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ABSTRACT

We present a novel network pruning algorithm called Dynamic Sparse Training
that can jointly find the optimal network parameters and sparse network struc-
ture in a unified optimization process with trainable pruning thresholds. These
thresholds can have fine-grained layer-wise adjustments dynamically via back-
propagation. We demonstrate that our dynamic sparse training algorithm can eas-
ily train very sparse neural network models with little performance loss using the
same training epochs as dense models. Dynamic Sparse Training achieves prior art
performance compared with other sparse training algorithms on various network
architectures. Additionally, we have several surprising observations that provide
strong evidence to the effectiveness and efficiency of our algorithm. These ob-
servations reveal the underlying problems of traditional three-stage pruning algo-
rithms and present the potential guidance provided by our algorithm to the design
of more compact network architectures.

1 INTRODUCTION

Despite the impressive success that deep neural networks have achieved in a wide range of chal-
lenging tasks, the inference of deep neural network is highly memory-intensive and computation-
intensive due to the over-parameterization of deep neural networks. Network pruning (LeCun et al.
(1990); Han et al. (2015); Molchanov et al. (2017)) has been recognized as an effective approach to
improving the inference efficiency in resource-limited scenarios. Typical pruning methods consist
of dense network training followed with expensive pruning and fine-tuning iterations, where many
non-trivial hyperparameters need to be set properly.

In terms of the granularity of sparsity, current network pruning methods can be divided into unified
(Li et al. (2016); He et al. (2017); Luo et al. (2017)) or dynamic strategy (Suau et al. (2018); Liu et al.
(2018a); Molchanov et al. (2016); Huang & Wang (2018)). The layer-wise percentage of parameter
pruned can either be unified or dynamically adjusted by the pruning algorithm. For example, if we
want to prune x% of overall parameters in a neural network, the least important x% parameters in
each layer will be pruned with a local pruning threshold for the unified strategy. For the dynamic
strategy, a single global pruning threshold (Molchanov et al. (2019); Lin et al. (2018)) or layer-wise
greedy algorithms (Luo et al. (2017); He et al. (2017)) are applied to achieve different layer-wise
sparsity.

However, due to the high complexity of deep neural networks, different layers may carry different
degrees of redundancy and relative importance. Simply pruning the same percentage of parameter
in each layer may significantly damage the model capacity, which leads to performance loss. For
example, the last layer of a deep neural network can directly affect the output of the network so
usually it should be pruned more carefully with less percentage of parameters pruned. Thus, the
dynamic pruning strategy tends to have advantages over the unified strategy. Despite the benefit
of dynamic pruning, it is quite challenging to develop dynamic pruning algorithms. Using a single
global pruning threshold is exceedingly difficult to assess the local parameter importance of individ-
ual layer, since each layer has a significantly different amount of parameter and contribution to the
model performance. This makes pruning algorithms based on a single global threshold non-robust.
The problem of layer-by-layer greedy pruning methods is that the unimportant neurons in an early
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layer can have a significant influence on the responses in later layers (Yu et al., 2018), which may
result in propagation and amplification of the reconstruction error.

Meanwhile, most of the existing pruning algorithms conduct ”hard” pruning that irreversibly re-
moves the network connectivity. If a network connection is pruned, the corresponding network
parameter will be set to zero and will not be updated via back-propagation in the fine-tuning pro-
cess afterward. However, due to the extremely complicated and convoluted interconnections among
the huge amount of neurons in modern neural networks, the relative importance of connection may
change dramatically in the pruning process. Therefore, there are two main problems of ”hard”
pruning algorithm. Firstly, possible irretrievable network damages may be incurred, which leads to
failure in finding the optimal sparse structure. Secondly, directly setting the non-zero parameter to
zero has unknown side effects. He et al. (2018) propose ”soft” pruning algorithm that allows the
pruned connection to be updated in later back-propagation, which only solves the first problem.

In this work, we develop a novel dynamic pruning algorithm called dynamic sparse training that
achieves layer-wise dynamic pruning and solves the two problems of ”hard” pruning. The current
unimportant parameters are masked instead of pruned by directly setting to zero, thus the historical
information about the parameter importance is preserved and the masked parameter can be easily un-
masked. We demonstrate that it is the collective effect of layer-wise dynamic pruning thresholds and
ability to recover network connectivity that helps to find the optimal sparse structure. The proposed
algorithm finds the sparse network during the training process directly from a randomly initialized
network without the burdensome pruning and fine-tuning iterations. Our proposed algorithm has
following promising properties:

Simplicity. The pruning process and the training process are combined in the proposed algorithm
hence the expensive pruning and fine-tuning iterations are circumvented. Meanwhile, our method
can control the final percentage of parameter remaining with a single hyperparameter. Thus it is
easy to obtain well-performed model with different sparse levels.
Better performance. The layer-wise sparsity and pruning thresholds can be adjusted dynamically
according to a predefined loss via back-propagation. Together with the ability to recover pruned
connections, our method can find better sparse structure than other existing sparse learning methods.
Versatility. Since our method has no assumptions on the network architecture, it can be applied
to various kinds of neural network layers including fully connected, convolutional and recurrent
networks.

We evaluate our algorithm on MNIST and CIFAR-10 with various modern network architectures.
On all the tested network architectures, our method can train highly sparse models directly with
little performance loss compared with dense counterparts. Furthermore, we analyze two surprising
observations about the change of layer-wise parameter sparsity during the dynamic sparse training
process and the generated sparse pattern, which provides strong evidence to the effectiveness and
efficiency of the proposed method.

2 RELATED WORK

Traditional Pruning Methods: LeCun et al. (1990) presented the early work about network pruning
using second-order derivatives as the pruning criterion. The effective and popular training, pruning
and fine-tuning pipeline was proposed by Han et al. (2015), which used the parameter magnitude
as the pruning criterion. Narang et al. (2017) extended this pipeline to prune the recurrent neural
networks with a complicated pruning strategy. Molchanov et al. (2016) introduced first-order Taylor
term as the pruning criterion and conduct global pruning. Li et al. (2016) used `1 regularization to
force the unimportant parameters to zero.

Sparse Neural Network Training: Recently, some works attempt to find the sparse network di-
rectly during the training process without the pruning and fine-tuning stage. Inspired by the growth
and extinction of neural cell in biological neural networks, Mocanu et al. (2018) proposed a prune-
regrowth procedure called Sparse Evolutionary Training (SET) that allows the pruned neurons and
connections to revive randomly. However, the sparsity level need to be set manually and the random
recover of network connections may provoke unexpected effects to the network. DEEP-R proposed
by Bellec et al. (2017) used Bayesian sampling to decide the pruning and regrowth configuration,
which is computationally expensive. Dynamic Sparse Reparameterization (Mostafa & Wang, 2019)
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used dynamic parameter reallocation to �nd the sparse structure. However, the pruning threshold
can only get halved if the percentage of parameter pruned is too high or get doubled if that percent-
age is too low for a certain layer. This coarse-grained adjustment of pruning threshold signi�cantly
limits the ability of Dynamic Sparse Reparameterization. Additionally, a prede�ned pruning ra-
tio and fractional tolerance are required. Dynamic Network Surgery (Guo et al., 2016) proposed
pruning and splicing procedure that can prune or recover network connections according to the pa-
rameter magnitude but it requires manually determined thresholds that are �xed during the sparse
learning process. This layer-wise thresholds are extremely hard to manually set. Meanwhile, Fixing
the thresholds makes it hard to adapt to the rapid change of parameter importance. Dettmers &
Zettlemoyer (2019) proposed sparse momentum that used the exponentially smoothed gradients as
the criterion for pruning and regrowth. A �xed percentage of parameters are pruned at each prun-
ing step. The pruning ratio and momentum scaling rate need to be searched from a relatively high
parameter space.

Instead, our method can dynamically and automatically perform parameter pruning for each layer
during the training process without pre-de�ned pruning percentages. Meanwhile, the pruning thresh-
olds will have �ne-grained adjustments dynamically via back-propagation. Consequently, the pro-
cess of �nding optimal sparse network structure is naturally embedded into the training process,
which enables our method to get well-performed models with high sparsity using the same epochs
as training the dense models. Additionally, the pattern of layer-wise sparsity in our method reveals
useful information to guide the design of compact network architectures.

3 DYNAMIC SPARSETRAINING

3.1 NOTATION

Deep neural network consists of a set of parametersf W i : 1 � i � Cg, whereW i denotes the
parameter matrix at layeri andC denotes the number of layers in this network. For each fully
connected layer and recurrent layer, the corresponding parameter isW i 2 Rco � ci , whereco is
the output dimension andci is the input dimension. For each convolutional layer, there exists a
convolution kernelK i 2 Rco � ci � w � h , whereco is the number of output channels,ci is the number
of input channels,w andh are the kernel sizes. Each �lter in a convolution kernelK i can be �attened
to a vector. Therefore, a corresponding parameter matrixW i 2 Rco � z can be derived from each
convolution kernelK i 2 Rco � ci � w � h , wherez = ci � w � h. Actually, the pruning process is
equivalent to �nding a binary parameter maskM i for each parameter matrixW i . Thus, a set of
binary parameter masksf M i : 1 � i � Cg will be found by network pruning. Each element for
these parameter masksM i is either1 or 0.

3.2 DYNAMIC PARAMETER MASK

Instead of pruning a pre-trained model, we de�ne and store a binary parameter maskM for each pa-
rameter matrixW . This binary parameter mask preserves the information about the sparse structure,
which enables joint optimization of the network parameter and sparse network structure. Given the
parameter setf W 1; W 2; � � � ; W C g, we will dynamically �nd the corresponding parameter masks
f M 1; M 2; � � � ; M C g. To achieve this, for each parameter matrixW i 2 Rco � ci , a trainable pruning
threshold is de�ned. Then we utilize a unit step functionS(x) as shown in Figure 2(a) to get the
masks with the absolute value of parameter and corresponding threshold. For each parameter matrix
W 2 Rco � ci , there are three different choices for the threshold with �exible granularity, namely a
scalar thresholdt, a vector thresholdt 2 Rco and a matrix thresholdT 2 Rco � ci as present below.

Q ij = F (W ij ) =

8
<

:

jW ij j � t for scalar thresholdt
jW ij j � t i for vector thresholdt
jW ij j � Tij for matrix thresholdT

(1)

M = S(Q) (2)

The unit step functionS(x) is applied element-wise. To balance the overhead and the bene�t in-
volved by the additional trainable threshold, the vector thresholdt is chosen for fully connected,
convolutional and recurrent layers. The detailed analysis is present in Appendix A.2
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3.3 TRAINABLE MASKED LAYERS

With this trainable threshold, the trainable masked fully connected, convolutional and recurrent layer
are introduced as shown in Figure 1, whereX is the input of current layer andY is the output. For
fully connected and recurrent layers, the masked parameterW � M will be used in the batched
matrix multiplication, where� denote Hadamard product operator. For convolutional layers, each
convolution kernelK 2 Rco � ci � w � h can be �atten to getW 2 Rco � z . Therefore, we can get
the masked kernel using similar process as fully connected layers and use this masked kernel for
subsequent convolution operation.

Figure 1: Detailed structure of trainable masked layer

Figure 2: The unit step functionS(x) and its derivative approximations.

Since we want to make the thresholdt trainable via back-propagation, the derivative ofS(x) is
required. However its derivative is an impulse function whose value is zero almost everywhere
and in�nite at zero, as shown in Figure 2(b). Thus it cannot be applied in back-propagation and
parameter updating directly. Some previous works (Hubara et al. (2016); Rastegari et al. (2016);
Zhou et al. (2016)) demonstrated that by providing a derivative estimation, it is possible to train
networks containing such binarization function. A clip function called straight through estimator
(STE) (Bengio et al., 2013) was employed in these works and is illustrated in Figure 2(c).

Furthermore, Xu & Cheung (2019) discussed the derivative estimation in balance of tight approxi-
mation and smooth back-propagation. We adopt this long-tailed higher-order estimatorH (x) in our
training, shown in Figure 2(d). It has a wide active range between[� 1; 1] with non-zero gradient
to avoid gradient vanishing during training. On the other hand, the gradient value near zero is a
piecewise polynomial function giving tighter approximation than STE. The estimator is represented
as

d
dx

S(x) � H (x) =

8
<

:

2 � 4jxj; � 0:4 � x � 0:4
0:4; 0:4 < jxj � 1
0; otherwise

(3)

With this derivative estimator, the threshold can be trained via back-propagation. Therefore, the
percentage of parameter pruned in each layer is adjusted dynamically according to the training loss.
The underlying parameters can be preserved and the masked parameters are still able to be updated
during the back-propagation, which enables previously pruned network connection to be recovered.
As demonstrated in Section 4.2, previously unimportant parameter may turn to be important dur-
ing the training process, this ability to splice the pruned connections is crucial to �nd the optimal
pruning masks. Meanwhile, in trainable masked layers, the network parameterW can receive two
branches of gradient, namely the performance gradient for better model performance and the struc-
ture gradient for better sparse structure, which helps to properly update the network parameter under
sparse network connectivity.
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3.4 SPARSE REGULARIZATION TERM

Now that the threshold of each layer is trainable, higher percentage of pruned parameter is desired.
To get the parameter masksM with high sparsity, higher pruning thresholds are needed. To achieve
this, we add a sparse regularization termL s to the training loss that penalizes the low threshold
value. For a trainable masked layer with thresholdt 2 Rco , the corresponding regularization term
is R =

P co
i =1 exp(� t i ). Thus, the sparse regularization termL s for the a deep neural network with

C trainable masked layers is:

L s =
CX

i =1

Ri (4)

We useexp(� x) as the regularization function since it is asymptotical to zero asx increases. Con-
sequently, it penalizes low thresholds without encouraging them to become extremely large.

3.5 DYNAMIC SPARSE TRAINING

The traditional fully connected, convolutional and recurrent layers can be replaced with the
corresponding trainable masked layers in deep neural networks. Then we can train a sparse
neural network directly with back-propagation algorithm given the training datasetD =
f (x 1; y1); (x 2; y2); � � � ; (x N ; yN )g, the network parameterW and the layer-wise thresholdt as
follows:

J (W ; t ) =
1
N

(
NX

i =1

L ((x i ; y i ); W ; t )) + �L s (5)

W � ; t � = arg min
W ;t

J (W ; t ) (6)

whereL (�) is the loss function, e.g. cross-entropy loss for classi�cation and� is the scaling co-
ef�cient for the sparse regularization term, which is able to control the percentage of parameter
remaining. The sparse regularization termL s tends to increase the thresholdt for each layer thus
getting higher model sparsity. However, higher sparsity tends to increase the loss function, which re-
versely tends to reduce the threshold and level of sparsity. Consequently, the training process of the
thresholds can be regarded as a contest between the sparse regularization term and the loss function
in the sense of game theory. Therefore, our method is able to dynamically �nd the sparse structure
that properly balances the model sparsity and performance.

4 EXPERIMENTS

The proposed dynamic sparse training method is evaluated on MNIST and CIFAR-10 with various
modern network architectures. To quantify the pruning performance, the layer remaining ratio is
de�ned to bekl = n=m, wheren is the number of element equal to1 in the maskM andm is
the total number of element inM . The model remaining ratiokm is the overall ratio of non-zero
element in the parameter masks for all trainable masked layers. On all the tested architectures, our
method yields highly sparse models with minimal accuracy drop. Meanwhile, despite the simplicity
of our method, the dynamic change of layer remaining ratios during the training procedure and
the consistent sparse pattern under different model remaining ratios provide strong evidence to the
effectiveness of our method. For all trainable masked layers, the trainable thresholds are initialized
to zero since it is assumed that originally the network is dense. The detailed experimental setup is
present in Appendix A.1.

4.1 SPARSE LEARNING ON VARIOUS MODERN ARCHITECTURES

Our method can be naturally and generally applied to almost all modern deep learning architectures
that consist of fully connected, convolutional and recurrent layers. The proposed method is tested on
popular modern networks with the same training epoch and hyperparameter con�guration as training
the dense baselines despite the additional� . Table 1 presents the performance of our method on
various network architectures. The model remaining percentage is de�ned askm � 100%. From
Table 1 we can conclude that on all these tested architectures, the proposed approach is able to
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prune considerably high portion of model parameter (> 95%) without signi�cant performance loss
(< 1%). For architectures like Lenet-5-Caffe and LSTM, the sparse models can achieve almost the
same accuracy as dense baselines with less than 2% parameter remained.

Dataset Architecture
Model Remaining

Percentage (%) Sparse Accuracy (%) Dense Accuracy (%)

MNIST

Lenet-300-100 2.48� 0.21 97.69� 0.14 98.16� 0.06
Lenet-5-Caffe 1.64� 0.13 99.11� 0.07 99.18� 0.05
LSTM-a 1.54� 0.04 98.56� 0.06 98.64� 0.12
LSTM-b 0.74� 0.02 98.62� 0.12 98.87� 0.07

CIFAR-10

VGG-16 3.76� 0.53 93.02� 0.37 93.75� 0.23
WideResNet-16-8 4.64� 0.15 94.73� 0.11 95.18� 0.06
WideResNet-16-10 4.73� 0.21 94.79� 0.16 95.37� 0.13
WideResNet-28-8 4.55� 0.16 94.80� 0.09 95.65� 0.11

Table 1: The level of remaining percentage achieved without obvious performance drop on various modern
architectures. The result is averaged over 5 runs. Sparse and dense accuracy are the test accuracy on corre-
sponding sparse and dense models. All LSTM models have two LSTM layers with hidden size 128 for LSTM-a
and 256 for LSTM-b

Architecture Method
Model Remaining

Percentage (%)
Accuracy

(Dense! Sparse %)
Accuracy

Reduction (%)

VGG-16 Sparse Momentum 5 93.51! 93.00 -0.51
Ours 3.76 93.75! 93.02 -0.73

WideResNet-16-8

DEEP-R 5 95.21! 93.16 -2.05
SET 5 95.21! 93.98 -1.23
DSR 5 95.21! 94.68 -0.53
Sparse Momentum 5 95.43! 94.38 -1.05
Ours 4.67 95.18! 94.73 -0.45

Table 2: Comparison with other sparse training methods on CIFAR-10.

To further evaluate the proposed approach, we compare our method with other sparse learning algo-
rithms on CIFAR-10 as presented in Table 2. The state-of-the-art algorithms, DEEP-R (Bellec et al.,
2017), SET (Mocanu et al., 2018), DSR (Mostafa & Wang, 2019), and Sparse momentum (Dettmers
& Zettlemoyer, 2019), are selected for comparsion. Since different methods have different train-
ing hyperparameter con�gurations, we list the model remaining percentage, accuracy change from
dense to sparse model and the corresponding accuracy reduction. On VGG-16, despite the relatively
high accuracy reduction compared with Sparse Momentum, our method achieves better test accuracy
with 1:24% more parameter pruned. On WideResNet-16-8 (Zagoruyko & Komodakis, 2016), our
method realizes the best results on all the criterion. Besides the ability to get better sparse models
compared to other methods, we present two interesting observations about the layer remaining ratio
that provide strong evidence to the ef�ciency and effectiveness of our algorithm.

4.2 DYNAMIC AND ABRUPT CHANGE OF LAYER REMAINING RATIO

For multilayer neural networks, the parameters in different layers will have different relative impor-
tance. For example, Lenet-300-100 has three fully connected layers. Changing the parameter of
the last layer (layer 3) can directly affect the model output. Thus, the parameter of layer 3 should
be pruned more carefully. The input layer (layer 1) has the largest amount of parameters and takes
the raw image as input. Since the images in MNIST dataset consist of many unchanged pixels (the
background) that have no contribution to the classi�cation process, it is expected that the parameters
that take these invariant background as input can be pruned safely. Therefore, the remaining ratio
should be the highest for layer 3 and the lowest for layer 1 if a Lenet-300-100 model is pruned.
To check the pruning effect of our method on these three layers, Lenet-300-100 model is sparsely
trained by the default hyperparameters setting present in Appendix A.1. The pruning trends of these
three layers during dynamic sparse training is present in Figure 3(a). During the whole sparse train-
ing process, the remaining ratios of layer 1 and layer 2 keep decreasing and the remaining ratio of
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layer 3 maintains to be1. The remaining ratio of layer 1 is the lowest and decrease to less that 10%
quickly, which is consistent with the expectation.

Furthermore, as presented in Figure 3(b), instead of decreasing by manually set �xed step size as
in traditional pruning methods, the proposed method makes the model remaining ratio decrease
smoothly and continuously during training. In the meantime, the test accuracy of the sparse model
is almost the same as original accuracy on dense model in the whole training process. This indicates
that our method can properly balance the model remaining ratio and the model performance by
continuous �ne-grained parameter pruning throughout the entire sparse training procedure. During
dynamic sparse training of Lenet-300-100, the model remaining percentage continues to decrease
to 7:87% and the best sparse accuracy achieved is98:12%, which is almost the same compared
with 98:16%for the dense counterpart. Similar training tendency can be observed in other network
architectures with various� . The training curve of VGG-16 on CIFAR-10 is shown in Figure 4(b),
where the best sparse test accuracy (93:93%) is even higher than test accuracy (93:75%) of dense
baseline with only8:82%parameters remained in the sparse model. The detailed results for other
architectures are present in Appendix A.3.

(a) Remaining ratio of each layer (b) Model remaining ratio and accuracy

Figure 3: Change of layer remaining ratio for LeNet-300-100 with� = 0 :0005. The result is averaged over
10 runs with different random seeds. The difference within this 10 runs is quite limited, which indicates the
robustness of our method

Figure 4(a) shows the change of the remaining ratios for the �rst four convolutional layers and last
two fully connected layers of VGG-16 during dynamic sparse training. On this �gure there are some
interesting observations. Overall, the remaining ratios tend to decrease for most layers. However
instead of decreasing monotonically, the remaining ratios of all layers �uctuate dynamically during
the sparse training, which is in line with expectations since we assume that the relative parameter
importance will change actively during sparse training process.

Similar to the layer 3 of Lenet-300-100, the second fully connected layer (FC 2) of VGG-16 is the
output layer, hence its remaining ratio is expected to be relatively high. The result in Figure 4(a) also
con�rms this assumption. But a surprising observation is that the remaining ratio of FC 2 is quite
low at around 0.1 for the �rst 80 epochs and increases almost immediately just after the 80 epoch.

We suppose that this is caused by the decay of learning rate from 0.1 to 0.01 at 80 epoch. Before the
learning rate decay, the layers preceding to the output layer fail to extract enough useful features for
classi�cation due to the relatively coarse-grained parameter adjustment incurred by high learning
rate. This means that the corresponding parameters that take those useless features as input can
be pruned, which leads to the low remaining ratio of the output layer. The decayed learning rate
enables �ne-grained parameter update that makes the neural network model converge to the local
minimal quickly (Kawaguchi, 2016), where most of the features extracted by the preceding layers
turn to be helpful for the classi�cation. This makes previously unimportant network connections in
the output layer become important thus the remaining ratio of this layer get abrupt increase. There
are two facts that support our assumptions for this phenomenon. Firstly, the test accuracy �uctuates
below 90% for many epochs before the learning rate decay. However, it increases suddenly just after
the learning rate decay and keeps almost the same afterward. Secondly, the remaining ratios of the
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preceding convolutional layers are almost unchanged after the remaining ratio of the output layer
increases up to 1, which means that the remaining parameters in these layers are necessary to �nd
the critical features.

Similar abrupt changes of the layer remaining ratios are observed in almost all the complex modern
network architectures as presented in Appendix A.3 This surprising fact indicates that the importance
of parameter will be affected by many factors and may change dramatically. Consequently, the
ability to detect the abrupt parameter importance change and swiftly recover network connectivity
is of high signi�cance. Our method can properly handle this abrupt change with the timely gradient
feedback from the training loss and �ne-grained adjustments of layer-wise pruning thresholds.

(a) Remaining ratio of each layer (b) Model remaining ratio and accuracy

Figure 4: The change of layer remaining ratios and for VGG-16 with� = 5 � 10� 6 is present in (a). The
change of corresponding sparse accuracy during the dynamic sparse training and dense accuracy during normal
training is present in (b).

4.3 INFORMATION REVEALED FROM CONSISTENT SPARSE PATTERN

Many works have tried to design more compact model with mimic performance to over-
parameterized models (He et al., 2016; Howard et al., 2017; Zhang et al., 2018). Network archi-
tecture search has been viewed as the future paradigm of deep neural network design. However, it
is extremely dif�cult to determine whether the designed layer consists of redundancy. Therefore,
typical network architecture search methods rely on evolutionary algorithms (Liu et al., 2017) or
reinforcement learning (Baker et al., 2016), which is extremely time-consuming and computation-
ally expensive. Network pruning can actually be reviewed as a kind of architecture search process
(Liu et al., 2018b; Frankle & Carbin, 2018) thus the sparse structure revealed from network prun-
ing may provide some guidance to the network architecture design. However, The layer-wise equal
remaining ratio generated by the uni�ed pruning strategy fails to indicate the different degree of
redundancy for each layer. And the global pruning algorithm is non-robust, which fails to offer
consistent guidance.

Here we demonstrate another interesting observation called consistent sparse pattern during dynamic
sparse training that provides useful information about the redundancy of individual layers as the
guidance for compact network architecture design. For the same architecture trained by our method
with various� values, the relative relationship of sparsity among different layers keeps consistent.
The sparse patterns of VGG-16 on CIFAR-10 are present in Figure 5 with three different� .

In all con�gurations, the last four convolutional layers (Conv 10-13) and the �rst fully connected
layers (FC 1) are highly sparse. Meanwhile, some layers (Conv 3-7, FC 2) keep a high amount of
parameters after pruning. This consistent sparse pattern indicates that these heavily pruned layers
consist of high redundancy and a large number of parameters can be reduced in these layers to
get more compact models. This phenomenon also exists in other network architectures, which is
present in details in the appendix A.4. Therefore, with this consistent sparse pattern, after designing
a new network architecture, our method can be applied to get useful information about the layer-wise
redundancy in this new architecture.
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(a) � = 10 � 5 , 6:66%remaining (b) � = 10 � 6 , 15:47%remaining (c) � = 10 � 7 , 35:35%remaining

Figure 5: The sparse pattern and percentage of parameter remaining for different choices of� on VGG-16

4.4 MODEL PERFORMANCE ON VARIOUS REMAINING RATIO

By varying the scaling coef�cient� for sparse regularization term, we can control the model re-
maining ratios of sparse models generated by dynamic sparse training. The relationships between
� , model remaining ratio and sparse model accuracy of VGG, WideResNet-16-8 and WideResNet-
28-8 are presented in Figure 6. As demonstrated, the model remaining ratio keeps decreasing with
increasing� . With a moderate� value, it is easy to obtain a sparse model with comparable or even
slightly higher accuracy than the dense counterpart. On the other side, if the� value is too large that
makes the model remaining percentage less than 5%, there is a noticeable accuracy drop. Interest-
ingly, this accuracy drop usually emerges together with the break of consistent sparse pattern, which
means that large� forces the algorithm to mask the critical parameters, thus degrades the model
performance. As demonstrated in Figure 6, the choice of� ranges from10� 9 to 10� 4. Depending
on the application scenarios, we can either get models with similar or better performance as dense
counterparts by a relatively small� or get a highly sparse model by a larger� .

(a) VGG-16 (b) WideResNet-16-8 (c) WideResNet-28-8

Figure 6: Test accuracy of sparse model on CIFAR-10 and model remaining ratio for different�

5 CONCLUSION

We propose Dynamic Sparse Training (DST) with trainable masked layers that enables direct train-
ing of sparse models with trainable pruning thresholds. DST can be easily applied to various types
of neural network layers and architectures to get highly sparse or better performed model than dense
counterparts. With the ability to reveal consistent sparse pattern, our method can also provide useful
guidance to the design of more compact network.
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A APPENDIX

A.1 EXPERIMENTAL SETUP

MNIST: LeNet-300-100 and LeNet-5-Caffe are trained using SGD with momentum of 0.9 and batch
size of 64 with 20 training epochs. The learning rate is 0.01 without learning rate decay. Meanwhile,
the default scaling factor α for sparse regularization term is 0.0005 for both network architectures.
LSTM models are trained using Adam optimization scheme (Kingma & Ba, 2014) with default
Adam hyperparameter setting for 20 epochs. The batch size is 100 and the default learning rate is
0.001. Meanwhile, the default scaling factor α for sparse regularization term is 0.001.

CIFAR-10 Models on CIFAR-10 are trained using SGD with momentum 0.9 and batch size of 64
with 160 training epochs. The initial learning rate is 0.1 and decayed by 0.1 at 80 and 120 epoch.
The default scaling factor α for sparse regularization term is 5� 10�6 for all tested architectures.
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