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ABSTRACT

We study the role of intrinsic motivation as an exploration bias for reinforce-
ment learning in sparse-reward synergistic tasks, which are tasks where mul-
tiple agents must work together to achieve a goal they could not individually.
Our key idea is that a good guiding principle for intrinsic motivation in syn-
ergistic tasks is to take actions which affect the world in ways that would not
be achieved if the agents were acting on their own. Thus, we propose to in-
centivize agents to take (joint) actions whose effects cannot be predicted via a
composition of the predicted effect for each individual agent. We study two in-
stantiations of this idea, one based on the true states encountered, and another
based on a dynamics model trained concurrently with the policy. While the for-
mer is simpler, the latter has the benefit of being analytically differentiable with
respect to the action taken. We validate our approach in robotic bimanual ma-
nipulation tasks with sparse rewards; we find that our approach yields more ef-
ficient learning than both 1) training with only the sparse reward and 2) using
the typical surprise-based formulation of intrinsic motivation, which does not
bias toward synergistic behavior. Videos are available on the project webpage:
https://sites.google.com/view/iclr2020-synergistic.

1 INTRODUCTION

Consider a multi-agent environment such as a team of robots working together to play soccer. It
is critical for a joint policy within such an environment to produce synergistic behavior, allowing
multiple agents to work together to achieve a goal which they could not achieve individually. How
should agents learn such synergistic behavior efficiently? A naive strategy would be to learn policies
jointly and hope that synergistic behavior emerges. However, learning policies from sparse, binary
rewards is very challenging – exploration is a huge bottleneck when positive reinforcement is in-
frequent and rare. In sparse-reward multi-agent environments where synergistic behavior is critical,
exploration is an even bigger issue due to the much larger action space.

A common approach for handling the exploration bottleneck in reinforcement learning is to shape
the reward using intrinsic motivation, as was first proposed by Schmidhuber (1991). This has
been shown to yield improved performance across a variety of domains, such as robotic control
tasks (Oudeyer et al., 2007) and Atari games (Bellemare et al., 2016; Pathak et al., 2017). Typically,
intrinsic motivation is formulated as the agent’s prediction error regarding some aspects of the world;
shaping the reward with such an error term incentivizes the agent to take actions that “surprise it,”
and is intuitively a useful heuristic for exploration. But is this a good strategy for encouraging syn-
ergistic behavior in multi-agent settings? Although synergistic behavior may be difficult to predict,
it could be equally difficult to predict the effects of certain single-agent behaviors; this formulation
of intrinsic motivation as “surprise” does not specifically favor the emergence of synergy.

In this paper, we study an alternative strategy for employing intrinsic motivation to encourage syn-
ergistic behavior in multi-agent tasks. Our method is based on the simple insight that synergistic
behavior leads to effects which would not be achieved if the individual agents were acting alone. So,
we propose to reward agents for joint actions that lead to different results compared to if those same
actions were done by the agents individually, in a sequential composition. For instance, consider
the task of twisting open a water bottle, which requires two hands (agents): one to hold the base in
place, and another to twist the cap. Only holding the base in place would not effect any change in
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Figure 1: An overview of our approach to incentivizing synergistic behavior via intrinsic motivation. A heavy
red bar (requiring two arms to lift) rests on a table, and the policy πθ suggests for arms A and B to lift the
bar from opposite ends. A composition of pretrained single-agent forward models, fA and fB , predicts the
resulting state to be one where the bar is only partially lifted, since neither fA nor fB has ever encountered
states where the bar is lifted during training. A forward model trained on the complete two-agent environment,
f joint, correctly predicts that the bar is fully lifted, very different from the compositional prediction. We train
πθ to prefer actions such as these, as a way to bias toward synergistic behavior. Note that differentiating this
intrinsic reward with respect to the action taken does not require differentiating through the environment.

the bottle’s pose, while twisting the cap without holding the bottle in place would cause the entire
bottle to twist, rather than just the cap. Here, holding with one hand and subsequently twisting with
the other would not open the bottle, but holding and twisting concurrently would.

Based on this intuition, we propose a formulation for intrinsic motivation that leverages the differ-
ence between the true effect of an action and the composition of individual-agent predicted effects.
We then present a second formulation that instead uses the discrepancy of predictions between a
joint and a compositional prediction model. While the latter formulation requires training a forward
model alongside learning the control strategy, it has the benefit of being analytically differentiable
with respect to the action taken. We later show that this can be leveraged within the policy gradient
framework, in order to obtain improved sample complexity over using the policy gradient as-is.

As our experimental point of focus, we study four simulated bimanual robotic manipulation tasks
— bottle opening, ball pickup, corkscrew rotating, and bar pickup — with sparse rewards: 1 if the
task is completed and 0 otherwise. These tasks were chosen both because they require synergistic
behavior, and because they represent challenging control problems for modern state-of-the-art deep
reinforcement learning algorithms (Levine et al., 2016; Lillicrap et al., 2015; Gu et al., 2017; Mnih
et al., 2016; Nagabandi et al., 2018). Across all tasks, we find that shaping the reward via our
formulation of intrinsic motivation yields more efficient learning than both 1) training with only
the sparse reward signal and 2) shaping the reward via the more standard single-agent formulation
of intrinsic motivation as “surprise,” which does not explicitly encourage synergistic behavior. We
view this work as a step toward general-purpose synergistic multi-agent reinforcement learning.

2 RELATED WORK

Prediction error as intrinsic motivation. The idea of motivating an agent to reach areas of the
state space which yield high model prediction error was first proposed by Schmidhuber (1991).
Generally, this reward obeys the form ‖f(x)− f̂(x)‖, i.e. the difference between the predicted and
actual value of some function computed on the current state, the taken action, etc. (Barto, 2013;
Oudeyer et al., 2007; Bellemare et al., 2016); intrinsic motivation can even be used on its own when
no extrinsic reward is provided (Pathak et al., 2017; 2019; Burda et al., 2018; Haber et al., 2018). A
separate line of work studies how agents can synthesize a library of skills via intrinsic motivation in
the absence of extrinsic rewards (Eysenbach et al., 2018). Recent work has also studied the use of
surprise-based reward to solve gentle manipulation tasks, with the novel idea of rewarding the agent
for errors in its own predictions of the reward function (Huang et al., 2019). In this paper, we will
propose formulations of intrinsic motivation that are geared toward multi-agent synergistic tasks.

Exploration in multi-agent reinforcement learning. The problem of efficient exploration in
multi-agent settings has received significant attention over the years. Lookahead-based explo-
ration (Carmel & Markovitch, 1999) is a classic strategy; it rewards an agent for exploration that
reduces its uncertainty about the models of other agents in the environment. More recently, social
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motivation has been proposed as a general principle for guiding exploration (Jaques et al., 2018):
agents should prefer actions that most strongly influence the policies of other agents. LOLA (Foerster
et al., 2018), though not quite an exploration strategy, follows a similar paradigm: an agent should
reason about the impact of its actions on how other agents learn. Our work approaches the problem
from a different angle that incentivizes synergy: we reward agents for taking actions to affect the
world in ways that would not be achieved if the agents were acting alone.

Bimanual manipulation. The field of bimanual, or dual-arm, robotic manipulation has a rich his-
tory (Smith et al., 2012) as an interesting problem across several areas, including hardware design,
model-based control, and reinforcement learning. Model-based control strategies for this task often
draw on hybrid force-position control theory (Raibert et al., 1981), and rely on analytical models of
the environment dynamics, usually along with assumptions on how the dynamics can be approxi-
mately decomposed into terms corresponding to the two arms (Hsu, 1993; Xi et al., 1996). On the
other hand, learning-based strategies for this task often leverage human demonstrations to circum-
vent the challenge of exploration (Zollner et al., 2004; Gribovskaya & Billard, 2008; Kroemer et al.,
2015). In this work, we describe an exploration strategy based on intrinsic motivation, enabling us
to solve synergistic bimanual manipulation tasks via model-free reinforcement learning.

3 APPROACH

Our goal is to enable learning for synergistic tasks in settings with sparse extrinsic rewards. A
central hurdle in such scenarios is the exploration bottleneck: there is a large space of possible
action sequences that the agents must explore in order to see rewards. In the absence of intermediate
extrinsic rewards to guide this exploration, one can instead rely on intrinsic rewards that bias the
exploratory behavior toward “interesting” actions, a notion which we will formalize.

To accomplish any synergistic task, the agents must work together to affect the environment in ways
that would not occur if they were working individually. In Section 3.1, we present a formulation
for intrinsic motivation that operationalizes this insight and allows guiding the exploration toward
synergistic behavior, consequently learning the desired tasks more efficiently. In Section 3.2, we
present a second formulation that is (partially) differentiable, making learning even more efficient by
allowing us to compute analytical gradients with respect to the action taken. Finally, in Section 3.3
we show how our formulations can be used to efficiently learn task policies.

Problem Setup. Each of the tasks we consider can be formulated as a two-agent finite-horizon
MDP (Puterman, 1994). We denote the environment as E , and the agents as A and B. We assume a
state s ∈ S can be partitioned as s := 〈sA, sB , senv〉, where sA ∈ SA, sB ∈ SB , and senv ∈ Senv.
Here, sA and sB denote the proprioceptive states of the agents, such as joint configurations of robot
arms, and senv captures the remaining aspects of the environment, such as object poses. An action
a ∈ A is a tuple a := 〈aA, aB〉, where aA ∈ AA and aB ∈ AB , consisting of each agent’s actions.

We focus on settings where the reward function of this MDP is binary and sparse, yielding reward
rextrinsic(s) = 1 only when s achieves some desired goal configuration. Learning in such a setup
corresponds to acquiring a (parameterized) policy πθ that maximizes the expected proportion of
times that a goal configuration is achieved by following πθ.

Unfortunately, exploration guided only by a sparse reward is challenging; we propose to additionally
bias it via an intrinsic reward function. Let s̄ ∼ E(s, a) be a next state resulting from executing
action a in state s. We wish to formulate an intrinsic reward function rintrinsic(s, a, s̄) that encourages
synergistic actions and can thereby enable more efficient learning.

3.1 COMPOSITIONAL PREDICTION ERROR AS AN INTRINSIC REWARD

We want to encourage actions that affect the environment in ways that would not occur if the agents
were acting individually. To formalize this notion, we note that a “synergistic” action is one where
the agents acting together is crucial to the outcome; so, we should expect a different outcome if the
corresponding actions were executed sequentially, with each individual agent acting at a time.

Our key insight is that we can leverage this difference between the true outcome of an action and
the expected outcome with individual agents acting sequentially as a reward signal. We can capture
the latter via a composition of forward prediction models for the effects of actions by individual
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agents acting separately. Concretely, let fA : Senv × SA × AA → Senv (resp. fB) be a single-
agent prediction model that regresses to the next environment state resulting from A (resp. B)
taking an action in isolation.1 We define our first formulation of intrinsic reward, rintrinsic

1 (s, a, s̄), by
measuring the prediction error of s̄env using a composition of these single-agent prediction models:

f composed(s, a) = fB(fA(senv, sA, aA), sB , aB),

rintrinsic
1 (s, a, s̄) = ‖s̄env − f composed(s, a)‖.

For synergistic actions a, the prediction f composed(s, a) will likely be quite different from s̄env.

In practice, we pretrain fA and fB using data of random interactions in instantiations of the envi-
ronment E with only a single active agent. This implies that the agents have already developed an
understanding of the effects of acting alone before being placed in multi-agent environments that
require synergistic behavior. Note that while random interactions sufficed to learn useful predic-
tion models fA and fB in our experiments, this is not essential to the formulation, and one could
leverage alternative single-agent exploration strategies to collect interaction samples instead.

3.2 PREDICTION DISPARITY AS A DIFFERENTIABLE INTRINSIC REWARD

The reward rintrinsic
1 (s, a, s̄) presented above encourages actions that have a synergistic effect. How-

ever, note that this “measurement of synergy” for action a in state s requires explicitly observing the
outcome s̄ of executing a in the environment. In contrast, when humans reason about synergistic
tasks such as twisting open a bottle cap while holding the bottle base, we judge whether actions will
have a synergistic effect without needing to execute them to make this judgement. Not only is the
non-dependence of the intrinsic reward on s̄ scientifically interesting, but it is also practically desir-
able. Specifically, the term f composed(s, a) is analytically differentiable with respect to a (assuming
that one uses differentiable regressors fA and fB , such as neural networks), but s̄env is not, since
s̄ depends on a via the black-box environment. If we can reformulate the intrinsic reward to be
analytically differentiable with respect to a, we can leverage this for more sample-efficient learning.

To this end, we observe that our formulation rewards actions where the expected outcome under the
compositional prediction differs from the outcome when the agents act together. While we used the
observed state s̄ as the indication of “outcome when the agents act together,” we could instead use a
predicted outcome here. We therefore additionally train a joint prediction model f joint : S × A →
Senv that, given the states and actions of both agents, and the environment state, predicts the next
environment state. We then define our second formulation of intrinsic reward, rintrinsic

2 (s, a, ·), using
the disparity between the predictions of the joint and compositional models:

rintrinsic
2 (s, a, ·) = ‖f joint(s, a)− f composed(s, a)‖.

Note that there is no dependence on s̄. At first, this formulation may seem less efficient than rintrinsic
1 ,

since f joint can at best only match s̄env, and requires being trained on data. However, we note that
this formulation makes the intrinsic reward analytically differentiable with respect to the action a
executed; we can leverage this within the learning algorithm to obtain more informative gradient
updates, as we discuss further in the next section.

Relation to Curiosity. Typical approaches to intrinsic motivation (Stadie et al., 2015; Pathak et al.,
2017), which reward an agent for “doing what surprises it,” take on the form rintrinsic

non-synergistic(s, a, s̄) =

‖f joint(s, a)− s̄env‖. These curiosity-based methods will encourage the system to keep finding new
behavior that surprises it, and thus can be seen as a technique for curiosity-driven skill discovery. In
contrast, we are focused on synergistic multi-agent tasks with an extrinsic (albeit sparse) reward, so
our methods for intrinsic motivation are not intended to encourage a diversity of learned behaviors,
but rather to bias exploration to enable sample-efficient learning for a given task.

3.3 LEARNING SPARSE-REWARD SYNERGISTIC TASKS

We simultaneously learn the joint prediction model f joint and the task policy πθ. We train πθ via
reinforcement learning to maximize the expected total shaped reward rfull = rintrinsic

i∈{1,2} + λ · rextrinsic

1As the true environment dynamics are stochastic, it can be useful to consider probabilistic regressors f .
However, recent successful applications of model-based reinforcement learning (Nagabandi et al., 2018; Clav-
era et al., 2018) have used deterministic regressors, modeling just the maximum likelihood transitions.
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across an episode. Concurrently, we make dual-purpose use of the transition samples {(s, a, s̄)}
collected during the interactions with the environment to train f joint, by minimizing the loss
‖f joint(s, a) − s̄env‖. This simultaneous training of f joint and πθ, as was also done by Stadie et al.
(2015), obviates the need for collecting additional samples to pretrain f joint and ensures that the
joint prediction model is trained using the “interesting” synergistic actions being explored. Full
pseudocode is provided in Appendix A.

Our second intrinsic reward formulation allows us to leverage differentiability with respect to the
action taken to make learning via policy gradient methods more efficient. Recall that any policy gra-
dient algorithm (Schulman et al., 2017; 2015; Williams, 1992) performs gradient ascent with respect
to policy parameters θ on the expected reward over trajectories: J(θ) := Eτ [rfull(τ)]. Expanding,
we have J(θ) = Eτ

[∑T
t=0 r

full(st, at, ·)
]

= Eτ
[∑T

t=0 r
intrinsic
2 (st, at, ·) + λ · rextrinsic(st)

]
, where

T is the horizon. We show in Appendix B that the gradient can be written as:

∇θJ(θ) =

T∑
t=0

Eτt [rfull(st, at, ·)∇θ log pθ(τ̄t)] + Eτ̄t [∇θEat∼πθ(st)[r
intrinsic
2 (st, at, ·)]]. (1)

Here, τt := 〈s0, a0, ..., st, at〉 denotes a trajectory up to time t, and τ̄t := 〈s0, a0, ..., st〉 denotes the
same but excluding at. Given a state st, and assuming a differentiable way of sampling at ∼ πθ(st),
such as using the reparameterization trick (Kingma & Welling, 2013), we can analytically compute
the inner gradient in the second term since rintrinsic

2 (st, at, ·) is differentiable with respect to at (again,
assuming the regressors fA, fB , and f joint are differentiable). In Equation 1, the first term is similar
to what typical policy gradient algorithms compute, with the difference being the use of pθ(τ̄t)
instead of pθ(τt); the intuition is that we should not consider the effects of at here since it gets
accounted for by the second term. In practice, however, we opt to treat the policy gradient algorithm
as a black box, and simply add (estimates of) the gradients given by the second term to the gradients
yielded by the black-box algorithm. While this leads to double-counting certain gradients (those of
the expected reward at each timestep with respect to the action at that timestep), our preliminary
experiments found this to minimally affect training, and make the implementation more convenient
as one can leverage an off-the-shelf optimizer like PPO (Schulman et al., 2017).

4 EXPERIMENTS

Our primary contribution is the design of new intrinsic rewards that are used in conjunction with ex-
trinsic rewards in multi-agent sparse-reward synergistic tasks. We consider bimanual manipulation
tasks, which require synergistic multi-arm behavior, as our testbed. We establish the utility of our
proposed formulations by comparing to baselines that don’t use any intrinsic rewards, or use alterna-
tive intrinsic reward formulations. We also consider ablations of our method that help us understand
the different intrinsic reward formulations, and the impact of partial differentiability.

4.1 EXPERIMENTAL SETUP

We consider four bimanual manipulation tasks: bottle opening, ball pickup, corkscrew rotating, and
bar pickup2. All tasks involve sparse rewards, and require effective use of both arms to be solved.
We describe the tasks, state representations, and action spaces below.

Environments. All four tasks are set up with 2 Sawyer arms at opposite ends of a table, and an
object placed on the table surface. The tasks are visualized in Figure 2, and described below:

• Bottle Opening: The goal is to rotate a cuboidal bottle cap, relative to a cuboidal bottle base, by
90◦. The bottle is modeled as two cuboids on top of one another, connected via a hinge joint,
such that in the absence of opposing torques, both cuboids rotate together. We vary the location
and size of the bottle across episodes.

• Ball Pickup: The goal is to lift a slippery ball by 25cm. The ball slips out when a single arm tries
to lift it. We vary the location and coefficient of friction of the ball across episodes.

• Corkscrew Rotating: The goal is to rotate a corkscrew relative to its base by 180◦. The corkscrew
is modeled as a handle attached to a base via a hinge joint, such that in the absence of opposing
torques, both rotate together. We vary the location and size of the corkscrew across episodes.

2These environments are suggested as bimanual manipulation tasks in concurrent work (link).
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Figure 2: Screenshots of our four bimanual manipulation tasks. From left to right: bottle opening, ball pickup,
corkscrew rotating, bar pickup. These tasks are all designed to require two arms. We learn policies for these
tasks given only sparse binary rewards, by encouraging synergistic behavior via intrinsic motivation.

• Bar Pickup: The goal is to lift a long heavy bar by 25cm. The bar is too heavy to be lifted by a
single arm. We vary the location and density of the bar across episodes.

State Representation. The internal state of each agent consists of proprioceptive features: joint
positions, joint velocities, and the end effector pose in the world frame. The environment state
consists of the current timestep, geometry information for the object, and the object pose in the
world frame and each end effector’s frame. We use a simple Euclidean metric over the state space.
All forward models predict the change in the object’s world frame pose, via an additive offset for
the 3D position and a Hamilton product for the quaternion representing the orientation.

Action Space. To facilitate learning within these environments, we provide the system with a dis-
crete library of generic skills, each parameterized by some (learned) continuous parameters. There-
fore, our stochastic policy πθ maps a state to 1) a distribution over skills for arm A to use, 2) a
distribution over skills for arm B to use, 3) means and variances of independent Gaussian distri-
butions for every continuous parameter of skills for A, and 4) means and variances of independent
Gaussian distributions for every continuous parameter of skills for B. These skills can either be
hand-designed (Wolfe et al., 2010; Srivastava et al., 2014) or learned from demonstration (Kroemer
et al., 2015); as this is not the focus of our paper, we opt to simply hand-design them. If we cannot
find an inverse kinematics solution for achieving a skill, it is not executed, though it still consumes
a timestep. While executing a skill, if the arms are about to collide with each other, we attempt to
bring back the arms’ joint positions to what they were before execution. In either of these cases, we
give 0 reward to the system. See Appendix C for more details about the environments.

4.2 IMPLEMENTATION DETAILS

Network Architecture. All forward models and the policy are 4-layer fully connected neural net-
works with 64-unit hidden layers, ReLU activations, and a multi-headed output to capture both the
actor and the critic. Our implementation builds on the Surreal Robotics Suite (Fan et al., 2018), and
training is parallelized across 50 workers.
Training Details. Our proposed synergistic intrinsic rewards rely on forward models fA, fB , and
f joint. We pretrain the single-agent model fA (resp. fB) on 105 samples of experience with a ran-
dom policy of only arm A (resp. B) acting. Note that this pretraining does not use any extrinsic
reward, and therefore the number of steps under the extrinsic reward is comparable across all the
approaches. The joint model f joint and policy πθ start from scratch, and are optimized concurrently.
We set the trade-off coefficient λ = 10. We use the stable baselines (Hill et al., 2018) implemen-
tation of proximal policy optimization (PPO) from Schulman et al. (2017) as our policy gradient
algorithm, though our methods are agnostic to the choice of algorithm. We use the following hyper-
parameters: Adam (Kingma & Ba, 2014) with learning rate 0.001, clipping parameter 0.2, entropy
loss coefficient 0.01, value loss function coefficient 0.5, gradient clip threshold 0.5, number of steps
10, number of minibatches per update 4, and number of optimization epochs per update 4.

4.3 BASELINES

• Random policy: We randomly choose a skill and parameterization for each arm, at every step. This
baseline serves as a sanity check to ensure that our use of skills does not trivialize the tasks.

• Separate-arm surprise: This baseline simultaneously executes two independent single-arm cu-
riosity policies that are pretrained to maximize the “surprise” rewards ‖fA(s, a) − s̄env‖ and
‖fB(s, a)− s̄env‖ respectively.
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Figure 3: Learning curves for each of our environments. Each curve depicts an average across 5 random seeds.
We see that it is significantly more sample-efficient to shape the reward via rintrinsic

1 or rintrinsic
2 than to rely only on

the extrinsic, sparse reward signal. Furthermore, typical formulations of intrinsic motivation as surprise do not
work well for synergistic bimanual manipulation because they encourage the system to affect the environment
in ways it cannot currently predict, while our approach encourages the system to affect the environment in ways
neither arm would if acting on its own, which is a useful bias for learning synergistic behavior.

• Extrinsic reward only: This baseline uses only extrinsic sparse rewards rextrinsic, without shaping.
• Non-synergistic surprise: We learn a joint two-arm policy to optimize for the extrinsic reward

and the joint surprise: rfull = rintrinsic
non-synergistic + λ · rextrinsic. This encourages curiosity-driven skill

discovery but does not explicitly encourage synergistic multi-agent behavior.

4.4 RESULTS AND DISCUSSION

Figure 3 shows task success rates as a function of the number of interaction samples for the different
methods on each environment. We plot average success rate over 5 random seeds using solid lines,
and shade standard deviations. Now, we summarize our three key takeaways.

1) Synergistic intrinsic rewards boost sample efficiency. Our bimanual manipulation tasks are
hard and our use of parameterized skills does not trivialize the tasks. Furthermore, these tasks
require coordination among the two arms, and so Separate-arm surprise policies do not perform
well. Given enough training samples, Extrinsic reward only policies start to perform decently well.
However, our use of synergistic intrinsic rewards to shape the extrinsic rewards from the environment
accelerates learning, solving the task consistently with up to 5× fewer samples in some cases.

2) Synergistic intrinsic rewards perform better than non-synergistic intrinsic rewards. Policies
that use our synergistic intrinsic rewards also work better than the Non-synergistic surprise baseline.
This is primarily because the baseline policies learn to exploit the joint model rather than to behave
synergistically. This also explains why Non-synergistic surprise used together with extrinsic reward
hurts task performance (green vs. red curve in Figure 3). Past experiments with such surprise models
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Figure 4: Top: Non-synergistic surprise baseline with varying amounts of pretraining for the joint model f joint.
We see that pretraining this joint model does not yield much improvement in performance, and remains signif-
icantly worse than our method (brown curve). This is sensible since the baseline does not explicitly encourage
synergistic behavior, as we do. Bottom: Ablation showing the impact of using analytical gradients on sample
efficiency. rintrinsic

2 only performs better than rintrinsic
1 when leveraging the partial differentiability.

have largely been limited to games, where progress is correlated with continued exploration (Burda
et al., 2018); solving robotic tasks often involves more than just surprise-driven exploration. Figure 4
(top) gives additional results showing that our method’s competitive advantage over this baseline
persists even if we allow the baseline additional interactions to pretrain the joint prediction model
f joint without using any extrinsic reward (similar to our method’s pretraining for f composed).

3) Analytical gradients boost sample efficiency. In going from rintrinsic
1 (compositional prediction

error) to rintrinsic
2 (prediction disparity), we changed two things: 1) the reward function and 2) how it

is optimized (we used Equation 1 to leverage the partial differentiability of rintrinsic
2 ). We conduct an

ablation to disentangle the impact of these two changes. Figure 4 (bottom) presents learning curves
for using rintrinsic

2 without analytical gradients, situated in comparison to the previously shown results.
When we factor out the difference due to optimization and compare rintrinsic

1 and rintrinsic
2 as different

intrinsic reward formulations, rintrinsic
1 performs better than rintrinsic

2 (purple vs. yellow curve). This is
expected because rintrinsic

2 requires training an extra model f joint concurrently with the policy, which
at best could match the true s̄env. Leveraging the analytical gradients, though, affords rintrinsic

2 more
sample-efficient optimization (brown vs. purple curve), making it a better overall choice.

We have also tried using our formulation of intrinsic motivation without extrinsic reward; quali-
tatively, the agents learn to act synergistically, but in ways that do not solve the “task,” which is
sensible since the task is unknown to the agents. See the project webpage for videos of these results.

5 CONCLUSION

In this work, we presented a formulation of intrinsic motivation that encourages synergistic behav-
ior, and allows efficiently learning sparse-reward tasks such as bimanual manipulation. We observed
significant benefits compared to alternative non-synergistic forms of intrinsic motivation. Our for-
mulation relied on encouraging actions whose effects would not be achieved by individual agents
acting in isolation. It would be beneficial to extend this notion further, and explicitly encourage
action sequences, not just individual actions, whose effects would not be achieved by individual
agents. Furthermore, while our intrinsic reward encouraged synergistic behavior in the single policy
being learned, it would be interesting to leverage it for approaches that aim to learn a diverse set of
policies, and thereby discover a broad set of synergistic skills over the course of training.
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A PSEUDOCODE

Here is full pseudocode of our training algorithm described in Section 3.3:

Algorithm TRAIN-SYNERGISTIC-POLICY(πθ,M, n, α)
1 Input: πθ, an initial policy.
2 Input:M, an MDP for a synergistic task.
3 Input: n, the number of episodes of data with which to train single-agent models.
4 Input: α, a step size.
5 for i = 1, 2, ..., n do
6 Append episode of experience inM with only agent A acting to data buffer DA.
7 Append episode of experience inM with only agent B acting to data buffer DB .
8 Fit forward models fA, fB to predict next states in DA, DB . // Pretrained & fixed.

9 Djoint ← ∅ // Data for joint model, only needed if using rintrinsic2 .
10 while πθ has not converged do
11 D ← batch of experience tuples (st, at, r

extrinsic
t , st+1) from running πθ inM.

12 if using rintrinsic
2 then

13 Append D to Djoint and fit forward model f joint to predict next states in Djoint.
14 for (st, at, r

extrinsic
t , st+1) ∈ D do

15 Replace rextrinsic
t with rfull(st, at, st+1). // Shape reward, see Section 3.3.

16 ∇θJ(θ)← POLICYGRADIENT(πθ,D)

17 if using rintrinsic
2 then

18 Update ∇θJ(θ) with analytical gradients per Equation 1.
19 θ ← θ + α∇θJ(θ) // Or Adam (Kingma & Ba, 2014).

B DERIVATION OF EQUATION 1

When using rintrinsic
2 , the objective to be optimized can be written as:

J(θ) ≡ Eτ [rfull(τ)] = Eτ

[
T∑
t=0

rfull(st, at, ·)

]
= Eτ

[
T∑
t=0

rintrinsic
2 (st, at, ·) + λ · rextrinsic(st)

]
.

We will write ∇θJ(θ) in a particular way. Let τ̄t = 〈s0, a0, s1, a1, ..., st〉 be a random variable
denoting trajectories up to timestep t, but excluding at. We have:

∇θJ(θ) = ∇θEτ [rfull(τ)] =
T∑
t=0

∇θEτ̄t [Eat∼πθ(st)[r
full(st, at, ·)]],

where we have used the fact that trajectories up to timestep t have no dependence on the future
st+1, at+1, ..., sT , and we have split up the expectation. Now, observe that the inner expectation,
Eat∼πθ(st)[r

full(st, at, ·)], is dependent on θ since the at are sampled from the policy πθ; intuitively,
this expression represents the expected reward of st with respect to the stochasticity in the current
policy. To make this dependence explicit, let us define rfull

θ (st) := Eat∼πθ(st)[r
full(st, at, ·)]. Then:

∇θJ(θ) =

T∑
t=0

∇θEτ̄t [rfull
θ (st)]

=

T∑
t=0

∫
τ̄t

∇θ[pθ(τ̄t)rfull
θ (st)] dτ̄t

=

T∑
t=0

∫
τ̄t

pθ(τ̄t)r
full
θ (st)∇θ log pθ(τ̄t) + pθ(τ̄t)∇θrfull

θ (st) dτ̄t

=

T∑
t=0

Eτ̄t [rfull
θ (st)∇θ log pθ(τ̄t)] + Eτ̄t [∇θrfull

θ (st)],
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where in the second line, we used both the product rule and the REINFORCE trick (Williams, 1992).

Now, let τt = 〈s0, a0, s1, a1, ..., st, at〉 denote trajectories up to timestep t, including at (unlike τ̄t).
Putting back Eat∼πθ(st)[r

full(st, at, ·)] in place of rfull
θ (st) gives Equation 1:

∇θJ(θ) =

T∑
t=0

Eτ̄t [Eat∼πθ(st)[r
full(st, at, ·)]∇θ log pθ(τ̄t)] + Eτ̄t [∇θEat∼πθ(st)[r

full(st, at, ·)]]

=

T∑
t=0

Eτt [rfull(st, at, ·)∇θ log pθ(τ̄t)] + Eτ̄t [∇θEat∼πθ(st)[r
intrinsic
2 (st, at, ·)]].

In the second line, we have used the facts that τ̄t and the extrinsic sparse reward do not depend on at.
Note that we can estimate the term Eτ̄t [∇θEat∼πθ(st)[r

intrinsic
2 (st, at, ·)]] empirically using a batch

of trajectory data τ1, ..., τn, for any timestep t.

C ADDITIONAL ENVIRONMENT DETAILS

Here, we provide additional details about the action space of each environment.

The following table describes the parameterization of each skill in the library, as well as which
environments are allowed to utilize each skill:

Skill Environments Continuous Parameters

top grasp bar, ball, bottle end effector position, end effector z-orientation

side grasp bottle, corkscrew end effector position, approach angle

go-to pose ball, corkscrew end effector position, end effector orientation

lift bar, ball vertical distance to lift end effector

twist bottle none (wrist joint rotates at current end effector pose)

rotate corkscrew rotation axis, rotation radius

no-op all none

Next, we describe the search space of each of the continuous parameters. Since the object pose is
known in simulation, we are able to leverage it in designing these search spaces:

Continuous Parameter Environments Relevant Skills Search Space

end effector position (unitless) bar top grasp [-1, 1] interpolated position along bar

end effector position (meters) ball, bottle, corkscrew grasps, go-to pose [-0.1, 0.1] x/y/z offset from object center

end effector z-orientation bar, ball, bottle top grasp [0, 2π]

approach angle bottle, corkscrew side grasp [−π2 ,
π
2 ]

end effector orientation ball, corkscrew go-to pose [0, 2π] r/p/y Euler angles converted to quat

distance to lift (meters) bar, bottle lift [0, 0.5]

rotation axis corkscrew rotate [-0.1, 0.1] x/y offset from object center; vertical

rotation radius (meters) corkscrew rotate [0, 0.2]

Note that our inverse kinematics feasibility checks allow the system to learn to rule out end effector
poses which are impossible to reach, since these cause no change in the state other than consuming
a timestep, and generate 0 reward. Finally, Figure 5 shows a diagram of our policy architecture.
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Figure 5: The policy πθ maps a state to 1) a categorical distribution over skills for A, 2) a categorical distri-
bution over skills for B, 3) means and variances of independent Gaussian distributions for every continuous
parameter of skills for A, and 4) means and variances of independent Gaussian distributions for every contin-
uous parameter of skills for B. To sample from the policy, we first sample skills for A and B, then sample
all necessary continuous parameters for the chosen skills from the Gaussian distributions. Altogether, the two
skills and two sets of parameters form an action, which can be fed into the forward models for prediction.
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