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ABSTRACT

We propose a method for joint image and per-pixel annotation synthesis with
GAN. We demonstrate that GAN has good high-level representation of target data
that can be easily projected to semantic segmentation masks. This method can be
used to create a training dataset for teaching separate semantic segmentation net-
work. Our experiments show that such segmentation network successfully gen-
eralizes on real data. Additionally, the method outperforms supervised training
when the number of training samples is small, and works on variety of different
scenes and classes. The source code of the proposed method will be publicly
available.

1 INTRODUCTION

Generative Adversarial Networks (GANs) introduced in |Goodfellow et al.| (2014) have attracted
much attention recently. GANs achieve state-of-the-art results among generative models and have
many applications, such as image-to-image translation (Isola et al., [2016; [Zhu et al., [2017a; Huang
et al.| 2018b; Liu et al., [2019), super-resolution (Wang et al. 2018}, [Ledig et al.;,[2017), colorization
(Isola et al., 2016; Nazeri et al., [2018)), texture synthesis (Li & Wand, 2016} Xian et al.| [2018)), etc.

GAN can generate high resolution images from latent vector with high-level information. This
means that intermediate features from GAN also contain high-level information such as position of
the objects in the scene and their boundaries. Thus, natural question arises whether it is possible to
project features to semantic segmentation mask and generate images along with per-pixel annotation.
To tackle this question, we have conducted several experiments which show that the answer to this
question is positive.

Our contributions are as follows:

e We propose method for joint image and per-pixel annotation synthesis.

e We show that separate semantic segmentation network trained on synthetic dataset gener-
alizes on real images.

e We show that our method outperforms regular supervised training when number of anno-
tated images is small.

2 RELATED WORK

2.1 GANSs

Generative Adversarial Networks usually consist of two networks: Generator network and Discrimi-
nator network. Generator creates an image from the noise and Discriminator is trained to distinguish
real and generated images. The Generator is trained to fool the Discriminator. After training proce-
dure, the Generator should produce the images that are indistinguishable from real ones.

Since GANs were introduced in 2014 (Goodfellow et al., 2014)) a lot of works improving the per-
formance and quality of GANs appeared. This includes such works as WGAN-GP (Gulrajani et al.}
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Figure 1: Example of generated image from StyleGAN-FFHQ and corresponding generated anno-
tation for hair segmentation.

2017), spectral normalization (Miyato et al.,[2018)), ProGAN (Karras et al.,[2017), StyleGAN (Kar-
ras et al.|[2018)) and others. Other studies propose new losses (Jolicoeur-Martineau, 2018} Mescheder

et al.l 2018), architectures and ways to incorporate the conditional information (Miyato & Koyama,
2018; |Odena et al. [2017). Despite practical advances, the training dynamics of GANS are still not
completely understood.

Pix2PixHD (Wang et al)) and SPADE (Park et al.| [2019) achieve impressive results on creating
high-resolution images from semantic segmentation masks. CycleGAN 2017b), MUNIT

(Huang et al, 2018a), FUNIT 2019) are image-to-image translation methods based on
GAN:S.

There are several works that propose ways for studying and manipulating internal GAN features. For
example, in GAN Dissection authors present an analytic framework to visualize
and understand GANSs at the unit-, object-, and scene-level. The show that GANs lear internal
neurons that match meaningful concepts. In[Brock et al.| (2016)) authors introduce the Neural Photo
Editor, the interface for exploring the learned latent space of generative models and making specific
semantic changes to natural images.

2.2  SEMANTIC SEGMENTATION

As semantic segmentation is a research topic of interest at this time, many methods were proposed

in recent years. This includes Fully Convolutional Network (FCN) (Long et al., 2015)), U-Net (Ron-

neberger et al.} [2015), DeepLabs (Chen et al., 2014; [2017afb; 2018) and others. DeepLabV3+ (Chen
et al., achieves state-of-the-art results on popular benchmarks. Thus, we use this method for

our baseline segmentation network.

3 OVERVIEW OF THE PROPOSED METHOD

The main idea of our method is addition of a light-weight decoder to already trained GAN. The
decoder is trained to generate per-pixel annotation for the image which is generated by GAN. To
train the decoder, several images are generated by GAN and manually annotated. Then decoder is
trained with standard back-propagation. We show that only a few images are required in order to
train the decoder due to its light-weight nature. Modified network is then used to generate a large
dataset of images together with annotation. Separate segmentation network is then trained on this
synhtetic dataset.
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Figure 2: Schematic network architecture.

3.1 BASELINE

We use StyleGAN (Karras et al., [2018)) as our baseline image generation method and DeepLabV3+
(Chen et al.| 2018)) as baseline image segmentation method.

3.2 TRAINING DECODER

At this step we train Decoder for joint image and semantic segmentation masks synthesis (see Figure
[I). Decoder accepts features from GAN and outputs segmentation mask. Decoder is trained in
supervised manner on the pairs of input features and corresponding masks (see Figure[2). Such pairs
can be collected simply by annotating generated images and storing corresponding intermediate
features from GAN. Note that the original GAN remains fixed. We use cross-entropy loss to train
Decoder. Interestingly, training takes a few minutes and Decoder successfully learns on a small
number of training examples.

3.3 TRAINING SEGMENTATION NETWORK ON SYNTHETIC DATA

After Decoder is trained we can create a large dataset of pairs of GAN-generated images and corre-
sponding masks predicted by Decoder. We train DeepLabV3+ (Chen et al., [2018)) on this sythetic
dataset. Our experiments show that such network successfully generalizes on real data.

3.4 FINDING SEGMENTATION MASK WITHOUT TRAINING A SEGMENTATION NETWORK

We also experiment with Image2StyleGAN (Abdal et al., [2019) method which proposes a way to
find embedding in StyleGAN for arbitrary real photo. In our case it means that we can find seman-
tic segmentation mask for arbitrary photo without even training a separate segmentation network.
Having a trained Decoder this can be done in two steps. Firstly, we find embedding in StyleGAN
for specified photo and store intermediate features. Then we find segmentation mask from features
using Decoder.

4 EXPERIMENTS

4.1 FEASIBILITY STUDY

Firstly, we experiment with semantic segmentation of glasses for face photos. We annotate 11
generated by GAN face images with glasses masks. Then we apply our method to train DeepLabV3+
and finally test it on random photos from the web. We assess results visually. Results are shown
in Figure 5]
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Table 1: Evaluation results on LSUN-cars dataset with two classes (background and car)

| Method | pre-trained backbone | accuracy | ToU |
DeepLabV3+ (Chen et all[2018) - 0.8588 0.6983
Proposed method (ours) - 0.9787 | 0.9408
DeepLabV3+ (Chen et al.l 2018) ImageNet 0.9641 0.9049
Proposed method (ours) ImageNet 0.9862 | 0.9609

Table 2: Evaluation results on FFHQ dataset with two classes (background and hair)

| Method | pre-trained backbone | accuracy | ToU |
DeepLabV3+ (Chen et al., [2018)) ImageNet 0.8831 0.7549
Proposed method (ours) ImageNet 0.8967 | 0.8243

We also demonstrate our model’s ability to generalize to a specific part of the face, such as one
specific tooth (see Figure[7).

4.2 EVALUATION PROTOCOL

We test two variants of backbone for DeepLabV3+ (Chen et al., 2018)): pretrained on ImageNet and
not pretrained. We measure pixel accuracy and intersection-over-union averaged across the classes
(mloU).

4.3 LSUN-CARS

We randomly sample subset of 100 images from validation part of LSUN-cars and annotate them
with masks of cars. Then we randomly split dataset to train and test parts, 20 samples are used
for training and 80 samples for testing. For baseline method, we use these 20 training samples
to train DeepLabV3+ (Chen et al., 2018)). For our proposed method, we also annotate 20 random
images generated by StyleGAN and use them to train a Decoder. Then we generate 10000 synthetic
samples and train DeepLabV3+ on them. Both methods are tested on 80 real samples. The results
of evaluation are shown in Table [Tl Examples of the results are shown in Figure [3]

4.4 FFHQ

We conduct same experiments on FFHQ dataset, but instead of car we use hair segmentation. The
results are shown in Table[d We also experiment with Image2StyleGAN (Abdal et al, 2019) for
StyleGAN-FFHQ. An example of embedding and mask is shown in Figure[6]

4.5 LSUN-BEDROOMS

In this experiment we compare proposed method to baseline for a varying number of training sam-
ples to see the dynamics. As there is no semantic segmentation masks for LSUN-bedrooms and
annotation is quite tedious, we use segmentation network from GluonCV package (He et al., 2018}
Zhang et al.l [2019) pretrained on ADE20K (Zhou et al.| 2017} 2016) to create an annotation. We
use only 13 classes out of 150 of ADE20K that correspond to bedrooms scenes. Results are shown
in Figure

4.6 IMPLEMENTATION DETAILS

We use MXNet Gluon (Chen et al., [2015) for implementation of our algorithm. We convert Style-
GAN models to Gluon. For training Decoder we use SGD with momentum 0.9 with the starting
learning rate 0.01 and weight decay 1 x 10~3. Our DeepLabV3+ network has ResNet-50 backbone.
For training DeepLabV3+ we use SGD with momentum 0.9 with the starting learning rate 0.01 and
weight decay 1 x 1074,
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Figure 3: Examples of the results on LSUN-cars. Top line: proposed method. Bottom line: baseline.
20 images were used for training.
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Figure 4: Comparison of proposed method to baseline on LSUN-bedrooms for a varying number
of annotated samples. (a) - without ImageNet pretrained backbone, accuracy. (b) - with ImageNet
pretrained backbone, accuracy. (c) - without ImageNet pretrained backbone, mean IoU. (d) - with
ImageNet pretrained backbone, mean IoU.

4.7 RESULTS AND DISCUSSION.

Experiments show that proposed method works well when the number of training samples is small
and outperforms regular supervised training by large margin in this case. However, when the number
of training examples gets bigger the difference in accuracy decreases (Figure [] (a), (c)). In the
case when the pre-trained on ImageNet backbone is used proposed method begins to work worse
(Figure El (b), (d)) after some point. This can be explained by the fact that GAN itself has limited
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Figure 5: Examples of glasses segmentation on random images from the web. 11 images were
annotated for training.

Figure 6: Example of embedding to StyleGAN and predicted mask.

capabilities: the quality of generated images is not perfect, and GAN is often unable to generate
some rare objects. Therefore, these rare objects are missed in synthetic dataset. Additionally, the
internal representation of GAN from which we project semantic masks may slightly differ from
the real high-level representation. For example, the same features are probably used to represent a
person’s hair and beard. As a result, the quality of hair segmentation deteriorates.

5 CONCLUSION

We introduce a method for generating images along with semantic segmentation masks using pre-
trained GAN. It can be used for training separate segmentation network. The study shows that such
segmentation network successfully generalizes on real data and performs well on various tasks.

The limitations of our method are associated with two factors. The first one is the lack of diversity
of GANs. The second one is the imperfect internal representation of GANs. We assume that the
gradual development of image generation algorithms will help to overcome current drawbacks of
the proposed method, subsequently speeding up annotation process.
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Figure 7: Example of generated image from StyleGAN-FFHQ and corresponding generated seg-
mentation of the front left tooth. Only 5 images were annotated for training. Note that our model
expectedly segmented only one of the many equally textured teeth.



Under review as a conference paper at ICLR 2020

REFERENCES

Rameen Abdal, Yipeng Qin, and Peter Wonka. Image2stylegan: How to embed images into the
stylegan latent space? arXiv preprint arXiv:1904.03189, 2019.

David Bau, Jun-Yan Zhu, Hendrik Strobelt, Bolei Zhou, Joshua B Tenenbaum, William T Freeman,
and Antonio Torralba. Gan dissection: Visualizing and understanding generative adversarial net-
works. arXiv preprint arXiv:1811.10597, 2018.

Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Neural photo editing with
introspective adversarial networks. arXiv preprint arXiv:1609.07093, 2016.

Liang-Chieh Chen, George Papandreou, lasonas Kokkinos, Kevin Murphy, and Alan L Yuille. Se-
mantic image segmentation with deep convolutional nets and fully connected crfs. arXiv preprint
arXiv:1412.7062, 2014.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs. IEEE transactions on pattern analysis and machine intelligence, 40(4):
834-848, 2017a.

Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous
convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587, 2017b.

Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. Encoder-
decoder with atrous separable convolution for semantic image segmentation. In ECCV, 2018.

Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu,
Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and efficient machine learning library for
heterogeneous distributed systems. arXiv preprint arXiv:1512.01274, 2015.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural infor-
mation processing systems, pp. 2672-2680, 2014.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Im-
proved training of wasserstein gans. In Advances in Neural Information Processing Systems, pp.
5767-5771, 2017.

Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Junyuan Xie, and Mu Li. Bag of tricks for
image classification with convolutional neural networks. arXiv preprint arXiv:1812.01187, 2018.

Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz. Multimodal unsupervised image-to-
image translation. In Proceedings of the European Conference on Computer Vision (ECCV), pp.
172-189, 2018a.

Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz. Multimodal unsupervised image-to-
image translation. In ECCV, 2018b.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
conditional adversarial networks. arxiv, 2016.

Alexia Jolicoeur-Martineau. The relativistic discriminator: a key element missing from standard
gan. arXiv preprint arXiv:1807.00734, 2018.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for im-
proved quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. arXiv preprint arXiv:1812.04948, 2018.

Christian Ledig, Lucas Theis, Ferenc Huszér, Jose Caballero, Andrew Cunningham, Alejandro
Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-realistic sin-
gle image super-resolution using a generative adversarial network. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 4681-4690, 2017.



Under review as a conference paper at ICLR 2020

Chuan Li and Michael Wand. Precomputed real-time texture synthesis with markovian generative
adversarial networks. In European Conference on Computer Vision, pp. 702-716. Springer, 2016.

Ming-Yu Liu, Xun Huang, Arun Mallya, Tero Karras, Timo Aila, Jaakko Lehtinen, and Jan Kautz.
Few-shot unsupervised image-to-image translation. In arXiv, 2019.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp- 3431-3440, 2015.

Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training methods for gans do
actually converge? arXiv preprint arXiv:1801.04406, 2018.

Takeru Miyato and Masanori Koyama. cgans with projection discriminator. arXiv preprint
arXiv:1802.05637, 2018.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

Kamyar Nazeri, Eric Ng, and Mehran Ebrahimi. Image colorization using generative adversarial
networks. In International Conference on Articulated Motion and Deformable Objects, pp. 85—
94. Springer, 2018.

Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with auxil-
iary classifier gans. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pp. 2642-2651. JIMLR. org, 2017.

Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic image synthesis with
spatially-adaptive normalization. arXiv preprint arXiv:1903.07291, 2019.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234-241. Springer, 2015.

Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro.
pix2pixhd: High-resolution image synthesis and semantic manipulation with conditional gans.

Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao, and Chen Change
Loy. Esrgan: Enhanced super-resolution generative adversarial networks. In The European Con-
ference on Computer Vision Workshops (ECCVW), September 2018.

Wengi Xian, Patsorn Sangkloy, Varun Agrawal, Amit Raj, Jingwan Lu, Chen Fang, Fisher Yu, and
James Hays. Texturegan: Controlling deep image synthesis with texture patches. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8456-8465, 2018.

Zhi Zhang, Tong He, Hang Zhang, Zhongyuan Zhang, Junyuan Xie, and Mu Li. Bag of freebies for
training object detection neural networks. arXiv preprint arXiv:1902.04103, 2019.

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Semantic
understanding of scenes through the ade20k dataset. arXiv preprint arXiv:1608.05442, 2016.

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene
parsing through ade20k dataset. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Computer Vision (ICCV), 2017 IEEE Interna-
tional Conference on, 2017a.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference
on computer vision, pp. 2223-2232,2017b.



	Introduction
	Related work
	GANs
	Semantic segmentation

	Overview of the proposed method
	Baseline
	Training decoder
	Training segmentation network on synthetic data
	Finding segmentation mask without training a segmentation network

	Experiments
	Feasibility study
	Evaluation protocol
	LSUN-cars
	FFHQ
	LSUN-bedrooms
	Implementation details
	Results and discussion.

	Conclusion

