt,Gb‖22/(Atdb)

(
√
v̂t,b + ε)(

√
At−1v̂t−1,b/At + ε)(

√
v̂t,b +

√
At−1v̂t−1,b/At)

= −βtηtmt−1,Gb

[
at‖gt,Gb‖22/(Atdb)

(
√
v̂t,b + ε)(

√
ṽt,b + ε)(

√
v̂t,b +

√
At−1v̂t−1,b/At)

+
at‖gt,Gb‖22/(Atdb)

(
√
v̂t,b + ε)(

√
v̂t,b +

√
At−1v̂t−1,b/At)

[
1√

At−1v̂t−1,b/At + ε
− 1√

ṽt,b + ε

]]

= −η̃t,b
at
Atdb
‖gt,Gb‖22√
v̂t,b + ε

βtmt−1,Gb√
v̂t,b +

√
At−1v̂t−1,b/At

−η̃t,b
σt,b√
db

 at
At

√
db
‖gt,Gb‖2√

v̂t,b + ε

βtmt−1,Gb√
At−1v̂t−1,b/At + ε

√
at
Atdb
‖gt,Gb‖2√

v̂t,b +
√
At−1v̂t−1,b/At

√
at
Atdb

σt,b√
ṽt,b +

√
At−1v̂t−1,b/At

 .(20)

Combining (19) and (20) into (18), we obtain the result.

Lemma 10. Suppose that {at} is a non-decreasing sequence and At =
∑t
i=1 at such that

{At/At+1} is non-decreasing and limt→∞
At

At+1
= p > 0. Let Ât,i =

∏t
j=i+1

Aj−1

Aj
for 1 ≤ i < t

and Ât,t = 1. For a fixed constant p̃ such that β2 < p̃ < p, we have

Ât,i ≥ Cap̃t−i ,

where Ca =
(∏N

j=2
Aj−1

Aj p̃

)
and N is the maximum of the indices for which Aj−1/Aj < p̃. When

there are no such indices, i.e., A1/A2 ≥ p̃, we use Ca = 1 by convention.

Proof.

Ât,i =

t∏
j=i+1

Aj−1

Aj
≥

 N∏
j=i+1

Aj−1

Aj

 p̃t−N =

 N∏
j=i+1

Aj−1

Aj p̃

 p̃t−i ≥

 N∏
j=2

Aj−1

Aj p̃

 p̃t−i.

Lemma 11. Suppose that 0 ≤ βt ≤ β < 1 for all t. Let ρ := β2

p̃ , where p̃ is defined in Lemma 10.
Then, for all t, we have

‖mt,Gb‖22 ≤
1

Caat/(Atdb)(1− ρ)
v̂t,b,

where Ca is defined in Lemma 10.

25

Under review as a conference paper at ICLR 2020

Proof. Let β̂t,i =
∏t
j=i+1 βj for i < t and β̂t,t = 1

‖mt,Gb‖22 =

∥∥∥∥∥
t∑
i=1

(1− βi)β̂t,igi,Gb

∥∥∥∥∥
2

2

=

∥∥∥∥∥∥
t∑
i=1

(1− βi)β̂t,i√
ai
Atdb

√
ai
Atdb

gi,Gb

∥∥∥∥∥∥
2

2

≤

(
t∑
i=1

(1− βi)2β̂2
t,i

ai
Atdb

)(
t∑
i=1

ai
Atdb

‖gi,Gb‖
2
2

)

=

(
t∑
i=1

(1− βi)2β̂2
t,i

ai
Atdb

)
v̂t,b. (21)

Then, with Lemma 10, we get
t∑
i=1

(1− βi)2β̂2
t,i

ai
Atdb

=

t∑
i=1

(1− βi)2β̂2
t,i

ai
Aidb

Ât,i
≤ 1

Caat/(Atdb)

t∑
i=1

(
β2

p̃

)t−i
≤ 1

Caat/(Atdb)(1− ρ)
. (22)

Then, combining (21) and (22), we obtain the result.

Lemma 12. Assume F is L-smooth, {at} is non-decreasing such that {At−1/At} is non-decreasing
and limt→∞

At

At+1
= p > 0. Let p̃ be a constant such that β2 < p̃ < p. Assume Et[‖gt,Gb‖22] =

σ2
t,b ≤ dbσ

2
b . Define wt = ηt/

√
at
At

. Assume wt is ”almost” non-increasing. This means there

exists another non-increasing sequence {zt} and positive constants C1 and C2 such that C1zt ≤
wt ≤ C2zt for all t. Assume 0 ≤ βt ≤ β < 1 for all t. Define following Lyapunov function:

Mt = E[〈∇F (θt), δt〉+ L‖δt‖22].

Let C3 ≡
[

β/(1−β)√
CaA1/A2(1−ρ)

+ 1

]
, where ρ := β2

p̃ . Then, for any t ≥ 2, we have

Mt ≤
βtηt√

At−1/Atηt−1

Mt−1 −
1− βt

2
ηtE

[
‖∇F (θt)‖2H̃−1

t

]
+ 2wtC

2
3E

[
at
At
‖H−1

t gt‖2Σ1/2

]

+LE[‖δt‖22] +
βwt√

Ca(1− ρ)

(√
At
At−1

− 1

)
B∑
b=1

σbdb, (23)

and for t = 1, we have

M1 ≤ −1− β1

2
η1E

[
‖∇F (θ1)‖2H̃−1

1

]
+ 2w1C

2
3E

[
a1

A1
‖H−1

1 g1‖2Σ1/2

]
+ LE[‖δ1‖22]. (24)

Proof. For any t ≥ 2,

E[〈∇F (θt), δt〉] =
βtηt√

At−1/Atηt−1

E[〈∇F (θt), δt−1〉] + E

[〈
∇F (θt), δt −

βtηt√
At−1/Atηt−1

δt−1

〉]
. (25)

Then, for the first term of (25), we have
〈∇F (θt), δt−1〉 = 〈∇F (θt−1), δt−1〉+ 〈∇F (θt)−∇F (θt−1), δt−1〉

≤ 〈∇F (θt−1), δt−1〉+ L‖θt − θt−1‖2‖δt−1‖2
= 〈∇F (θt−1), δt−1〉+ L‖δt−1‖22,

where the first inequality follows from Schwartz inequality and the smoothness of the function F .
Hence, we have

βtηt√
At−1/Atηt−1

E[〈∇F (θt), δt−1〉] ≤
βtηt√

At−1/Atηt−1

E
[
〈∇F (θt−1), δt−1〉+ L‖δt−1‖22

]
=

βtηt√
At−1/Atηt−1

Mt−1.

26

Under review as a conference paper at ICLR 2020

Now, we estimate the second term of (25). By Lemma 9, for each block b, we get

E

[〈
∇GbF (θt), δt,Gb −

βtηt√
At−1/Atηt−1

δt−1,Gb

〉]

= −(1− βt)E[〈∇GbF (θt), η̃t,bgt,Gb〉] + E

[〈
∇GbF (θt), η̃t,b

at
Atdb
‖gt,Gb‖22√
v̂t,b + ε

Xt,b

〉]

+E

[〈
∇GbF (θt), η̃t,b

σt,b√
db
Yt,b

〉]
+ E[〈∇GbF (θt), Zt,b〉]. (26)

For the first term of (26), we have

−(1− βt)E[〈∇GbF (θt), η̃t,bgt,Gb〉] = −(1− βt)E[〈∇GbF (θt), η̃t,b∇GbF (θt)〉]
= −(1− βt)η̃t,bE[‖∇GbF (θt)‖22]. (27)

For the second term of (26), we have

E

[〈
∇GbF (θt), η̃t,b

at
Atdb
‖gt,Gb‖22√
v̂t,b + ε

Xt,b

〉]

≤ E

[√
η̃t,b‖∇GbF (θt)‖2‖gt,Gb‖2/

√
db

σt,b/
√
db

√
η̃t,b

at
At
‖gt,Gb‖2/

√
dbσt,b/

√
db‖Xt,b‖2√

v̂t,b + ε

]
. (28)

Note that

√
η̃t,bσt,b/

√
db =

√
ηtσ2

t,b/db√
ṽt,b + ε

≤

√√√√ ηtσ2
t,b/db√

at/Atσ2
t,b/db

≤
√

ηtσb√
at/At

=
√
wtσb. (29)

Besides, we have

‖Xt,b‖2 =

∥∥∥∥∥ βtmt−1,Gb√
v̂t,b +

√
At−1v̂t−1,b/At

+
(1− βt)gt,Gb√
ṽt,b +

√
v̂t,b

∥∥∥∥∥
2

≤

∥∥∥∥∥ βtmt−1,Gb√
v̂t,b +

√
At−1v̂t−1,b/At

∥∥∥∥∥
2

+

∥∥∥∥∥ (1− βt)gt,Gb√
ṽt,b +

√
v̂t,b

∥∥∥∥∥
2

.

With Lemma 11, we have∥∥∥∥∥ mt−1,Gb√
v̂t,b +

√
At−1v̂t−1,b/At

∥∥∥∥∥
2

≤

∥∥∥∥∥ mt−1,Gb√
At−1v̂t−1,b/At

∥∥∥∥∥
2

≤ 1√
CaAt−1/Atat/(Atdb)(1− ρ)

, (30)∥∥∥∥∥ gt,Gb√
ṽt,b +

√
v̂t,b

∥∥∥∥∥
2

≤

∥∥∥∥∥ gt,Gb√
v̂t,b

∥∥∥∥∥
2

≤

∥∥∥∥∥ gt,Gb√
at/At‖gt,Gb‖22/db

∥∥∥∥∥
2

=

√
db√

at/At
. (31)

Then, we get

‖Xt,b‖2 ≤ βt√
CaAt−1/Atat/(Atdb)(1− ρ)

+
(1− βt)

√
db√

at/At

=

[
βt/(1− βt)√

CaAt−1/At(1− ρ)
+ 1

]
(1− βt)

√
db√

at/At

≤

[
β/(1− β)√

CaAt−1/At(1− ρ)
+ 1

]
(1− βt)

√
db√

at/At

≤

[
β/(1− β)√

CaA1/A2(1− ρ)
+ 1

]
(1− βt)

√
db√

at/At
:= C3

(1− βt)
√
db√

at/At
,

27

Under review as a conference paper at ICLR 2020

where the last-to-second inequality follows from the assumption that βt ≤ β, and the last inequal-
ity holds as we assume {at} is chosen such that {At−1/At} is non-decreasing for all t. Hence,
combining the above result with (29) and (28), we have

E

[〈
∇GbF (θt), η̃t,b

at
Atdb
‖gt,Gb‖22√
v̂t,b + ε

Xt,b

〉]

≤ E

√η̃t,b‖∇GbF (θt)‖2‖gt,Gb‖2/
√
db

σt,b/
√
db

√
wtσbC3(1− βt)

√
at
At
‖gt,Gb‖2√
v̂t,b + ε


≤ E

[
1− βt

4

η̃t,b‖∇GbF (θt)‖22‖gt,Gb‖22/db
σ2
t,b/db

+ wtσbC
2
3 (1− βt)

at
At
‖gt,Gb‖22

(
√
v̂t,b + ε)2

]

≤ E

[
1− βt

4

η̃t,b‖∇GbF (θt)‖22Et[‖gt,Gb‖2]2/db
σ2
t,b/db

+ wtσbC
2
3 (1− βt)

at
At
‖gt,Gb‖22

(
√
v̂t,b + ε)2

]

≤ E

[
1− βt

4
η̃t,b‖∇GbF (θt)‖22 + wtσbC

2
3

at
At
‖gt,Gb‖22

(
√
v̂t,b + ε)2

]
, (32)

where the second inequality follows from ab ≤ a2

2c + cb2

2 for any c > 0. Now, we estimate the third
term of (26):

E

[〈
∇GbF (θt), η̃t,b

σt,b√
db
Yt,b

〉]
≤ E

[√
η̃t,b ‖∇GbF (θt)‖2

√
η̃t,b

σt,b√
db
‖Yt,b‖2

]
.

Similarly, with (30) and (31), by expanding ‖Yt,b‖2, we have

‖Yt,b‖2 ≤
at

At

√
db
‖gt,Gb‖2√

v̂t,b + ε

βt‖mt−1,Gb‖2√
At−1v̂t−1,b/At + ε

√
at
Atdb
‖gt,Gb‖2√

v̂t,b +
√
At−1v̂t−1,b/At

√
at
Atdb

σt,b√
ṽt,b +

√
At−1v̂t−1,b/At

+
at
At
‖gt,Gb‖2√
v̂t,b + ε

(1− βt) σt,b√
db√

ṽt,b +
√
v̂t,b

≤
at

At

√
db
‖gt,Gb‖2√

v̂t,b + ε

βt√
CaAt−1/Atat/(Atdb)(1− ρ)

+
at
At
‖gt,Gb‖2√
v̂t,b + ε

1− βt√
at/At

=

√
at
At
‖gt,Gb‖2√
v̂t,b + ε

βt√
CaAt−1/At(1− ρ)

+

√
at
At
‖gt,Gb‖2√
v̂t,b + ε

(1− βt)

=

√
at
At
‖gt,Gb‖2√
v̂t,b + ε

[
βt/(1− βt)√

CaAt−1/At(1− ρ)
+ 1

]
(1− βt)

≤

√
at
At
‖gt,Gb‖2√
v̂t,b + ε

C3(1− βt),

where C3 is the constant defined above. Hence, together with (29), we obtain

E

[〈
∇GbF (θt), η̃t,b

σt,b√
db
Yt,b

〉]
≤ E

√η̃t,b ‖∇GbF (θt)‖2
√
η̃t,b

σt,b√
db

√
at
At
‖gt,Gb‖2√
v̂t,b + ε

C3(1− βt)


≤ 1− βt

4
η̃t,bE

[
‖∇GbF (θt)‖22

]
+ wtσbC

2
3 (1− βt)E

[
at
At
‖gt,Gb‖22

(
√
v̂t,b + ε)2

]

≤ 1− βt
4

η̃t,bE
[
‖∇GbF (θt)‖22

]
+ wtσbC

2
3E

[
at
At
‖gt,Gb‖22

(
√
v̂t,b + ε)2

]
. (33)

28

Under review as a conference paper at ICLR 2020

The last term of (26) can be bounded as follows

E[〈∇GbF (θt), Zt,b〉] ≤ E[‖∇GbF (θt)‖2‖Zt,b‖2] ≤ E[σb
√
db‖Zt,b‖2],

and with (30), we get

‖Zt,b‖2 ≤
βtηt ‖mt−1,Gb‖2√

At−1v̂t−1,b/At +
√
At−1/Atε

(
1−

√
At−1/At

)
ε

(
√
At−1v̂t−1,b/At + ε)

≤ βtηt√
CaAt−1/Atat/(Atdb)(1− ρ)

(
1−

√
At−1/At

)
≤

βηt
√
Atdb/at√

Ca(1− ρ)

(√
At
At−1

− 1

)

=
βwt
√
db√

Ca(1− ρ)

(√
At
At−1

− 1

)
.

Hence,

E[〈∇GbF (θt), Zt,b〉] ≤
βσbdbwt√
Ca(1− ρ)

(√
At
At−1

− 1

)
. (34)

Combining (26), (27), (32), (33), and (34), we get

E

[〈
∇GbF (θt), δt,Gb −

βtηt√
At−1/Atηt−1

δt−1,Gb

〉]

≤ −1− βt
2

η̃t,bE
[
‖∇GbF (θt)‖22

]
+ 2wtσbC

2
3E

[
at
At
‖gt,Gb‖22

(
√
v̂t,b + ε)2

]
+

βσbdbwt√
Ca(1− ρ)

(√
At
At−1

− 1

)
.

Summing from b = 1 to B, we obtain

E

[〈
∇F (θt), δt −

βtηt√
At−1/Atηt−1

δt−1

〉]

≤ −1− βt
2

ηtE
[
‖∇F (θt)‖2H̃−1

t

]
+ 2wtC

2
3E

[
at
At
‖H−1

t gt‖2Σ1/2

]
+

βwt√
Ca(1− ρ)

(√
At
At−1

− 1

)
B∑
b=1

σbdb.

Then, with (25), we have
E[〈∇F (θt), δt〉]

≤ βtηt√
At−1/Atηt−1

Mt−1 −
1− βt

2
ηtE

[
‖∇F (θt)‖2H̃−1

t

]
+ 2wtC

2
3E

[
at
At
‖H−1

t gt‖2Σ1/2

]

+
βwt√

Ca(1− ρ)

(√
At
At−1

− 1

)
B∑
b=1

σbdb.

We obtain (23) by adding the term LE[‖δt‖22] to both sides of the above equation. When t = 1, we
have

M1 = E[−〈∇F (θ1), η1m1/(
√
v̂1 + ε)〉+ L‖δ1‖22]

= E[−〈∇F (θ1), η1(1− β1)g1/(
√
v̂1 + ε)〉+ L‖δ1‖22]. (35)

Then, following the derivation of (19), for each block b, we have

(1− β1)η1g1,Gb√
v̂1,b + ε

= (1− β1)η̃1,bg1,Gb + η̃1,b
σ1,b√
db

a1
A1
g1,Gb√

v̂1,b + ε

(1− β1)
σ1,b√
db√

ṽ1,b +
√
v̂1,b

−η̃1,b

a1
A1db
‖g1,Gb‖22√
v̂1,b + ε

(1− β1)g1,Gb√
ṽ1,b +

√
v̂1,b

.

29

Under review as a conference paper at ICLR 2020

Hence, with similar argument, we get

E

[
−
〈
∇F (θ1), η1

(1− β1)g1√
v̂1 + ε

〉]
≤ −1− β1

2
η1E

[
‖∇F (θ1)‖2H̃−1

1

]
+ 2w1C

2
3E

[
a1

A1
‖H−1

1 g1‖2Σ1/2

]
.

Combining above with (35), and adding LE[‖δ‖22], we obtain (24).

Lemma 13. With the same assumptions in Lemma 12, we have

T∑
t=1

‖δt‖22 ≤
C2

2/C
2
1w1

Ca(1−√ρ)2

T∑
t=1

wt
at
At
‖H−1

t gt‖22.

Proof. For each block b,

‖mt,Gb‖2 =

∥∥∥∥∥∥
t∑
i=1

 t∏
j=i+1

βj

 (1− βi)gi,Gb

∥∥∥∥∥∥
2

≤
t∑
i=1

 t∏
j=i+1

βj(1− βi)

 ‖gi,Gb‖2
≤

t∑
i=1

βt−i ‖gi,Gb‖2 .

Then,

‖mt,Gb‖2√
v̂t,b + ε

≤
t∑
i=1

βt−i ‖gi,Gb‖2√
v̂t,b + ε

.

Since v̂t,b ≥ At−1v̂t−1,b/At, we have v̂t,b ≥
(∏t

j=i+1Aj−1/Aj

)
v̂i,b = Ât,iv̂i,b ≥ Cap̃

t−iv̂i,b by
Lemma 10. It follows that

‖mt,Gb‖2√
v̂t,b + ε

≤
t∑
i=1

βt−i ‖gi,Gb‖2√
v̂t,b + ε

≤ 1√
Ca

t∑
i=1

(
β√
p̃

)t−i ‖gi,Gb‖2√
v̂i,b + ε

=
1√
Ca

t∑
i=1

√
ρ
t−i ‖gi,Gb‖2√

v̂i,b + ε
.

Then, as at/At = 1−At−1/At is non-decreasing, we have

‖δt‖22 =

B∑
b=1

∥∥∥∥∥ ηtmt,Gb√
v̂t,b + ε

∥∥∥∥∥
2

2

=

B∑
b=1

∥∥∥∥∥wt
√
at/Atmt,Gb√
v̂t,b + ε

∥∥∥∥∥
2

2

≤ w2
t

Ca

B∑
b=1

(
t∑
i=1

√
ρ
t−i
√
at/At ‖gi,Gb‖2√

v̂i,b + ε

)2

≤ w2
t

Ca

B∑
b=1

(
t∑
i=1

√
ρ
t−i
√
ai/Ai ‖gi,Gb‖2√

v̂i,b + ε

)2

≤ w2
t

Ca

B∑
b=1

 t∑
j=1

√
ρ
t−j

2 t∑
i=1

√
ρt−i(∑t

j=1

√
ρt−j

) √ai/Ai ‖gi,Gb‖2√
v̂i,b + ε

2

≤ w2
t

Ca

B∑
b=1

 t∑
j=1

√
ρ
t−j

 t∑
i=1

√
ρ
t−i ai/Ai ‖gi,Gb‖

2
2

(
√
v̂i,b + ε)2

≤ w2
t

Ca(1−√ρ)

B∑
b=1

t∑
i=1

√
ρ
t−i ai/Ai ‖gi,Gb‖

2
2

(
√
v̂i,b + ε)2

=
w2
t

Ca(1−√ρ)

t∑
i=1

√
ρ
t−i ai

Ai
‖H−1

i gi‖22.

As wt ≤ C2/C1wi for any i ≤ t by Lemma 6, then we have

‖δt‖22 ≤
C2

2/C
2
1w1

Ca(1−√ρ)

t∑
i=1

√
ρ
t−i
wi
ai
Ai
‖H−1

i gi‖22.

30

Under review as a conference paper at ICLR 2020

Hence,

T∑
t=1

‖δt‖22 ≤ C2
2/C

2
1w1

Ca(1−√ρ)

T∑
t=1

t∑
i=1

√
ρ
t−i
wi
ai
Ai
‖H−1

i gi‖22

=
C2

2/C
2
1w1

Ca(1−√ρ)

T∑
i=1

T∑
t=i

√
ρ
t−i
wi
ai
Ai
‖H−1

i gi‖22

≤ C2
2/C

2
1w1

Ca(1−√ρ)2

T∑
i=1

wi
ai
Ai
‖H−1

i gi‖22.

Lemma 14. With the same assumptions in Lemma 12, letMt = E[〈∇F (θt), δt〉+L‖δt‖22], we have

T∑
t=1

Mt ≤
C2

C1

√
Ca(1−√ρ)

[
2C2

3

T∑
t=1

wtE

[
at
At
‖H−1

t gt‖2Σ1/2

]
+

LC2
2/C

2
1w1

Ca(1−√ρ)2

T∑
t=1

wtE

[
at
At
‖H−1

t gt‖22
]

+
β√

Ca(1− ρ)

B∑
b=1

σbdb

T∑
t=2

wt

(√
At
At−1

− 1

)]
− 1− β

2

T∑
t=1

ηtE
[
‖∇F (θt)‖2H̃−1

t

]
.

Proof. Let define following quantity

Nt = 2wtC
2
3E

[
at
At
‖H−1

t gt‖2Σ1/2

]
+ LE[‖δt‖22] +

βwt√
Ca(1− ρ)

(√
At
At−1

− 1

)
B∑
b=1

σbdb, ∀t ≥ 2,

N1 = 2w1C
2
3E

[
a1

A1
‖H−1

1 g1‖2Σ1/2

]
+ LE[‖δ1‖22].

Then, by Lemma 12, for any t ≥ 2, we have

Mt ≤
βtηt√

At−1/Atηt−1

Mt−1 −
1− βt

2
ηtE

[
‖∇F (θt)‖2H̃−1

t

]
+Nt

≤ βtηt√
At−1/Atηt−1

Mt−1 +Nt

and M1 ≤ N1. Then, by recursively applying above relation, we get

Mt ≤
β̂t,1ηt√
Ât,1η1

M1 +

t∑
i=2

β̂t,iηt√
Ât,iηi

Ni −
1− βt

2
ηtE

[
‖∇F (θt)‖2H̃−1

t

]

≤
t∑
i=1

β̂t,iηt√
Ât,iηi

Ni −
1− βt

2
ηtE

[
‖∇F (θt)‖2H̃−1

t

]
,

where β̂t,i =
∏t
j=i+1 βj for i < t and β̂t,t = 1 and Ât,i =

∏t
j=i+1

Aj−1

Aj
for i < t and Ât,t = 1.

Note that β̂t,i ≤ βt−i, and ηt ≤ C2/C1ηi. By Lemma 10, we have Ât,i ≥ Cap̃t−i . Then,

Mt ≤
C2

C1

√
Ca

t∑
i=1

(
β√
p̃

)t−i
Ni −

1− βt
2

ηtE
[
‖∇F (θt)‖2H̃−1

t

]
=

C2

C1

√
Ca

t∑
i=1

√
ρ
t−i
Ni −

1− βt
2

ηtE
[
‖∇F (θt)‖2H̃−1

t

]
.

31

Under review as a conference paper at ICLR 2020

It can be verified that the above inequality holds for t = 1 as C2/(C1

√
Ca) ≥ 1. Then, summing

from t = 1 to t = T , we obtain
T∑
t=1

Mt ≤
C2

C1

√
Ca

T∑
t=1

t∑
i=1

√
ρ
t−i
Ni −

T∑
t=1

1− βt
2

ηtE
[
‖∇F (θt)‖2H̃−1

t

]
=

C2

C1

√
Ca

T∑
i=1

T∑
t=i

√
ρ
t−i
Ni −

T∑
t=1

1− βt
2

ηtE
[
‖∇F (θt)‖2H̃−1

t

]
≤ C2

C1

√
Ca(1−√ρ)

T∑
t=1

Nt −
1− β

2

T∑
t=1

ηtE
[
‖∇F (θt)‖2H̃−1

t

]
. (36)

With Lemma 13, we get

T∑
t=1

Nt =

T∑
t=1

[
2wtC

2
3E

[
at
At
‖H−1

t gt‖2Σ1/2

]
+ LE[‖δt‖22]

]
+

T∑
t=2

βwt√
Ca(1− ρ)

(√
At
At−1

− 1

)
B∑
b=1

σbdb

≤ 2C2
3

T∑
t=1

wtE

[
at
At
‖H−1

t gt‖2Σ1/2

]
+

LC2
2/C

2
1w1

Ca(1−√ρ)2

T∑
t=1

wtE

[
at
At
‖H−1

t gt‖22
]

+
β√

Ca(1− ρ)

B∑
b=1

σbdb

T∑
t=2

wt

(√
At
At−1

− 1

)
.

Combining the above with (36), we obtain the result.

Lemma 15. Assume {at} is non-decreasing such that {At−1/At} is non-decreasing. Define wt =

ηt/
√

at
At

. Assume wt is ”almost” non-increasing. This means there exists another non-increasing

sequence {zt} and positive constants C1 and C2 such that C1zt ≤ wt ≤ C2zt. We have

1

T

T∑
t=1

(
E[‖∇F (θt)‖4/32]

)3/2

≤
√

2 (max1≤t≤T E [maxb ṽt,b] + ε2)

C1/C2ηTT

T∑
t=1

ηtE
[
‖∇F (θt)‖2H̃−1

t

]
.

Proof. By Hölder’s inequality, we have E[|XY |] ≤ (E[|X|p])1/p(E[|Y |q])1/q for any 0 < p, q < 1
with 1/p+ 1/q = 1. Taking p = 3/2, q = 3, and

X =

(
‖∇F (θt)‖22√
maxb ṽt,b + ε

)2/3

, Y =

(√
max
b
ṽt,b + ε

)2/3

,

we obtain

E[‖∇F (θt)‖4/32] ≤

(
E

[
‖∇F (θt)‖22√
maxb ṽt,b + ε

])2/3(
E

[(√
max
b
ṽt,b + ε

)2
])1/3

.

Hence,(
E[‖∇F (θt)‖4/32]

)3/2

≤

(
E

[
‖∇F (θt)‖22√
maxb ṽt,b + ε

])(
E

[(√
max
b
ṽt,b + ε

)2
])1/2

.

Note that

‖∇F (θt)‖22√
maxb ṽt,b + ε

=

B∑
i=1

‖∇GiF (θt)‖22√
maxb ṽt,b + ε

≤
B∑
b=1

‖∇GbF (θt)‖22√
ṽt,b + ε

= ‖∇F (θt)‖2H̃−1
t
.

32

Under review as a conference paper at ICLR 2020

We also have

E

[(√
max
b
ṽt,b + ε

)2
]
≤ 2E

[(
max
b
ṽt,b + ε2

)]
= 2

(
E

[
max
b
ṽt,b

]
+ ε2

)
.

Then, for any t ≤ T , we get

(
E[‖∇F (θt)‖4/32]

)3/2

≤

√
2

(
E

[
max
b
ṽt,b

]
+ ε2

)
E
[
‖∇F (θt)‖2H̃−1

t

]
=

√
2 (E [maxb ṽt,b] + ε2)

ηt
ηtE

[
‖∇F (θt)‖2H̃−1

t

]
≤

√
2 (max1≤t≤T E [maxb ṽt,b] + ε2)

C1/C2ηT
ηtE

[
‖∇F (θt)‖2H̃−1

t

]
,

where the last inequality follows from Lemma 6. Taking average from t = 1 to T , we get

1

T

T∑
t=1

(
E[‖∇F (θt)‖4/32]

)3/2

≤
√

2 (max1≤t≤T E [maxb ṽt,b] + ε2)

C1/C2ηTT

T∑
t=1

ηtE
[
‖∇F (θt)‖2H̃−1

t

]
.

F.1 PROOF OF THEOREM 2

Proof. As F is L-smooth, then we have

F (θt+1) ≤ F (θt) + 〈∇F (θt), θt+1 − θt〉+
L

2
‖θt+1 − θt‖2.

Recursively applying the above relation, we get

F (θ∗) ≤ E[F (θT+1)] ≤ F (θ1) +

T∑
t=1

Mt,

where Mt = E[〈∇F (θt), δt〉+ L‖δt‖22]. By Lemma 14, we have

1− β
2

T∑
t=1

ηtE
[
‖∇F (θt)‖2H̃−1

t

]
≤ F (θ1)− F (θ∗) +

C2

C1

√
Ca(1−√ρ)

[
2C2

3

T∑
t=1

wtE

[
at
At
‖H−1

t gt‖2Σ1/2

]

+
LC2

2/C
2
1w1

Ca(1−√ρ)2

T∑
t=1

wtE

[
at
At
‖H−1

t gt‖22
]

+
β√

Ca(1− ρ)

B∑
b=1

σbdb

T∑
t=2

wt

(√
At
At−1

− 1

)]

= F (θ1)− F (θ∗) +
C2

C1

√
Ca(1−√ρ)

[
2C2

3

T∑
t=1

ηtE

[√
at
At
‖H−1

t gt‖2Σ1/2

]

+
LC2

2/C
2
1w1

Ca(1−√ρ)2

T∑
t=1

ηtE

[√
at
At
‖H−1

t gt‖22
]

+
β√

Ca(1− ρ)

B∑
b=1

σbdb

T∑
t=2

wt

(√
At
At−1

− 1

)]
.

33

Under review as a conference paper at ICLR 2020

Applying Lemma 8, we have

1− β
2

T∑
t=1

ηtE
[
‖∇F (θt)‖2H̃−1

t

]
≤ F (θ1)− F (θ∗)

+
C2

C1

√
Ca(1−√ρ)

[
2C2

3

C2

C1

[
w1

B∑
b=1

σbdb log

(
σ2
b

ε2
+ 1

)
+

B∑
b=1

σbdb

T∑
t=1

ηt

√
at
At

At
At−1 + a1

]

+
LC3

2/C
3
1w1

Ca(1−√ρ)2

[
w1

B∑
b=1

db log

(
σ2
b

ε2
+ 1

)
+

B∑
b=1

db

T∑
t=1

ηt

√
at
At

At
At−1 + a1

]

+
β√

Ca(1− ρ)

B∑
b=1

σbdb

T∑
t=2

wt

(√
At
At−1

− 1

)]
≤ F (θ1)− F (θ∗)

+
C2

C1

√
Ca(1−√ρ)

[
2C2

3

C2

C1

[
w1

B∑
b=1

σbdb log

(
σ2
b

ε2
+ 1

)
+ ω

B∑
b=1

σbdb

T∑
t=1

ηt

√
at
At

]

+
LC3

2/C
3
1w1

Ca(1−√ρ)2

[
w1

B∑
b=1

db log

(
σ2
b

ε2
+ 1

)
+ ω

B∑
b=1

db

T∑
t=1

ηt

√
at
At

]

+
β√

Ca(1− ρ)

B∑
b=1

σbdb

T∑
t=2

wt

(√
At
At−1

− 1

)]

= F (θ1)− F (θ∗) +
C2

C1

√
Ca(1−√ρ)

[
β√

Ca(1− ρ)

B∑
b=1

σbdb

T∑
t=2

wt

(√
At
At−1

− 1

)

+

B∑
b=1

[
LC3

3/C
3
1w1db

Ca(1−√ρ)2
+

2C2
3C2σbdb
C1

][
w1 log

(
σ2
b

ε2
+ 1

)
+ ω

T∑
t=1

ηt

√
at
At

]]
.

Combining above with Lemma 15, we have

min
1≤t≤T

(
E[‖∇F (θt)‖4/32]

)3/2

≤ 1

T

T∑
t=1

(
E[‖∇F (θt)‖4/32]

)3/2

≤
2
√

2 (max1≤t≤T E [maxb ṽt,b] + ε2)

C1/C2(1− β)ηTT
[F (θ1)− F (θ∗)

+
C2

C1

√
Ca(1−√ρ)

[
β√

Ca(1− ρ)

B∑
b=1

σbdb

T∑
t=2

wt

(√
At
At−1

− 1

)

+

B∑
b=1

[
LC3

2/C
3
1w1db

Ca(1−√ρ)2
+

2C2
3C2σbdb
C1

] [
w1 log

(
σ2
b

ε2
+ 1

)
+ ω

T∑
t=1

ηt

√
at
At

]]]

=

√
2 (max1≤t≤T E [maxb ṽt,b] + ε2)

ηTT

[
2C2

(1− β)C1
[F (θ1)− F (θ∗)]

+
2C2

2

C2
1

√
Ca(1−√ρ)(1− β)

[
β√

Ca(1− ρ)

B∑
b=1

σbdb

T∑
t=2

wt

(√
At
At−1

− 1

)
(37)

+

B∑
b=1

[
LC3

2w1db
C3

1Ca(1−√ρ)2
+

2C2
3C2σbdb
C1

] [
w1 log

(
σ2
b

ε2
+ 1

)
+ ω

T∑
t=1

ηt

√
at
At

]]]
.(38)

34

Under review as a conference paper at ICLR 2020

F.2 PROOF OF PROPOSITION 3

To prove the result, we use the following high probability bound.

Proposition 5. With probability at least 1− δ2/3, min1≤t≤T ‖∇F (θt)‖22 ≤ C(T)/δ.

Proof. By the concavity of the minimum, we have

E

[
min

1≤t≤T
‖∇F (θt)‖4/32

]3/2

≤ min
1≤t≤T

(
E[‖∇F (θt)‖4/32]

)3/2

.

Let X = min1≤t≤T ‖∇F (θt)‖22. The Theorem 2 suggests that we have E[X2/3] ≤ C(T)2/3. By
Markov’s inequality, we get

P

(
X2/3 >

C(T)2/3

δ2/3

)
≤ E[X2/3]

C(T)2/3
δ2/3 ≤ δ2/3.

Hence, P
(
X > C(T)

δ

)
≤ δ2/3, and we have P (X ≤ C(T)

δ) ≥ 1− δ2/3.

Proof. (of Proposition 3) Recall the definition of C(T) in (17). When at = atτ , we have At =
O(t1+τ). This suggests that

ηt

√
at
At
≤ η

1− β

√
at
tAt

= O
(

1

t

)
,

wt =
η

1− β̃t

√
At
tat
≤ η

1− β

√
At
tat

= O (1) ,

and √
At
At−1

− 1 =

√
At −

√
At−1√

At−1

= O
(

1

t

)
.

Hence,

T∑
t=1

ηt

√
at
At

= O (log(T)) ,

T∑
t=1

wt

(√
At
At−1

− 1

)
= O (log(T)) , and C(T) = O

(
log(T)√

T

)
.

On the other hand, when at = α−t, we have

ηt

√
at
At
≤ η

1− β

√
1− α

(1− αt)t
≤ η√

t
,

wt =
η

1− β̃t

√
At
att

=
η

1− β̃t

√
1− αt

(1− α)t
≤ η

(1− β)
√

(1− α)t
,

and √
At
At−1

− 1 =

√
1− αt

(1− αt−1)α
≤
√

1 + α

α
.

Then, we get

T∑
t=1

ηt

√
at
At
≤ 2η

√
T ,

T∑
t=1

wt

(√
At
At−1

− 1

)
= O

(√
T
)
, and C(T) = O (1) .

Combining the results with Proposition 5, we complete the proof.

35

Under review as a conference paper at ICLR 2020

F.3 PROOF OF COROLLARY 2

Proof. As ‖gt,Gb‖22/db ≤ G2
b , then we have

ṽt,b = (vt−1,b + atEt[‖gt,G̃b‖
2
2]/db])/At ≤ G2

b ,

and therefore v̄T,B ≡ max1≤t≤T E [maxb ṽt,b] ≤ maxbG
2
b . Arranging the terms in C̃(T), we

obtain

C̃(T)

=

√
2 (maxbG2

b + ε2)

ηTT

[
2C2

(1− β)C1
[F (θ1)− F (θ∗)]

+
2C2

2

C2
1

√
Ca(1−√ρ)(1− β)

[[
β√

Ca(1− ρ)

T∑
t=2

wt

(√
At
At−1

− 1

)
+

2C2
3C2

C1
ω

T∑
t=1

ηt

√
at
At

]
B∑
b=1

σbdb

+
LC3

2w
2
1

C3
1Ca(1−√ρ)2

B∑
b=1

db log

(
σ2
b

ε2
+ 1

)
+

2C2
3C2w1

C1

B∑
b=1

σbdb log

(
σ2
b

ε2
+ 1

)

+
LC3

2w1dω

C3
1Ca(1−√ρ)2

T∑
t=1

ηt

√
at
At

]]
.

When B = d, we have

C̃d(T)

=

√
2
(
maxb maxi∈G̃b G

2
i + ε2

)
ηTT

[
2C2

(1− β)C1
[F (θ1)− F (θ∗)]

+
2C2

2

C2
1

√
Ca(1−√ρ)(1− β)

[[
β√

Ca(1− ρ)

T∑
t=2

wt

(√
At
At−1

− 1

)
+

2C2
3C2

C1
ω

T∑
t=1

ηt

√
at
At

]
d∑
i=1

σi

+
LC3

2w
2
1

C3
1Ca(1−√ρ)2

d∑
i=1

log

(
σ2
i

ε2
+ 1

)
+

2C2
3C2w1

C1

d∑
i=1

σi log

(
σ2
i

ε2
+ 1

)

+
LC3

2w1dω

C3
1Ca(1−√ρ)2

T∑
t=1

ηt

√
at
At

]]

=

√
2
(
maxb maxi∈G̃b G

2
i + ε2

)
ηTT

[
2C2

(1− β)C1
[F (θ1)− F (θ∗)]

+
2C2

2

C2
1

√
Ca(1−√ρ)(1− β)

[β√
Ca(1− ρ)

T∑
t=2

wt

(√
At
At−1

− 1

)
+

2C2
3C2

C1
ω

T∑
t=1

ηt

√
at
At

]
B̃∑
b=1

∑
i∈G̃b

σi

+
LC3

2w
2
1

C3
1Ca(1−√ρ)2

B̃∑
b=1

∑
i∈G̃b

log

(
σ2
i

ε2
+ 1

)
+

2C2
3C2w1

C1

B̃∑
b=1

∑
i∈G̃b

σi log

(
σ2
i

ε2
+ 1

)

+
LC3

2w1dω

C3
1Ca(1−√ρ)2

T∑
t=1

ηt

√
at
At

]]
.

36

Under review as a conference paper at ICLR 2020

Substituting r1 :=
∑B̃

b=1

∑
i∈G̃b

log(σ2
i /ε

2+1)∑B̃
b=1 db log(σ2

b/ε
2+1)

, r2 :=
∑B̃

b=1

∑
i∈G̃b

σi∑B̃
b=1 σbdb

and r3 :=∑B̃
b=1

∑
i∈G̃b

σi log(σ2
i /ε

2+1)∑B̃
b=1 σbdb log(σ2

b/ε
2+1)

, we get

C̃d(T)

=

√
2
(
maxb maxi∈G̃b G

2
i + ε2

)
ηTT

[
2C2

(1− β)C1
[F (θ1)− F (θ∗)]

+
2C2

2

C2
1

√
Ca(1−√ρ)(1− β)

[β√
Ca(1− ρ)

T∑
t=2

wt

(√
At
At−1

− 1

)
+

2C2
3C2

C1
ω

T∑
t=1

ηt

√
at
At

]
r2

B̃∑
b=1

σbdb

+
LC3

2w
2
1

C3
1Ca(1−√ρ)2

r1

B̃∑
b=1

db log

(
σ2
b

ε2
+ 1

)
+

2C2
3C2w1

C1
r3

B̃∑
b=1

σbdb log

(
σ2
b

ε2
+ 1

)

+
LC3

2w1dω

C3
1Ca(1−√ρ)2

T∑
t=1

ηt

√
at
At

]]

≥ min(1, rmin)

√
maxb maxi∈G̃b G

2
i + ε2

maxbG2
b + ε2

CB̃(T),

where rmin = min(r1, r2, r3). Then, C̃d(T)

C̃B̃(T)
≥ min(1, rmin)

√
maxb maxi∈G̃b

G2
i +ε2

maxbG2
b+ε2

. When B = B̃,

we assume that Assumption 4 is tight in the sense that σ2
b ≤ 1

db

∑
i∈G̃b σ

2
i ,5 Thus, rmin can be larger

than 1 as σ2
b ≤ 1

db

∑
i∈G̃b σ

2
i . Corollary 2 then indicates that blockwise adaptive stepsize will lead

to improvement if
√

(maxb maxi∈G̃b G
2
i + ε2)/(maxbG2

b + ε2) > 1
rmin

. Similarly, assume that the

upper bound Gb is tight so that G2
b ≤ 1

db

∑
i∈G̃b G

2
i . Thus, maxb maxi∈G̃b G

2
i ≥ maxbG

2
b , and the

above condition is likely to hold when rmin is close to 1 or is larger than 1. From the definitions of
r1, r2 and r3, we can see that they get close to 1 or is larger than 1 when {σ2

i }i∈G̃b have sufficiently
low variability.

F.4 PROOF OF PROPOSITION 4

Proof. As function is γ̃-Lipschitz, we have the following result:

sup
z

EM [f(M(S); z)− f(M(S′); z)] ≤ γ̃EM [‖M(S)−M(S′)‖2].

Therefore, we can consider bounding EM [‖M(S)−M(S′)‖2]. Let βt = 0 for all t.

θt+1 = θ1 −
t∑

k=1

ηkH
−1
k mk

= θ1 −
t∑

k=1

ηkH
−1
k gk

= θ1 −
t∑

k=1

ηkH
−1
k ∇f(θk; zik),

5Note that 1
db
Et[‖gt,G̃b

‖22] = 1
db

∑
i∈G̃b

Et[g
2
t,i] ≤ 1

db

∑
i∈G̃b

σ2
i . On the other hand, 1

db
Et[‖gt,G̃b

‖22] ≤
σ2
b . Thus, this bound is tight in the sense that σ2

b ≤ 1
db

∑
i∈G̃b

σ2
i .

37

Under review as a conference paper at ICLR 2020

where ik ∈ [n] is the example index selected at iteration k. Then, we can bound ∆t+1 = ‖θt+1 −
θ′t+1‖2 as follows

E[∆t+1] = E[‖θt+1 − θ′t+1‖2]

= E[‖θ1 − θ′1 −
t∑

k=1

ηkH
−1
k ∇f(θk; zik) +

t∑
k=1

ηkH
′−1
k ∇f(θ′k; z′ik)‖2]

≤ E[‖θ1 − θ′1‖2] +

t∑
k=1

ηkE[‖H−1
k ∇f(θk; zik)−H

′−1
k ∇f(θ′k; z′ik)‖2]

=

t∑
k=1

ηkE[‖H−1
k ∇f(θk; zik)−H

′−1
k ∇f(θ′k; z′ik)‖2]. (39)

Note that zik = z′ik with probability 1−1/n. Then, we can bound each term E[‖H−1
k ∇f(θk; zik)−

H
′−1
k ∇f(θ′k; z′ik)‖2] as follows

E[‖H−1
k ∇f(θk; zik)−H

′−1
k ∇f(θ′k; z′ik)‖2]

≤ 2

n
E[‖H−1

k ∇f(θk; zik)‖2] +

(
1− 1

n

)
E[‖H−1

k ∇f(θk; zik)−H
′−1
k ∇f(θ′k; zik)‖2]

≤ 2

n
E[‖H−1

k ∇f(θk; zik)‖2] +

(
1− 1

n

)
E[‖H−1

k ∇f(θk; zik)−H
′−1
k ∇f(θk; zik)‖2]

+

(
1− 1

n

)
E[‖H

′−1
k ∇f(θk; zik)−H

′−1
k ∇f(θ′k; zik)‖2]. (40)

The second term is bounded as

E[‖H−1
k ∇f(θk; zik)−H

′−1
k ∇f(θk; zik)‖2]

≤ E[‖H−1
k −H

′−1
k ‖2‖∇f(θk; zik)‖2]

≤ γ̃E[‖H−1
k −H

′−1
k ‖2]

= γ̃E

max
b

∣∣∣∣∣∣ 1√
v̂k,b + ε

− 1√
v̂′k,b + ε

∣∣∣∣∣∣
 .

We expand the third term of (40) as

E[‖H
′−1
k ∇f(θk; zik)−H

′−1
k ∇f(θ′k; zik)‖2]

≤ E[‖H
′−1
k ‖2‖∇f(θk; zik)−∇f(θ′k; zik)‖2]

≤ LE[‖H
′−1
k ‖2‖θk − θ′k‖2]

≤ LE

[
1√

minb v̂k,b + ε
‖θk − θ′k‖2

]

= LE

[
1√

minb v̂k,b + ε
∆k

]
.

Substituting the above results into (40) and combining with (39), we obtain

E[∆t+1] ≤ 2

n

t∑
k=1

ηkE[‖H−1
k ∇f(θk; zik)‖2]

+

(
1− 1

n

)
γ̃

t∑
k=1

ηkE

max
b

∣∣∣∣∣∣ 1√
v̂k,b + ε

− 1√
v̂′k,b + ε

∣∣∣∣∣∣


+

(
1− 1

n

)
L

t∑
k=1

ηkE

[
1√

minb v̂k,b + ε
∆k

]
.

38

Under review as a conference paper at ICLR 2020

Note that if wt = ηt/
√
at/At is ”almost” non-increasing w.r.t. another non-increasing sequence

{zt} and positive constant C1 and C2, then w2
t is also ”almost” non-increasing w.r.t. another non-

increasing sequence {z2
t } and positive constant C2

1 and C2
2 . Using Lemma 8 with C = I , we have

t∑
k=1

ηkE[‖H−1
k ∇f(θk; zik)‖2]

≤
√
t

√√√√ t∑
k=1

η2
kE[‖H−1

k ∇f(θk; zik)‖22]

=
√
t

√√√√ t∑
k=1

η2
k

√
Ak
ak

E

[√
ak
Ak
‖H−1

k ∇f(θk; zik)‖22
]

≤
√
t

√√√√C2
2

C2
1

[
w2

1

B∑
b=1

db log

(
σ2
b

ε2
+ 1

)
+ d

t∑
k=1

η2
k

Ak
Ak−1 + a1

]

≤ C2

C1

√√√√[w2
1

B∑
b=1

db log

(
σ2
b

ε2
+ 1

)
+ dω

t∑
k=1

η2
k

]
t.

Then, we get

E[∆t+1] ≤ 2C2

nC1

√√√√[w2
1

B∑
b=1

db log

(
σ2
b

ε2
+ 1

)
+ dω

t∑
k=1

η2
k

]
t

+

(
1− 1

n

)
γ̃

t∑
k=1

ηkE

max
b

∣∣∣∣∣∣ 1√
v̂k,b + ε

− 1√
v̂′k,b + ε

∣∣∣∣∣∣


+

(
1− 1

n

)
L

t∑
k=1

ηkE

[
1√

minb v̂k,b + ε
∆k

]
.

As the bound holds for any S, S′, z, it also holds for its supreme.

39

	Introduction
	Related Work
	Adagrad
	Uniform Stability

	Blockwise Adaptive Descent
	Blockwise vs Coordinate-wise Adaptivity
	Blockwise Adaptive Gradient (BAG)
	Regret Analysis

	Blockwise Adaptive Gradient with Momentum (BAGM)
	Proposed Algorithm
	Convergence Analysis on Nonconvex Problems
	Uniform Stability and Generalization Error

	Experiments
	Illustration of the Regret Analysis Results
	Real-World Data Sets
	CIFAR-10

	ImageNet
	Word-Level Language Modeling

	Conclusion
	Experimental Setup
	Implementation Details
	CIFAR-10
	ImageNet
	Word Language Modeling

	Gradients in Parameter Block
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Theorem 1
	Proof of Theorem 1
	Proof of Corollary 1

	Main Theorem
	Proof of Theorem 2
	Proof of Proposition 3
	Proof of Corollary 2
	Proof of Proposition 4

