
Under review as a conference paper at ICLR 2020

LONG-TERM PLANNING, SHORT-TERM ADJUSTMENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep reinforcement learning (RL) algorithms can learn complex policies to op-
timize agent operation over time. RL algorithms have shown promising results
in solving complicated problems in recent years. However, their application on
real-world physical systems remains limited. Despite the advancements in RL
algorithms, the industries often prefer traditional control strategies. Traditional
methods are simple, computationally efficient and easy to adjust. In this paper,
we propose a new Q-learning algorithm for continuous action space, which can
bridge the control and RL algorithms and bring us the best of both worlds. Our
method can learn complex policies to achieve long-term goals and at the same time
it can be easily adjusted to address short-term requirements without retraining.
We achieve this by modeling both short-term and long-term prediction models.
The short-term prediction model represents the estimation of the system dynamic
while the long-term prediction model represents the Q-value. The case studies
demonstrate that our proposed method can achieve short-term and long-term goals
without complex reward functions.

1 INTRODUCTION

Optimal control methodologies use system dynamic equations to design actions that minimize de-
sired cost functions. A cost function can be designed to track a trajectory, reach a goal, or avoid
obstacles. It is also possible to design a cost function to achieve a combination of goals. Model
Predictive Control (MPC) is a common optimal control technique and has been applied to many
industrial applications such as pressure control and temperature control in chemical processes (7).
The traditional control solutions are not adequate to address the challenges raised with the evolution
of industrial systems. Recently, deep reinforcement learning (RL) has shown promising results in
solving complex problems. For example, it has generated superhuman performance in chess and
shogi (15). The following advantages make deep RL a strong candidate to overcome traditional
control limitations. First, deep RL has an advantage in solving complex problems, especially when
the consequences of an action are not immediately obvious. Moreover, it can learn an optimal solu-
tion without requiring detailed knowledge of the systems or their engineering designs. Finally, deep
RL is not limited to time-series sensors and can use new sensors such as vision for a better control.

Target (𝑥𝑑, 𝑦𝑑)

𝜔𝑝

𝐹

Trolley
(𝑥𝑡, 𝑣𝑡)

𝜙𝑝

Payload angle

Payload position
(𝑥𝑝, 𝑦𝑝)

Payload angular velocity

Figure 1: Crane system. The long-term goal is to move the payload to the target location, (xd, yd) as soon as
possible. The short-term goal is to have zero sway at the destination, !p = 0.

However, deep RL has not been applied to address industrial problems in a meaningful way. There
are several key issues that limit the application of deep RL to real-world problems. Deep RL al-
gorithms typically require many samples during training (sample complexity). Sample complexity

1

Under review as a conference paper at ICLR 2020

leads to high computational costs. A high computational cost can be justified for industries as a one-
time charge. However, oftentimes small changes in the system goal, such as changing the desired
temperature in a chemical reactor, or a new constraint such as a maximum allowable temperature in
the reactor, require retraining the model. Moreover, industrial systems often have several short-term
and long-term objectives. For example, consider the crane system shown in Figure 1. The long-term
goal is to convey the payload to the target location as soon as possible. However, when the payload
gets close to the target, it must have minimum sway for the safety of the operators. Designing a re-
ward function that can capture these short-term and long-term goals concurrently can be challenging
or even infeasible.

A class of short-term objectives related to safe exploration during RL training have been studied
recently. Gu et al (8) presented an application of deep RL for robotic manipulation control. To ensure
safe exploration, they set maximum limits for the joint positions, and joint velocities. Moreover,
they set a sphere boundary for the end-effector position and when the boundaries were about to be
violated, they used correction velocity to force the end-effector position back to the center of the
sphere. Dalal et al (5) formulated the safe exploration as an optimization problem. They proposed
to add a safety layer that modifies the action at each time step. Toward this end, they learn the
constraint function using a linear model and use this model to find the minimal change to the action
such that the safety constraints are met at each time step. To the best of our knowledge, there is no
study addressing short-term objectives during application.

In this paper, we present a Locally Linear Q-Learning (LLQL) algorithm for continuous action
space. The LLQL includes a short-term prediction model, a long-term prediction model, and a
controller. The controller uses the short-term prediction model and the long-term prediction model
to generate actions that achieve short-term and long-term goals simultaneously. It adopts a policy
that maximizes Q-value while achieving short-term goals. The LLQL algorithm has the following
advantages:

• It does not require designing sensitive reward functions for achieving short-term and long-
term goals concurrently.

• It shows better performance in achieving short-term and long-term goals compared to the
traditional reward modification methods.

• It is possible to modify the short-term goals without time-consuming retraining.

The remainder of this paper is organized as follows. Section 2 represents the background in dynamic
systems and RL. Section 3 represents the LLQL algorithm. Section 4 presents our methodology to
achieve short-term and long-term goals using LLQL. Section 5 presents our experimental results.
Section 6 discusses the related work. Section 7 presents the conclusions of the paper. Section 8
presents additional experiments for those interested.

2 BACKGROUND AND DEFINITIONS

In this section, we review the backgrounds in dynamic systems and reinforcement learning.

2.1 DYNAMIC SYSTEMS

A continuous-time dynamic system can be represented as:
dx(t)

dt
= f(x(t), u(t), t; p), (1)

where given the system parameters, p, f maps the state variables, x 2 X , and actions, u 2 U ,
to the state derivative, dx

dt at time t. In state space control, the goal is to design a control policy,
⇡control(u(t)|x(t)), that generates proper actions so as the state variables follow the given desired
trajectory, xd(t). It is challenging to design a control policy for a nonlinear complex system repre-
sented in equation (1).

The control problem becomes much easier to address when this system is linear with respect to the
input (4). We can present these systems as:

dx(t)

dt
= f(x(t)) + g(x(t))u(t). (2)

2

Under review as a conference paper at ICLR 2020

Since measurements are typically sampled in discrete times, we derive a discrete time version of
linear system (2). Using a first-order approximation:

dx(tk)

dt
=

x(tk+1)� x(tk)

tk+1 � tk
, (3)

where tk represents time at sample point k. In this paper, we assume the sampling rate is constant;
� = tk+1 � tk. Using (2) and (3), we have:

x(tk+1)� x(tk) = �(f(x(tk)) + g(x(tk))u(tk)). (4)
For brevity, we present tk by k, f(x(tk)) by f(xk), and g(x(tk)) by g(xk) in the remainder of the
paper. Therefore, we can represent a dynamic system as:

xk+1 = xk +�(f(xk) + g(xk)uk). (5)

2.2 REINFORCEMENT LEARNING

The goal of RL is to learn a policy, ⇡RL(uk|xk), that generates a set of actions, u 2 U , that maximize
the expected sum of rewards in the environment, En. Consider:

Rk =
TX

i=k

�r(xi, ui), (6)

where � < 1 is the discount factor, r is the reward function and T represents the end time and can
be set to T = 1. The goal is to learn ⇡RL for environment, En, such that:

max(R = Eri�1,xi�1⇠En,ui�1⇠⇡RL [R1]). (7)

Unlike control algorithms, model-free reinforcement learning algorithms assume the system dy-
namic is unknown. Q-function, Q⇡(xk, uk) is defined as the expected return at state xk when we
take action uk and adopt policy ⇡ afterward:

Q⇡(xk, uk) = Eri�k,xi�k⇠En,ui�k⇠⇡[Rk|xk, uk]). (8)
Q-learning algorithms (16) are among the most common model-free RL methods for discrete action
space problems. These algorithms use the Bellman recursive equation to model Q-function:

Qµ(xk, uk) =

Eri�k,xi>k⇠En [r(xk, uk) + �Qµ(xk+1, µ(xk+1))]),
(9)

where µ represents a greedy deterministic policy that selects the action which maximizes Q-value at
each step:

µ(xk) = argmaxuQ(xk, uk). (10)

Q-learning algorithms learn the parameters of the function approximator, ✓Q, by minimizing the
Bellman error:

min(L(✓Q) = Erk,xk⇠En,uk⇠� [(Q(xk, uk|✓Q)� yk)
2]),

yk = r(xk, uk) + �Q(xk+1, µ(xk+1)),
(11)

where yk is the fixed target Q-function, and � represents the exploration policy.

For continuous action domain problems, it is not trivial to solve equation (10) at each time step.
Finding an action to maximize Q which can be a complex nonlinear function is computationally
expensive or even infeasible. To address this problem, Lillicrap et al (12) proposed the Deep Deter-
ministic Policy Gradient (DDPG) algorithm, which learns two networks simultaneously. The critic
network learns Q-function by minimizing the Bellman error, and the actor network learns parame-
ters of the policy to maximize the estimated value of Q-function. Gu et al (9) proposed Normalized
Advantage Function (NAF) Q-learning which formulates the Q-function as the sum of the value
function, V (x), and the advantage function, A(x, u).

Q(x, u|✓Q) = V (x|✓V) +A(x, u|✓A), (12)
where

A(x, u|✓A) = �1

2
(u� µ(x|✓u))TP (x|✓P)(u� µ(x|✓u)). (13)

P (x|✓P) = L(x|✓P)L(x|✓P)T , where L(x|✓P) is a lower-triangular matrix. The value function is
not a function of action, u. Therefore, the action which maximizes advantage function, A, maxi-
mizes the Q function. P (x|✓P) is a positive-definite matrix, and therefore, the action that maximizes
the advantage function and the Q-function is given by µ(x|✓u).

3

Under review as a conference paper at ICLR 2020

3 LOCALLY LINEAR Q-LEARNING

ℎ Network

𝑑 Network

𝑓(𝑥𝑘|𝜃𝑓)
Networks

𝑓𝑘

𝑑𝑘

ℎ𝑘

𝑔 𝑥𝑘 𝜃𝑔
Networks 𝑔𝑘

𝑥𝑘

𝑥𝑘+1ො𝑥 𝑘+1 = 𝑥𝑘 + Δ(𝑓𝑘 + 𝑔𝑘𝑢𝑘)

Controller

Advantage
function

𝑉 Network 𝑉
Q function

Loss
function

𝐿1

Target
value

function

𝑟𝑘

𝑢𝑘

Green boxes: inputs
Blue boxes: short-term network
Orange boxes: long-term network

Short-term Network

Long-term Network

Loss
function

𝐿2

Figure 2: Learning the LLQL Network Parameters.

In this section, we propose the LLQL algorithm, which like (12) and (9) can handle continuous
action space. Our approach learns short-term and long-term prediction models. Using the long-term
and short-term models, a controller generates actions that guide the system toward its short-term and
long-term goals. Figure 2 shows our proposed structure to learn the parameters of the short-term
and long-term prediction models.

Short-term prediction: consider the nonlinear system presented in equation (5). In this work, we
use deep neural networks to estimate system functions, f(xk), and g(xk) at each operating point.
Substituting the network estimations for these functions in equation (5), we can predict the next state
as:

x̂k+1 = xk +�(f(xk|✓f) + g(xk|✓g)uk), (14)

where x̂k+1 represents our estimation of the next step, and ✓f and ✓g are the network parameters. �
is a constant hyper parameter. In dynamic systems, the difference between two consecutive states,
xk+1 � xk, is typically very small. Considering a small � leads to reasonable f and g values and,
therefore, improves learning time and accuracy.

We call this dynamic system model short-term prediction model. The controller uses this model to
generate actions, which lead the system toward its short-term goals. Note that previous work have
used the system short-term dynamic model for generating additional samples in imagination rollout
(for example, see (9), and (14)). In this paper, we show that this model can also be used to design
actions to achieve short-term goals. To learn the parameters of our short-term prediction model, ✓f
and ✓g , we minimize the short-term loss function, L1, as it is presented in Algorithm 1.

Long-term prediction: Q-function represents the maximum cumulative reward that can be achieved
from current state, xk, taking an action uk. Therefore, by learning Q-function, we learn the long-

term prediction model for the system. Like NAF (9) (see equation (12)), we present Q-function
as a sum of value function and advantage function. However, we present the advantage function,
A(x, u|✓A) using a locally linear function of xk and uk as:

Q(x, u|✓Q) = V (x|✓V) +A(x, u|✓A),
A(x, u|✓A) = �||(h(xk|✓h) + d(xk|✓d)uk)||.

(15)

Note the NAF advantage function is a special case of the LLQL advantage function when d(xk|✓d) =
I , where I represents the identity matrix.

To maximize Q-function, we have to design uk which minimizes h(xk|✓h) + d(xk|✓d)uk. For
simplicity, we present h(xk|✓h), and d(xk|✓d) with hk and dk respectively in the remainder of the
paper. To maximize Q-function and achieve the long-term goal, we can use simple pseudo-inverse
matrix multiplication and derive a solution with the least squares error as:

uk = �(dTk dk)
�1dTk hk. (16)

4

Under review as a conference paper at ICLR 2020

When ||dk|| = 0, it means the network predicts that our action has no impact on the advantage
function. Therefore, we choose a random action. Random exploration is an important part of any
deep RL algorithm. Therefore, in addition to this unlikely case, we add noise, Nk, to the action, uk,
during the training. We reduce the amount of noise injected to the action as the algorithm converges.

Algorithm 1 Locally Linear Q-Learning Training
1: Initialize Q network (equation (15)) with random weights.
2: Initialize target network, Q

0
, parameters: ✓Q

0
= ✓Q.

3: Create the reply buffer R = ;.
4: for episode = 1:M do
5: Initialize a random process N for action exploration.
6: Receive the initial observation, x0.
7: for k = 1:T do
8: if ||dk|| 6= 0 then
9: Set uk = �(dTk dk)

�1(dTk)hk +Nk

10: else
Set uk = Nk

11: Execute uk and observe xk+1 and rk.
12: Store transition (xk, uk, xk+1, rk) in R.
13: for iteration = 1:Is do
14: Randomly select a mini-batch of Ns transition from R.
15: Update ✓f and ✓g by minimizing the loss: L1 = 1

Ns

PNs
i=1 ||xi+1 � xi � �(f(xi|✓f) +

g(xi|✓g)ui)||.
16: for iteration = 1:Il do
17: Randomly select a mini-batch of Nl transition from R.
18: Set yi = ri + �Q

0
(xi+1|✓Q

0
).

19: Update ✓Q by minimizing the loss: L2 = 1
Nl

PNl
i=1 ||yi �Q(xi, ui|✓Q)||.

20: Update the target network: ✓Q
0
= ⌧✓Q + (1� ⌧)✓Q

0

In the application, the controller solves uk with additional constraints to achieve the desired short-
term trajectories. We will discuss our short-term adjustment algorithms in the next section. To learn
Q-function, in addition to the state estimation error, we minimize the long-term loss function, L2,
as it is presented in Algorithm 1. Note that having the short-term model, it is straightforward to
add imagination rollout to our algorithm to increase sample efficiency. However, improving sample
efficiency in RL is not the focus of this work.

4 CONTROL STRATEGY

By separating action design from prediction models, LLQL gives us the freedom to design different
control strategies for achieving short-term and long-term goals. Moreover, the linear structure of
short-term and long-term models simplifies the control design. Consider the case where LLQL has
learned a perfect long-term model for an environment using Algorithm 1. In this case, the optimum
solution to achieve the long-term goal is given by equation (16). When we have one or more short-
term goals as well, we can formulate the control design as an optimization problem to satisfy both
short-term and long-term goals as much as possible.

In this paper, we consider two types of short-term goals: 1) desired trajectory, and 2) constraint. In
the first scenario, the agent has a short-term desired trajectory. For example, a car may be required
to travel with specific speed during certain periods. In the second scenario, the agent has some
limitation for a specific period of time. For example, a car is required to keep its speed below certain
thresholds at some periods during the trip. To address the first problem, we add an additional term to
the cost function for the short-term goal and solve for the action. We deal with the second problem
as a constraint optimization.

4.1 SHORT-TERM TRAJECTORY

Let xd represent our desired short-term trajectory. We develop a control strategy to track xd while
pursuing the long-term goals.

5

Under review as a conference paper at ICLR 2020

Using system dynamic functions fk and gk, we can define our control optimization problem as:
min

find uk

(�1(hk + dkuk)
2 + �2(xd(k+1) � xk ��(fk + gkuk))

2), (17)

where xd(k+1) represents the desired trajectory at time k+1. �1 and �2 are positive coefficients and
can be adjusted to give higher weights to the short-term or long-term goals. Note that in this work,
we assume the short-term goals are temporary and when their time expires the system goes to the
long-term optimum policy given by (16). For example, we may require a car to have a specific speed
at some specific locations.

We can apply a similar pseudo-inverse matrix multiplication, and derive a solution with the least
squares error for (17) as:

u⇤
k = (

�1dk

��2�gk

�T
�1dk

��2�gk

�
)�1

�1dk

��2�gk

�T
��1hk

�2(�xd(k+1) + xk +�fk)

�
. (18)

4.2 SHORT-TERM CONSTRAINT

The LLQL algorithm provides a framework to design the actions considering different constraints.
For safe operation, the agent may have to avoid specific states for a period of time (for example,
high speed or locations close to an obstacle). For simplicity, we assume at each moment we only
have maximum one constraint on one state variable, xi. This is a reasonable assumption, because
in physical systems the agent is close to one of the boundaries at any moment in time. When this
is not the case, we can define new constraints as a combination of constraints. Consider cik as the
constraint on the state variable, xi, at time k. We can define the constraint optimization problem for
LLQL as:

min
finduk

1

2
(hk + dkuk)

2

such that:

xi
k+1 cik+1.

(19)

1
2 is a coefficient added to simplify the mathematical operation. Using our estimation of the next
step, xi

k+1 = xi
k +�(f i

k + gikuk), we can derive the optimum action which satisfies the constraint
as:

u⇤
k = �(dTk dk)

�1dTk (hk + �⇤↵1), (20)

where ↵1 = �gikd
T
k (dkd

T
k)

�1, ↵2 = �gik(d
T
k dk)

�1dTk , and �⇤ = xi
k+�fi

k�ck+1�↵2hk

↵1↵2
. The deriva-

tion details for short-term constraints are presented in Section 10.

5 EXPERIMENTAL RESULTS

In this section, we demonstrate the performance of LLQL using Mountain Car with Continuous
Action (MountainCarContinuous) from OpenAI Gym1. In Section 8, we apply LLQL to control the
crane system shown in Figure 1.

5.1 MOUNTAINCARCONTINUOUS

The MountainCarContinuous has two state variables: 1) car’s position �1.2 xk 0.5 and 2)
car’s velocity �0.07 vk 0.07. uk is the continuous action at time k. A negative action pushes
the car to the left and a positive action pushes the car to the right. The experience stops after 1000
steps or when the car reaches the goal on top of the mountain, xk = 0.5, whichever occurs first. In
the beginning of each episode, the car is randomly positioned at �0.6 x0 �0.4. The reward for
each episode is 100 for reaching the goal on top of the hill minus the squared sum of actions from
start to the goal. Figure 3a shows the cumulative rewards during the training. We performed the
training several times, and the LLQL algorithm converged in less than 20 episodes in all cases. Note
that it is possible to achieve faster convergence by applying imagination rollout. In fact, our short-
term prediction model can be used to generate imaginary scenarios. However, sample efficiency is
beyond the focus of this work.

1http://gym.openai.com/envs/MountainCarContinuous-v0/

6

Under review as a conference paper at ICLR 2020

(a) Cumulative rewards during the learning pro-
cess. LLQL algorithm converges in less than 20
episodes.

(b) State variables and estimated state variables.
In this experiment, the car reached the top in 83
steps, and the mean absolute error for position and
velocity estimations are 0.00221 and 0.00091 re-
spectively.

Figure 3: LLQL for MountainCarContinuous. The network’s parameters are presented in Section 9.

(a) The car reached the top in 88 steps, and the
mean absolute error for position and velocity esti-
mations are 0.00234 and 0.00092 respectively.

(b) Comparing the actions in normal case versus
with the short-term trajectory.

Figure 4: MountainCarContinuous with short-term and long-term goals. �1 = 1, �2 = 2000.

5.2 SHORT-TERM TRAJECTORY

Figure 3b shows that the policy presented in equation (16) can lead the car the top of the mountain.
We can see that the car’s velocity is above 0.025 (the red line) when it reaches the top. Now consider
the case where we want the car to reach the top of the hill with our desired velocity, vd = 0.025.
Using equation (18), we can design a control strategy to reach this goal without requiring model
retraining. We apply the following hybrid control strategy to reach the top of the mountain with our
desired speed.

uk =

⇢
use equation (16) if xk < 0
use equation (18), otherwise.

(21)

Figure 4a shows the car can reach the mountain with our desired velocity. When we did not impose
our desired speed to the system, the car reached the top of the mountain in 83 steps (see Figure 3b).
Demanding a lower speed, slowed down the car and increased the number of steps to 88 (see Figure
4a). Figure 5b shows the actions with and without the short-term trajectory. We can see that the
action temporarily becomes negative to reduce the velocity to the desired level and then goes back
to positive to push the car to the top of the mountain.

To solve this problem in the traditional way, we had to modify the reward function to achieve both
short-term and long-term goals. For comparison, we perform the following experience. We apply
DDPG networks with the modified reward functions shown in Table 1 to solve the MountainCarCon-
tinuous with the short-term and long-term goal problem. To achieve the short-term trajectory, we

7

Under review as a conference paper at ICLR 2020

(a) The car reached the top in 97 steps, and the
mean absolute error for position and velocity esti-
mations are 0.00225 and 0.00091 respectively.

(b) Comparing the actions in the normal case ver-
sus with the short-term constraint.

Figure 5: State variables for MountainCarContinuous with long-term goal and short-term constraint. The
horizontal red lines, |vk| = 0.035, represent the boundaries. The car reaches the goal in 97 steps.

have considered different functions of the absolute error between the car’s velocity and the desired
velocity, |vd�vk| in the final stages as an additional penalty. We have tried various architectures and
hyper parameters to design the DDPG network. The final parameters are presented in Section 9. We
train a model for each modified reward function up to 300 episodes and save the model with maxi-
mum cumulative reward for our experiment. We run each model 10 times and measure the average
number of steps to reach the top of the mountain, and the average error between the car’s final speed
and the desired speed, vd = 0.025. Table 1 shows that even though all the models with modified
functions can achieve the long-term goal in all the experiences, reaching the top of the mountain in
10 out of 10 experiments, they cannot achieve the short-term goal, vd = 0.025. On the other hand,

LLQL does not require additional training, or reward modification, achieves the long-term goal and

has the least velocity error, 0.4%.

Table 1: Short-term trajectory performance

RL
Method Modified Reward function Average velocity

error
Average number of

steps to the top
Long-term

goal
success rate

DDPG rnew = rk � 5000 ⇤ |vk � vd| if done 0.0232 109.1 10/10
DDPG rnew = rk � 100 ⇤ |vk � vd| if xk > 0.45 0.0193 183.6 10/10

DDPG
rnew = rk � 100 ⇤ |vk � vd| if xk > 0.45
rnew = rk � 5000 ⇤ |vk � vd| if done 0.0088 173.8 10/10

DDPG rnew = rk � 25000 ⇤ (vk � vd)
2 if done 0.0193 103.3 10/10

LLQL - 0.0001 89.5 10/10

5.3 SHORT-TERM CONSTRAINT

Now consider the case where it is unsafe to drive the car above a specific speed, for example, we plan
to keep the speed under vk 0.035. We can use the following hybrid control strategy to achieve the
long-term goal while keeping the speed safe:

uk =

⇢
use equation (16) if |vk| 0.033
use equation (20), otherwise.

(22)

We selected the boundary slightly less than the hazardous area (0.033 instead of 0.035) to be safe.
Figure 5a shows that the car reaches its goal while staying outside of hazardous areas. Like the
previous section, we apply DDPG network + modified reward function to compare LLQL with the
traditional reward engineering approach and select the model with maximum cumulative rewards
during 300 episodes of training. Table 2 shows unlike LLQL, the modified rewards fail to keep the
car below the allowed speed 100% of the time.

8

Under review as a conference paper at ICLR 2020

Table 2: Short-term constraint performance

RL
Method Modified Reward function

Average
number of
steps out of

boundary

Average
number of

steps to the top

Long-term
goal

success rate

DDPG rnew = rk � 10 if |vk| > 0.033 21.5 100 10/10
DDPG rnew = rk � 100(|vk|� 0.033) if |vk| > 0.033 25.2 106.8 10/10
DDPG rnew = rk � (100(|vk|� 0.033))2 if |vk| > 0.033 20.4 147.5 10/10
DDPG rnew = �10 if |vk| > 0.033 25.1 104.1 10/10
LLQL - 0 98.9 10/10

(a) Number of steps to the top versus desired final
velocity. �1 = 1, �2 = 2000.

(b) Number of steps to the top versus velocity con-
straint.

Figure 6: Long-term performance vs short-term goals. We run the model with each short-term goal 10 times
and present the average and standard deviation of the long-term goal.

5.4 EFFECT OF SHORT-TERM GOALS ON LONG-TERM PERFORMANCE

Using equations (18) or (20) for deriving a set of actions is equivalent of solving a sub-optimum
solution for the long-term goal in order to satisfy the short-term desired trajectories or constraints.
When the short-term goals are far from the global optimum solution, the long-term performance
degrades. Figure 6a shows lower desired velocities lead to longer traveling time for the Moun-
tainCar. Similarly, Figure 6b shows further limiting the maximum velocity degrades the long-term
performance.

6 RELATED WORK

Our work can be categorized as a new model-based RL approach. Model-based RL algorithms
use the environment model which represents the state transition function to plan ahead and select
actions that lead to higher rewards. Several model-based algorithms assume the environment model
is known. Among them, AlphaZero (15) is one of the most famous. AlphaZero uses the game’s rules
(Chess, Shogi and Go) as the environment model to generate a series of self-play simulated games.
During the simulations, the actions for both players are selected using a Monte-Carlo Tree Search
(MCTS) algorithm. The MCTS performs as a planning algorithm by generating candidate actions
which are superior to the current policy. The neural network parameters are updated at the end of
each game to minimize the game prediction error (loss, draw or win) and maximize the similarity of
policy vector to the planning algorithm. AlphaZero is limited to the discrete action space problems.
The environment model is typically unknown in real-world applications. Therefore, many model-
based RL algorithms learn the state transition model from the data. NAF (9) learns a linear model for
state transition at each operating point and uses this model to generate additional samples through
imagination rollout. World Models (10) uses a Variational Auto Encoder (VAE) to map a state
variable, x 2 X to a lower dimensional variable z in a latent space Z. It then uses a recurrent neural

9

Under review as a conference paper at ICLR 2020

network (RNN) to learn the state transition model in the latent space. Finally, it applies a simple
linear controller to z and the hidden state in the RNN, h, to control the system.

Imagination-Augmented Agents (I2As) (14) introduces two paths: 1) model-free path and 2) imagi-
nation path. The imagination path learns a transition model and uses this model to generate imagi-
nation rollouts. These rollouts are aggregated with the samples in the model-free path. To generate
actions in the imagination path, I2As uses the model-free path policy. Therefore, the rollouts in
the imagination path improve as the I2As policy improves. Using the imagination rollouts, I2As
converge faster than a model-free network with the same number of parameters. Nagabandi et al
(13) showed that a two-step control policy based on 1) learning the dynamic model and 2) applying
MPC to the learned model is significantly more sample efficient than model-free RL. However, this
approach cannot achieve high rewards. To achieve higher rewards and preserve sample efficiency,
they proposed a hybrid model-based and model-free (MBMF) algorithm which runs the model-based
approach to achieve the initial result in a sample efficient way, it then trains a model-free policy to
mimic the learned model-based controller, and uses the resulting imitation policy as the initialization
for the final model-free RL algorithm.

Feinberg et al (6) proposed Model-based Value Expansion (MVE) algorithm, which limits the un-
certainty in the model by only allowing imagination up to a fixed number of steps, H. MVE uses the
learned system dynamic model to generate simulation data up to H steps into the future, and applies
these sample points to estimate Q-function. Instead of saving simulated samples in an imagination
buffer, MVE retrains the dynamic model and generates a new imagination rollout at each step. (3)
expanded MVE algorithm by proposing Stochastic Ensemble Value Expansion (STEVE), to generate
a solution more robust to model uncertainty. Dalal et al (5) proposed safe exploration by modeling
constraints using a linear model and applied Lagrangian optimization to modify the action in order
to guarantee safety. In this work, we also used Lagrangian optimization for short-term constraints.
However, our approach is different in two ways: 1) our method does not modify the RL action to
achieve the goals. Instead, it derives an action by considering both long-term goals and short-term
constraints. This is possible because our algorithm uses a locally linear model to represent the ad-
vantage function. 2) Unlike safe exploration, the focus of this paper is in handling new constraints
in the application phase without retraining the model.

7 CONCLUSIONS

In this work, we presented LLQL as a new model-based RL algorithm with the capability of achiev-
ing both short-term and long-term goals without requiring complex reward functions. By presenting
the advantage function with a locally linear model and separating designing actions from the learn-
ing process, our method is capable of adopting control strategies to achieve different short-term
goals without retraining the model. This can be very significant for industrial applications where the
RL algorithms have not been used due to the necessity of different short-term adjustments. In the
future work, we will investigate conditions where short-term goals are feasible and develop a more
analytical approach to set the meta parameters for the controller in order to guarantee short-term and
long-term goals. Moreover, we will model uncertainties in short-term prediction model and apply
robust control theory to design robust control solutions.

REFERENCES

[1] G. Bartolini, A. Pisano, and E. Usai. Second-order sliding-mode control of container cranes.
Automatica, 38(10):1783–1790, 2002.

[2] F. Boustany and B. d’Andrea Novel. Adaptive control of an overhead crane using dynamic
feedback linearization and estimation design. In Proceedings 1992 IEEE International Con-

ference on Robotics and Automation, pages 1963–1968. IEEE, 1992.

[3] J. Buckman, D. Hafner, G. Tucker, E. Brevdo, and H. Lee. Sample-efficient reinforcement
learning with stochastic ensemble value expansion. In Advances in Neural Information Pro-

cessing Systems, pages 8224–8234, 2018.

[4] W.-H. Chen, D. J. Ballance, and P. J. Gawthrop. Optimal control of nonlinear systems: a
predictive control approach. Automatica, 39(4):633–641, 2003.

10

Under review as a conference paper at ICLR 2020

[5] G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru, and Y. Tassa. Safe exploration in
continuous action spaces. arXiv preprint arXiv:1801.08757, 2018.

[6] V. Feinberg, A. Wan, I. Stoica, M. I. Jordan, J. E. Gonzalez, and S. Levine. Model-based value
expansion for efficient model-free reinforcement learning. arXiv preprint arXiv:1803.00101,
2018.

[7] C. E. Garcia, D. M. Prett, and M. Morari. Model predictive control: theory and practice–a
survey. Automatica, 25(3):335–348, 1989.

[8] S. Gu, E. Holly, T. Lillicrap, and S. Levine. Deep reinforcement learning for robotic manipula-
tion with asynchronous off-policy updates. In 2017 IEEE international conference on robotics

and automation (ICRA), pages 3389–3396. IEEE, 2017.

[9] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine. Continuous deep q-learning with model-based
acceleration. In International Conference on Machine Learning, pages 2829–2838, 2016.

[10] D. Ha and J. Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

[11] H. W. Kuhn and A. W. Tucker. Nonlinear programming. In Traces and emergence of nonlinear

programming, pages 247–258. Springer, 2014.

[12] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[13] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine. Neural network dynamics for model-
based deep reinforcement learning with model-free fine-tuning. In 2018 IEEE International

Conference on Robotics and Automation (ICRA), pages 7559–7566. IEEE, 2018.

[14] S. Racanière, T. Weber, D. Reichert, L. Buesing, A. Guez, D. J. Rezende, A. P. Badia,
O. Vinyals, N. Heess, Y. Li, et al. Imagination-augmented agents for deep reinforcement
learning. In Advances in neural information processing systems, pages 5690–5701, 2017.

[15] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,
D. Kumaran, T. Graepel, et al. Mastering chess and shogi by self-play with a general reinforce-
ment learning algorithm. arXiv preprint arXiv:1712.01815, 2017.

[16] C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

8 CRANE CONTROL SYSTEM

Gantry cranes are widely used in industrial production lines and construction projects for transferring
heavy and hazardous materials. The objective of the crane system is to convey the payload from the
start position to the destination position as soon as possible while keeping the payload sway at the
destination minimum. Higher traveling speed improves the efficiency and reduces costs. However,
excessive movements at the destination wastes time and energy and can lead to accidents. To move
the payload as fast as possible and stop the sway at the destination, skillful operators are required.
Labor shortage in industries, and risk of human error, have motivated us to develop an automated
solution for crane control. The crane dynamic system is highly nonlinear. Traditional nonlinear
control techniques such as sliding control (1) and adaptive control (2) have been applied to these
systems. These methods require detailed mathematical model of the system and its environment,
which can be complicated and expensive to derive. When a simulator is available for a crane system,
RL algorithms can provide a compelling alternative to traditional control methodologies. This is
the case in many industries, where for intellectual property concerns the companies are willing to
provide simulators to the costumers but refuse to reveal mathematical models of their products.

Our crane simulator provides us six state variables: 1) trolley location, xtrolley 2) trolley velocity,
vtrolley , 3) payload angle, �payload, 4) payload angular velocity, !payload, 5) payload horizontal
location, xpayload, and 6) payload vertical location, ypayload. The only action is the force applied to

11

Under review as a conference paper at ICLR 2020

(a) Cumulative rewards for LLQL.

(b) State variables for the crane system. The crane reaches the goal in 12s.

Figure 7: LLQL for the crane system.

the trolley, utrolley . The overall goal is to reach the final destination xpd and ypd in the shortest time
possible. We choose the following reward function to learn a policy to do so.

rk =

⇢
500 if |xpayload(k)� xpd| < ✏ & |ypayload(k)� ypd| < ✏
�1 otherwise,

(23)

where ✏ is a small constant. Figure 7b shows our learned policy pushes the trolley with maximum
force, utrolley is eqaual 1 for the entire episode, till the payload reaches the goal xpd = 6, ypd = 10.

In additional to the long-term goal, our short-term goal is to minimize the object’s sway when
it reaches to the final destination. Instead of designing complicated reward functions to achieve
minimum travel time and minimum sway, we consider !payload = 0 at the final destination as a
short-term desired trajectory. We consider the following hybrid strategy to reach the final destination
with close to zero sway.

utrolley =

⇢
use equation (16) if xpayload < 5.5
use equation (18), otherwise

(24)

Figure 8 shows our strategy can reach the destination with close to zero swing.

9 NETWORKS PARAMETERS

We used the following network structures and parameters in the experimental studies.

LLQL for MountainCarContinuous: h, d, V , f and g networks each has two hidden layers with 200
neurons in each layer. All the activation functions are Rectified Linear Units (ReLUs). Each episode
is maximum 1000 steps. The number of iterations for short-term and long-term prediction model:

12

Under review as a conference paper at ICLR 2020

Figure 8: State variables for the crane system with required short-term trajectory, !payload = 0. The
final error is 0.0001. The crane reaches the goal in 12.5s. �1 = 1, �2 = 1000.

Is = Il = 5. The learning rate for the long-term prediction model is 0.001. The batch size for this
model is 10. The discount rate � = 0.999. The target model update rate, ⌧ = 0.001. The learning
rate for the short-term prediction model is 0.001 for the first 20000 steps and then reduces to 0.0001.
� = 0.001. The batch size for this model is 100.

LLQL for the crane system: h, d, V , f and g networks each has two hidden layers with 200 neurons
in each layer. All the activation functions are ReLUs. Each episode includes maximum 1000 actions.
The number of iterations for short-term and long-term prediction model: Is = Il = 5. The learning
rate for the long-term prediction model is 0.001. The batch size for this model is 10. The discount
rate � = 0.999. The target model update rate, ⌧ = 0.001. The learning rate for the short-term
prediction model is 0.01 for the first 20000 steps and then reduces to 0.001. � = 0.001. The batch
size for this model is 200.

DDPG networks with modified reward functions: The Q-network, and the deterministic policy net-
work each has two hidden layers with 200 neurons. All the activation functions are ReLUs. The
learning rate for the Q-network is 0.00001, and the learning rate for the deterministic policy network
is 0.000001. The discount rate � = 0.99. The batch size is 8. The target model update rate for both
networks is 0.1.

In all the networks we shift and scale the state variables to zero mean and unit standard deviation for
a better learning. For exploration, we add an additive normal noise to the action:

u(k) = (1� ↵N)u(k)⇤ + ↵NN , (25)

where u(k)⇤ represents the optimum action generated by LLQL or DDPG, and N = U(�1, 1) is a
continuous uniform random variable. We consider ↵N = 0.05 in the beginning, and ↵N = .99⇥↵N

after each episode with positive cumulative rewards.

10 DERIVATION DETAILS FOR SHORT-TERM CONSTRAINTS

Consider equation (19). Substituting our estimation of the next step from equation (14) in (19), we
have

min
finduk

1

2
(hk + dkuk)

2

such that:

xi
k +�(f i

k + gikuk) cik+1

(26)

13

Under review as a conference paper at ICLR 2020

Using Lagrangian method at each time step k, we have

L(uk,�) =
1

2
(hk + dkuk)

2+

�(xi
k +�(f i

k + gikuk)� cik+1)
(27)

Taking the gradient of L with respect to uk, we can write the Karush-Kuhn-Tucker (KKT) (11)
conditions for optimal solution of equation (26), {u⇤

k,�
⇤} as:

(hk + dku
⇤
k)dk + �⇤�gik = 0

�⇤(xi
k +�(f i

k + giku
⇤
k)� ck+1) = 0

(28)

With this assumption, we can show

u⇤
k = �(dTk dk)

�1dTk (hk + �⇤�gikd
T
k (dkd

T
k)

�1) (29)

Note that when there is no constraint: �⇤ = 0, we have u⇤
k = �(dTk dk)

�1dTk hk. This is exactly the
input we computed in equation (16). When �⇤ 6= 0, we have

xi
k +�(f i

k + giku
⇤
k)� ck+1 = 0 (30)

We define ↵1 = �gikd
T
k (dkd

T
k)

�1, and ↵2 = �gik(d
T
k dk)

�1dTk . ↵1 and ↵2 are scalar. Substituting
u⇤
k from equation (29) in equation (30) we have

xi
k +�f i

k � ↵2(hk + ↵1�
⇤)� ck+1 = 0 (31)

Therefore,

�⇤ =
xi
k +�f i

k � ck+1 � ↵2hk

↵1↵2

u⇤
k = �(dTk dk)

�1dTk (hk + �⇤↵1).

(32)

14

