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ABSTRACT

Lifelong learning aims at avoiding the catastrophic forgetting problem of tra-
ditional supervised learning models. Episodic memory based lifelong learning
methods such as A-GEM (Chaudhry et al., 2018b) are shown to achieve the state-
of-the-art results across the benchmarks. In A-GEM, a small episodic memory is
utilized to store a random subset of the examples from previous tasks. While the
model is trained on a new task, a reference gradient is computed on the episodic
memory to guide the direction of the current update. While A-GEM has strong
continual learning ability, it is not clear that if it can retain the performance in
the presence of adversarial attacks. In this paper, we examine the robustness of
A-GEM against adversarial attacks to the examples in the episodic memory. We
evaluate the effectiveness of traditional attack methods such as FGSM and PGD.
The results show that A-GEM still possesses strong continual learning ability in
the presence of adversarial examples in the memory and simple defense tech-
niques such as label smoothing can further alleviate the adversarial effects. We
presume that traditional attack methods are specially designed for standard super-
vised learning models rather than lifelong learning models. we therefore propose
a principled way for attacking A-GEM called gradient reversion (GREV) which
is shown to be more effective. Our results indicate that future lifelong learning
research should bear adversarial attacks in mind to develop more robust lifelong
learning algorithms.

1 INTRODUCTION

Lifelong learning (French, 1999; Thrun & Mitchell, 1995; Kirkpatrick et al., 2017) aims at improv-
ing the continual learning ability of neural networks. Standard supervised learning methods suffer
from the problem of catastrophic forgetting, in which case the models gradually forget previously
learned knowledge while learning on a sequence of new tasks. In lifelong learning, neural networks
are equipped with the capability to learn new tasks while maintaining the performance on the tasks
trained previously. Lifelong learning models with continual learning ability can be deployed in
complex environments with the aim to process a continuous stream of information.

Several methodologies are proposed recently to address the catastrophic forgetting problem. In
Kirkpatrick et al. (2017), the authors adopt Fisher information matrix to prevent important weights
for old tasks from drastic changes while the model is trained on a new task. While in Rusu et al.
(2016), a neural network that has lateral connections with old tasks is trained each time for the
new task. Recently, lifelong learning methods based on episodic memory (Lopez-Paz et al., 2017;
Chaudhry et al., 2018b; d’Autume et al., 2019) such as A-GEM (Chaudhry et al., 2018b) are shown
to be able to achieve the state-of-the-art performance across several benchmarks. In A-GEM, a small
episodic memory is utilized to store a random subset of the examples from old tasks. While the
model is trained on a new task, a reference gradient is computed on a batch of the samples from the
episodic memory to guide the current update direction. If the angle between the reference gradient
and the current gradient computed on the new task is obtuse, the current gradient is projected to be
perpendicular to the reference gradient.

The strong continual learning ability of A-GEM relies on the episodic memory which can give a hint
on the performance of the current model on old tasks. It has been known that in the standard super-
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vised learning setting, deep neural networks can be easily fooled by adversarial examples (Szegedy
et al., 2013; Goodfellow et al., 2014). A natural question then arises:

Can A-GEM retain the continual learning ability in the presence of
adversarial examples in the episodic memory?

In this paper, we systematically evaluate the robustness of A-GEM against traditional adversarial
attack methods such as FGSM (Goodfellow et al., 2014) and PGD (Madry et al., 2017). The results
show that A-GEM is surprisingly robust under traditional adversarial attacks. We therefore propose
gradient reversion (GREV) attack, which is a principled way for attacking episodic memory based
lifelong learning algorithms such as A-GEM. Essentially, GREV alters the direction of reference
gradient computed on the episodic memory by slightly perturbing the examples. Our results show
that for future research on lifelong learning, it is important to design algorithms bearing adversarial
attacks in mind.

In this paper, we have the following contributions,

• To the best of our knowledge, we are the first to systematically evaluate the robustness of
episodic memory based lifelong learning algorithms such as A-GEM.

• We show that simple adversarial attack methods such as fast gradient sign method (FGSM)
(Goodfellow et al., 2014) and projected gradient descent (PGD) (Madry et al., 2017) can
hardly hurt the performance of A-GEM. Defense techniques such as label smoothing can
be used to further alleviate the adversarial effect.

• We propose a principled way called gradient reversion (GREV) for attacking A-GEM. On
Permuted MNIST, we show that A-GEM achieves an accuracy which is 40% lower than
the original accuracy under the proposed GREV attack. On Split CIFAR, while FGSM and
PGD cannot hurt the performance of A-GEM, the proposed GREV degrades the accuracy
of A-GEM by as much as 20%.

2 BACKGROUND

2.1 LIFELONG LEARNING

In a lifelong learning task, suppose there are a sequence ofN datasets denoted as {D1, D2, ..., DN}.
Each dataset Di is a collection of pairs {xij , yij}, where xij is the j-th example of task i and yij is
the corresponding label. A model f(w;x) with weight w is trained continually on the tasks with a
single pass over the examples of each task. We denote the weight as wi while the model is trained
on the i-th task and the training loss on the i-th task is denoted as `(wi;Di).

The most commonly used metric for evaluating the performance of lifelong learning models is Av-
erage Accuracy (AA), which is the average test accuracy on the test set of each task after the model
finishes training on all tasks. In order to achieve a high Average Accuracy, the model should main-
tain the performance on old tasks while training on a new task.

2.2 A-GEM

In this section, we review the Averaged Gradient Episode Memory (A-GEM) (Chaudhry et al.,
2018b), one of the state-of-the-art lifelong learning methods. In A-GEM, a small episodic memory
M with fixed size is used to store a subset of the examples from old tasks. The episodic memory
is populated by choosing examples uniformly at random for each task. Mk is used to denote the
examples in the episodic memory from task k. While training on task i, the loss on the episodic
memory M can be computed as `(wi;M), where M = ∪k<iMk. A-GEM ensures that each update
on the i-th task will not increase the loss on the episodic memory, that is,

minw`(w;Di) s.t. `(w;M) ≤ `(wi−1;M) where M = ∪k<iMk (1)

To inspect the increase of loss on the episodic memory, A-GEM computes the gradient g on the
current task and the reference gradient gref on the episodic memory. When the angle between g and
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gref is obtuse, A-GEM projects the current gradient g to have a right or acute angle with gref,

mingtrue

1

2
‖g − gtrue‖22 s.t. g>truegref ≥ 0 (2)

The above optimization problem can be solved in closed form as,

gtrue = g − g>gref

g>refgref
gref (3)

The current gradient g is then replaced by gtrue for updating the model.

Essentially, A-GEM avoids the catastrophic forgetting problem by altering the direction of the cur-
rent gradient. When the current gradient is detrimental to old tasks, it is adjusted to be perpendicular
or acute with the gradient computed on the episodic memory.

3 A THREAT MODEL FOR ATTACKING AND DEFENSE OF MEMORY BASED
LIFELONG LEARNING ALGORITHMS

In this section, we specify the threat model used in the paper for attacking A-GEM. Specially, we
consider a white-box adversary which has access to the model architecture and parameters. In
addition, the adversary is allowed to perturb the examples in the episodic memory. However, we do
not expose the training process to the adversary, that is, the adversary can only perturb the examples
in the episodic memory in an offline fashion. Specially, before the model is trained on the i-th task,
the adversary can slightly perturb the examples from task i−1 in the episodic memory. In this setting,
each example is only perturbed once during the lifelong learning process. We refer to this threat
model as Offline Sequential Attack. The defender, on the other hand, has access to the reference
gradients but not the perturbed examples in the episodic memory. The defender is further allowed
to take advantage of the labels of the perturbed examples in the memory for defending possible
attacks. The proposed threat model is a generalized version of white-box adversaries (Goodfellow
et al., 2014; Carlini & Wagner, 2017a) for lifelong learning setting. The Average Accuracy of the
lifelong learning model with and without adversarial attack is referred to as perturbed accuracy and
unperturbed accuracy respectively.

4 TRADITIONAL ATTACK METHODS

The objective of traditional adversaries is to find an adversarial example xadv for x such that they
are imperceptibly close and yet the neural network labels them distinctly. We bound the `p distance
between an input x and its adversarial counterpart: xadv ∈ Sp(x) := {x′ : ‖x − x′‖p ≤ τp},
where p = 2 or∞. We omit from Sp(x) the argument x and the subscript p when it does not cause
ambiguity. We focus on `∞ bounded attack in this paper since `∞ distance has been shown as a
natural metric to measure adversarial perturbations.

FGSM Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2014) is a simple one-step adver-
sarial attack method. It is featured by efficiency and high performance for generating `∞ bounded
adversarial examples. In FGSM, the adversarial counterpart of example x is produced by,

x + εsign(∇x`(w;x)) (4)

PGD A more powerful attack technique has been proposed as a multi-step variant of FGSM, which
is called projected gradient descent (PGD) (Madry et al., 2017),

xn+1 = ΠS(xn + ηsign(∇xn
`(w;xn)) (5)

where S = {x : ‖x− xn‖ ≤ τ} and Π is the projection operator.
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(a) Case1: the angle between the
current gradient g and the refer-
ence gradient gref is acute.

(b) Case2: the angle between the
current gradient g and the refer-
ence gradient gref is obtuse.

Figure 1: The illustration of our proposed gradient reversion attack.

Rotation We also consider a simple variant of the rotation attack introduced in Engstrom et al.
(2017). If the example x is rotated by an angle θ, the pixel at position (u, v) is translated to (u′, v′)
via the following equation, [

u′

v′

]
=

[
cos θ − sin θ
sin θ cos θ

]
·
[
u
v

]
(6)

5 A PRINCIPLED WAY OF ATTACKING MEMORY BASED LIFELONG LEARNING
METHODS

The traditional attack methods, such as FGSM and PGD, are designed based on the idea that the
goal of attacking is to degrade the accuracy of the model by appropriately perturbing the examples.
While in lifelong learning, the aim is to perturb the examples in the memory in the way that the
model cannot retain performance on old tasks. Dominated by different motivations, traditional attack
methods may not be suitable for attacking lifelong learning models.

Note that in the A-GEM framework, as illustrated in Section 2.2, the angle between the stochastic
gradient of the current task and the episodic memory is computed in each iteration. If the angle is
obtuse, then A-GEM adjusts the current update direction appropriately. The main idea of our attack
mechanism is to disseminate misinformation by providing a corrupted reference gradient, which can
be realized by manipulating the examples stored in the episodic memory in a specific way. Based on
this idea, we propose an attack method which tries to find an appropriate perturbation to the examples
in the episodic memory to minimize the correlation (characterized by inner product) between the
vanilla reference gradient and the corrupted reference gradient calculated on the perturbed data.
Mathematically, the objective function can be written as,

min
‖δ‖≤τ

〈∇w`(w;x),∇w`(w;x + δ)〉 , (7)

where w is the trainable parameter of the model, x is an example in the episodic memory, ` is the loss
function, τ > 0 is a hyper-parameter which characterizes the feasible region of the perturbation. If τ
is large enough, there exists at least one sub-optimal perturbation δ̃ such that∇w`(w;x+ δ̃) is in the
opposite direction of ∇w`(w;x). In Figure 1, g, gref, grev, gtrue, ggrev stand for stochastic gradient
calculated on the current task, stochastic gradient calculated on the examples in episodic memory
(i.e., the reference gradient∇w`(w;x)), the corrupted reference gradient (i.e.,∇w`(w;x+ δ̃)), the
true update direction found by A-GEM on the unperturbed memory, the update direction found by
A-GEM under gradient reversion attack. Below we analyze two common cases during the learning
process,

• In case 1, the angle between the current gradient g and the reference gradient gref is acute.
The true update direction gtrue found by A-GEM is coincident with g. With the proposed
gradient reversion attack, the actual update direction ggrev is perpendicular to gref. Although
the update direction ggrev will not lead to an increase of loss on the episodic memory, it does
not help the learning on old tasks as gtrue does.
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• In case 2, the angle between the current gradient g and the reference gradient gref is obtuse.
The true update direction gtrue found by A-GEM is perpendicular to gref. Since ggrev is
coincident with g in this case, the update direction ggrev will deteriorate the performance of
the model on the episodic memory.

In both cases, we can see that ggrev is either perpendicular or negatively correlated to gref, which
directly leads to catastrophic forgetting.

To solve (7), we can utilize projected gradient descent update for multiple iterations:

δ ← Π‖δ‖≤τ

[
δ − η

(
(∇δ∇w`(w;x + δ))

>∇w`(w;x
)]

(8)

It is worth mentioning that the update (8) can be implemented efficiently. It requires three back-
propagations in the first iteration, and only two back-propagations thereafter. Specifically, in the
first iteration, we need to evaluate∇w`(w;x) and∇w`(w;x+ δ) with two back-propagations, and
one more back-propagation is needed to calculate the gradient with respect to δ. In the subsequent
iterations, ∇w`(w;x) is already available and only two back-propagations are needed. Note that
our computational cost per iteration is almost the same as PGD. The reason is that the dimension of
δ is much smaller than that of w, so the additional computational overhead is negligible.

6 EXPERIMENTAL SETTINGS

In the experiments, we are interested in investigating the following questions,

• Can traditional attack methods successfully attack A-GEM?
• How effective is our proposed attack method compared with traditional attack methods?
• How is the perturbed accuracy affected by the size of the episodic memory?

6.1 DATASETS

We use Permuted MNIST and Split CIFAR in the experiments. Permuted MNIST (Kirkpatrick
et al., 2017) consists of 20 tasks and each task is constructed by applying the same permutation to
the pixel of examples in the MNIST dataset (LeCun et al., 1998). Split CIFAR (Kirkpatrick et al.,
2017) is constructed by splitting the original CIFAR100 dataset (Krizhevsky et al., 2009) into 20
disjoint sets. Each set is constructed by randomly sampling 5 categories of the dataset.

6.2 NETWORK ARCHITECTURES

We use the same network architectures as in Chaudhry et al. (2018b). For Permuted MNIST,
we adopt a fully-connected neural network with two hidden layers of 256 ReLU units. For Split
CIFAR, we use a reduced ResNet18 (He et al., 2016).

6.3 EVALUATION PROTOCOL

We follow the same training settings as in Chaudhry et al. (2018b). For Permuted MNIST, the
maximum perturbation τ is selected from {0.05, 0.1, 0.2}. The episodic memory size is set to be
{850, 1700, 2550, 4250}, which corresponds to 5, 10, 15, 25 examples per class. For Split CIFAR,
the maximum perturbation τ is selected from {0.015, 0.031, 0.055}. The episodic memory size is
set to be {425, 850, 1105}, which corresponds to 5, 10, 13 examples per class. Both PGD and GREV
are iterated for 40 steps. In the rotation attack, the examples in the episode memory are rotated by
3, 5, 7 degrees. All the experiments are repeated for 5 times with different random seeds and the
variance is reported.

7 RESULTS

7.1 PERMUTED MNIST

We show the results of the perturbed accuracy of different attack methods and the unperturbed accu-
racy without attack on Permuted MNIST in Table 1. The results show several intriguing properties
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FGSM

Memory Size τ = 0.05 τ = 0.1 τ = 0.2 No Attack
4250 0.872 ± 0.002 0.785 ± 0.010 0.510 ± 0.02 0.892 ± 0.003
2550 0.866 ± 0.007 0.788 ± 0.004 0.543± 0.006 0.885 ± 0.004
1700 0.858 ± 0.002 0.787 ± 0.005 0.555 ± 0.010 0.875 ± 0.003
850 0.831 ± 0.004 0.761 ± 0.008 0.550 ± 0.016 0.861 ± 0.001

PGD

Memory Size τ = 0.05 τ = 0.1 τ = 0.2 No Attack
4250 0.868 ± 0.004 0.765 ± 0.006 0.471 ± 0.013 0.892 ± 0.003
2550 0.863 ± 0.004 0.771 ± 0.012 0.511 ± 0.011 0.885 ± 0.004
1700 0.852 ± 0.003 0.768 ± 0.007 0.523 ± 0.009 0.875 ± 0.003
850 0.829 ± 0.003 0.749 ± 0.007 0.543 ± 0.004 0.861 ± 0.001

Rotation

Memory Size deg = 3 deg = 5 deg = 7 No Attack
4250 0.805 ± 0.009 0.659 ± 0.018 0.597 ± 0.010 0.892 ± 0.003
2550 0.804 ± 0.012 0.651 ±0.019 0.591± 0.022 0.885 ± 0.004
1700 0.789 ± 0.008 0.644 ±0.020 0.589 ± 0.011 0.875 ± 0.003
850 0.748 ± 0.012 0.602 ±0.012 0.550 ± 0.019 0.861 ± 0.001

GREV

Memory Size τ = 0.05 τ = 0.1 τ = 0.2 No Attack
4250 0.421 ± 0.016 0.450 ± 0.019 0.474 ± 0.018 0.892 ± 0.003
2550 0.440 ± 0.015 0.482 ± 0.011 0.508 ± 0.017 0.885 ± 0.004
1700 0.467 ± 0.019 0.469 ± 0.022 0.488 ± 0.014 0.875 ± 0.003
850 0.451 ± 0.012 0.472 ± 0.017 0.494 ± 0.005 0.861 ± 0.001

Table 1: The perturbed accuracy of different attack methods on Permuted MNIST.

of attacking lifelong learning models compared with attacking standard supervised learning models.
When τ = 0.05, both FGSM and PGD can hardly hurt the performance of A-GEM which shows
the surprising robustness of A-GEM. Although the model performs much worse on the episodic
memory after the attack, we presume that the direction of the gradient on the episodic memory re-
mains nearly unchanged which allows A-GEM to derive the correct update direction. Only when
the value of τ increases to 0.2, FGSM and PGD can achieve a much lower perturbed accuracy. For
the rotation attack, rotating the examples in the memory by only 3 degrees results in a large drop
in accuracy. Intuitively, by rotating the examples, the direction of the gradient changes accordingly
which fools A-GEM to conduct incorrect projections. Compared with the traditional attack meth-
ods, the proposed gradient reversion attack (GREV) achieves a much lower perturbed accuracy even
when τ equals to 0.05. This indicates that by directly perturbing the examples in the way to reverse
the direction of reference gradient, we can achieve a much more effective attack.

7.2 SPLIT CIFAR

We show the results of perturbed accuracy of different attack methods and the unperturbed accuracy
without attack on Split CIFAR in Table 2. The experiments on Split CIFAR allow us to examine
how different attack methods behave with convolutional neural networks. Surprisingly, we observe
that FGSM and PGD cannot attack A-GEM in this case even with a large τ . And the rotation
attack, which is effective on Permuted MNIST, cannot attack A-GEM with convolutional neural
networks either. On the other hand, the proposed gradient reversion attack successfully degrades the
accuracy of A-GEM by about 20%. We show in Section 7.3 that PGD can hardly alter the direction
of the reference gradient which explains the ineffectiveness of PGD in this case. While the proposed
GREV attack drastically change the direction of the reference gradient which leads to a large drop
in accuracy. Under the proposed GREV attack, we observe that the perturbed accuracy is roughly
inversely proportional to the size of the episodic memory. This indicates that although A-GEM
can achieve higher unperturbed accuracy with large episodic memory, it also suffers more in the
presence of adversarial examples.

7.3 ANALYSIS OF PGD AND GREV

We now compare the angle between the reference gradient gref on the unperturbed data and the
corrupted reference gradient on the perturbed data under PGD and GREV attack. This allows us to
gain more insights on how different attack methods behave. On Permuted MNIST, the size of the
episodic memory is set to be 4250 and τ = 0.05. On Split CIAFR, the size of the episodic memory
is set to be 1105 and τ = 0.015. In Figure 2, we show the distribution of the angles between the
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FGSM

Memory Size τ = 0.015 τ = 0.031 τ = 0.055 No Attack
1105 0.601 ± 0.025 0.587 ± 0.021 0.587 ± 0.020 0.585 ± 0.016
850 0.595 ± 0.017 0.589 ± 0.033 0.589 ± 0.034 0.593 ± 0.027
425 0.591 ± 0.024 0.591 ± 0.024 0.559 ± 0.018 0.590 ± 0.025

PGD

Memory Size τ = 0.015 τ = 0.031 τ = 0.055 No Attack
1105 0.587 ± 0.019 0.571 ± 0.017 0.571 ± 0.017 0.585 ± 0.016
850 0.572 ± 0.030 0.587 ± 0.018 0.587 ± 0.017 0.593 ± 0.027
425 0.588 ± 0.021 0.588 ± 0.021 0.588 ± 0.020 0.590 ± 0.025

Rotation

Memory Size deg = 3 deg = 5 deg = 7 No Attack
1105 0.584 ± 0.028 0.586 ± 0.019 0.592 ± 0.012 0.585 ± 0.016
850 0.570 ± 0.024 0.594 ± 0.032 0.578 ± 0.018 0.593 ± 0.027
425 0.586 ± 0.020 0.571 ± 0.039 0.575 ± 0.022 0.590 ± 0.025

GREV

Memory Size τ = 0.015 τ = 0.031 τ = 0.055 No Attack
1105 0.382 ± 0.046 0.381 ± 0.045 0.397 ± 0.027 0.585 ± 0.016
850 0.393 ± 0.037 0.406 ± 0.039 0.406 ± 0.040 0.593 ± 0.027
425 0.413 ± 0.031 0.415 ± 0.035 0.414 ± 0.035 0.590 ± 0.025

Table 2: The perturbed accuracy of different attack methods on Split CIFAR.

reference gradient on 200 random batches of unperturbed examples from task 1 and the corrupted
reference gradient on the corresponding perturbed examples under PGD and GREV attack during
the training of task 2. We can see that the proposed GREV attack is a more effective way to alter
the direction of the reference gradient, especially on Split CIAFR. In Figure 3, we can see that the
angle between the reference gradient and the corrupted reference gradient gradually increases under
the GREV attack. The results show that the proposed GREV attack enjoys some special properties
which make it a more effective way for attacking A-GEM.

8 RELATED WORK

8.1 LIFELONG LEARNING

Recent lifelong learning works mostly focus on regularization based lifelong learning methods
(Kirkpatrick et al., 2017; Zenke et al., 2017; Chaudhry et al., 2018a) and episodic memory based
lifelong learning methods (Lopez-Paz et al., 2017; Chaudhry et al., 2018b; d’Autume et al., 2019).
In EWC (Kirkpatrick et al., 2017), Fisher information matrix is adopted to prevent important weights
for old tasks from drastic change. Zenke et al. (2017) introduced intelligent synapse which has a
local measure of “importance” to avoid old memories from being overwritten. RWALK (Chaudhry
et al., 2018a) leverages a KL-divergence for retaining knowledge for old tasks. In (Lopez-Paz et al.,
2017), the authors introduced gradient episodic memory (GEM) which achieves the state-of-the-
art results on several benchmarks. In (Chaudhry et al., 2018b). the authors developed an efficient
version of GEM called A-GEM which is more computational effective. d’Autume et al. (2019)
generalized episodic memory based methods for lifelong language modelling.

8.2 ADVERSARIAL ATTACK

Adversarial attack techniques can be briefly divided into two categories: white-box attack and black-
box attack. Regarding to the defense aspect, we refer readers to Appendix A.2 for some recent
works.

White-box attack. Preliminary studies on the robustness of DNNs focus on white-box setting
with assuming full access to the targeted DNN. Szegedy et al. (2013) first prove DNN is fragile
against adversarial examples and generate adversarial examples x′ similar to original sample x in `2
distance using box-constrained L-BFGS. Then the fast gradient sign (FGS) (Goodfellow et al., 2014)
method has been invented for efficiently producing adversarial examples in `∞ distance. Papernot
et al. (2016) introduce an attack optimized under l0 distance known as the Jacobian-based Saliency
Map Attack (JSMA). DeepFool (Moosavi-Dezfooli et al., 2016) is an untargeted attack algorithm
that aims to find the least `2 distortion leading to misclassification by projecting an image to the
closest separating hyperplane. Following these works, Carlini & Wagner (2017b) proposed an iter-
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Figure 2: Comparison of GREV and PGD with respect to the ability of altering the reference gradient
direction.
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Figure 3: The angle between the reference gradient and the corrupted reference gradient gradually
increases under the proposed GREV attack.

ative optimization based attack (C&W attack), and then it seems to become a standard white-box
attack approach. Similarly, projected gradient descent (PGD) has been shown strong in attacking
DNNs (Madry et al., 2017). Most of the white-box attacks rely on the gradients of the DNNs. When
the gradients are “obfuscated” (e.g., by randomization), Athalye et al. (2018) derive various methods
to approximate the gradients.

Black-box attack. The black-box attacking techniques do not exert the internal knowledge of
DNN, and are more practical in the real applications. Thanks to the transferability property of ad-
versarial examples (Szegedy et al., 2013), Papernot et al. (2017) can train a substitute DNN to imitate
the behavior of the unknown DNN to be attacked, produce adversarial examples of the substitute,
and then use them to attack. Chen et al. (2017) instead use zero-th order optimization to find adver-
sarial examples. Ilyas et al. (2018) use the evolution strategy (Salimans et al., 2017) to approximate
the gradients. More recently, Brendel et al. (2017) introduce Boundary Attack which starts from a
large adversarial perturbation and then seeks to reduce the perturbation while staying adversarial.
Li et al. (2019) proposed a universal attack for defended DNNs by modelling the distributions of
adversarial examples.

9 CONCLUSION

In this paper, we systematically examine the robustness of episodic memory lifelong learning meth-
ods such as A-GEM under traditional adversarial attacks. The results show that different from
traditional supervised learning model, A-GEM is surprisingly robust to these attacks. We therefore
propose an attack named Gradient Reversion (GREV) which makes A-GEM suffer from signifi-
cant performance degradation. In the future, we plan to design defense mechanisms to mitigate the
negative effects caused by the gradient reversion attack and develop more robust lifelong learning
algorithms.
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PGD

Memory Size τ = 0.05 τ = 0.1 τ = 0.2 No Attack
4250 0.853 ± 0.004 0.823 ± 0.004 0.724 ± 0.007 0.892 ± 0.003
2550 0.855 ± 0.003 0.825 ± 0.003 0.735 ± 0.008 0.885 ± 0.004
1700 0.864 ± 0.003 0.814 ± 0.008 0.705 ± 0.006 0.875 ± 0.003
850 0.869 ± 0.002 0.819 ± 0.004 0.772 ± 0.007 0.861 ± 0.001

GREV

Memory Size τ = 0.05 τ = 0.1 τ = 0.2 No Attack
4250 0.428 ± 0.011 0.445 ± 0.015 0.473 ± 0.017 0.892 ± 0.003
2550 0.436 ± 0.019 0.463 ± 0.025 0.506 ± 0.010 0.885 ± 0.004
1700 0.476 ± 0.015 0.471 ± 0.026 0.483 ± 0.022 0.875 ± 0.003
850 0.437 ± 0.022 0.461 ± 0.018 0.468 ± 0.020 0.861 ± 0.001

Table 3: PGD and GREV on Permuted MNIST with label smoothing parameter β = 0.1.

Memory Size τ = 0.015 τ = 0.031 τ = 0.055 No Attack
1105 (13 * 5 * 17) 0.416 ± 0.036 0.415 ± 0.035 0.383 ± 0.019 0.585 ± 0.016
850 (10 * 5 * 17) 0.414 ± 0.032 0.413 ± 0.031 0.385 ± 0.024 0.593 ± 0.027
425 (5 * 5 * 17) 0.418 ± 0.036 0.417 ± 0.036 0.401 ± 0.047 0.590 ± 0.025

Table 4: GREV on Split CIFAR with label smoothing parameter β = 0.1.

A APPENDIX

A.1 DEFENSE LIFELONG LEARNING MODELS

In this section, we investigate a possible defense technique called label smoothing (Warde-Farley
& Goodfellow, 2016; Müller et al., 2019) for defensing the attacks to A-GEM. Label smoothing
converts hard class labels into soft targets as follows,

ykLS = yk(1− β) +
β

K
(9)

where yk is the one-hot label of class k, K is the number of classes, β is the label smoothing
parameter and ykLS is the new one-hot label after label smoothing. Label smoothing has been shown
as a simple way for increasing the robustness of neural networks (Warde-Farley & Goodfellow,
2016).

Instead of using labeling smoothing to train the model, we convert the labels of the examples in the
memory to soft labels via label smoothing. The results on Permuted MNIST are shown in Table
3. It can be seen that label smoothing can further increase the robustness of A-GEM against PGD
attack. However, the proposed GREV attack can still achieve a low perturbed accuracy. Table 4
also shows that the proposed GREV attack can greatly deteriorate the performance of A-GEM on
Split CIFAR with label smoothing. Therefore, one future research direction is to develop defense
methods for the proposed GREV attack and design more robust lifelong learning algorithms.

A.2 RELATED WORK ABOUT DEFENSE TECHNIQUES

Comparing with attacking DNNs, defending neural network is a more challenging task and a few
explorations have been exerted to improve the robustness of DNNs.

Since the powerful attacking approaches take advantage of the gradient of DNNs (Carlini & Wagner,
2017b; Madry et al., 2017) or estimated gradient (Chen et al., 2017; Salimans et al., 2017), several
defended approaches have been shown to be robust against these kind of attacks by ‘obfuscating
gradient’. Specifically, Buckman et al. (2018) proposed to transform the input by non-differentiable
and non-linear thermometer encoding, followed by a slight change to the input layer of conventional
DNNs. Dhillon et al. (2018) randomly dropped some neurons of each layer with the probabilities in
proportion to their absolute values. Xie et al. (2018) added a randomization layer between inputs
and a DNN classifier. Similarly, Liu et al. (2018) combine the ideas of randomness and ensemble
using the same underlying neural network. Guo et al. (2018) explored several combinations of input
transformations coupled with adversarial training, such as image cropping and rescaling, bit-depth
reduction, JPEG compression. Prakash et al. (2018) randomly sample a pixel from an image and
then replace it with another pixel randomly sampled from the former’s neighborhood.
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However, Athalye et al. (2018) have derived various approaches to estimate the gradients and suc-
cessfully or partially attacked such defenses caused ‘obfuscated gradient’, and they have honored
adversarial training based defenses. Basically, defending DNNs with adversarial training was firstly
introduced by (Madry et al., 2017). The training procedure alternates between seeking an “optimal”
adversarial example for each input by projected gradient descent (PGD) and minimizing the clas-
sification loss under the PGD attack. Furthermore, Na et al. (2018) reduced the computation cost
of the adversarial training (Kurakin et al., 2016) in a cascade manner. Liu et al. (2019) proposed to
model the randomness added to DNNs in a Bayesian framework coupled with adversarial training.
Wang & Yu (2019) proposed to model the adversarial perturbation with a generative network, and
they learned it jointly with the defensive DNN as a discriminator. Liao et al. (2018) use a denoising
network architecture to estimate the additive adversarial perturbation to an input.
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