
Under review as a conference paper at ICLR 2020

BETTER OPTIMIZATION FOR NEURAL ARCHITECTURE
SEARCH WITH MIXED-LEVEL REFORMULATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Many recently proposed methods for Neural Architecture Search (NAS) can be
formulated as bilevel optimization. For efficient implementation, its solution re-
quires approximations of second-order methods. In this paper, we demonstrate
that gradient errors caused by such approximation leads to suboptimality, in that
such a procedure fails to converge to a (locally) optimal solution. To remedy this
problem, this paper proposes MiLeNAS, a mixed-level reformulation for Neural
Architecture Search that can be optimized more reliably. It is shown that even
when using a simple first-order method on mixed-level formulation, MiLeNAS
can achieve lower validation error for NAS problems. Consequently, architectures
obtained by our method achieve consistently higher accuracies than those obtained
from bilevel optimization. Moreover, the use of first-order updates in our method
also leads to faster training. Extensive experiments within convolutional architec-
ture search space validate the effectiveness of our approach.

1 INTRODUCTION

The success of deep learning in many applications heavily depends on novel neural architectures
(He et al., 2016; Huang et al., 2017). However, most widely-employed architectures are developed
manually, making them time-consuming and error-prone. Thus, there has been a growing interest
in Neural Architecture Search (NAS), which automates the manual process of architecture design
(Bello et al., 2016; Real et al., 2017). There are three major methods for NAS: evolutionary algo-
rithms (Real et al., 2017; Elsken et al., 2018), reinforcement learning-based methods (Bello et al.,
2016; Pham et al., 2018), and gradient-based methods (Liu et al., 2018b; Xie et al., 2018; Elsken
et al., 2018; Luo et al., 2018). Evolutionary algorithms and reinforcement learning-based meth-
ods require thousands of GPU days to achieve state-of-the-art performance, while gradient-based
methods can finish searching within as little as several GPU days.

We can formulate the gradient-based method as a bilevel optimization problem:

min
α

Lval(w
∗(α), α) (1)

s.t. w∗(α) = arg min
w

Ltr(w,α) (2)

where w represents the network weight and α determines the neural architecture. Ltr(w,α) and
Lval(w,α) denote the loss with respect to training data and validation data with w and α, respec-
tively. Though bilevel optimization can accurately describe the NAS problem, it is difficult to solve,
as obtaining w∗(α) in Equation 2 requires one to completely train a network for each update of α.
Current methods used in NAS to solve bilevel optimization are heuristic, and w∗(α) in Equation 2
is not satisfied due to first-order or second-order approximation (Liu et al., 2018b; Dong & Yang,
2019). Hence, these algorithms lack theoretical guarantees and only achieve low convergence rates.

Single-level optimization is another method used to solve the NAS problem and is defined as:

min
w,α
Ltr(w,α)

which can be solved efficiently by stochastic gradient descent. However, single-level optimization
commonly leads to overfitting with respect to α, meaning that it cannot guarantee that the validation
loss Lval(w,α) is small. This directly contradicts the objective of NAS, which is to minimize vali-
dation loss to find optimal structures. Therefore, single-level optimization is insufficient for NAS.

1

Under review as a conference paper at ICLR 2020

In this work, we propose mixed-level optimization, which incorporates both bilevel and single-level
optimization. Rather than minimizing the validation loss with respect to α with the fully trained
weights w∗(α) as in Equation 2, or directly minimizing α over the training loss, we minimize both
the training loss and validation loss with respect to α, and training loss with respect to w, simulta-
neously. Note that when the hyperparameter λ (Equation 4) of our mixed-level optimization is set
to zero, our mixed-level optimization method degrades to single-level optimization. Alternatively, if
λ approaches infinity, our method becomes the bilevel optimization. Since we mix single-level and
bilevel optimization, we call our method MiLeNAS, mixed-level optimization based NAS.

MiLeNAS can be a universal method to search for better architectures with a faster convergence rate.
First, it has a computational efficiency similar to that of single-level optimization, but without the
concern of overfitting. Second, our method can fully exploit both training data and validation data
to update α. Current bilevel optimization-based algorithms, first-order DARTS (Liu et al., 2018b),
SNAS (Xie et al., 2018), and GDAS (Dong & Yang, 2019), only use the validation loss in updating
α, ignoring the training data. Although second-order DARTS can preserve second-order gradient
in both training and evaluation data by approximating w∗(α) and using only a single training step,
such approximation does not solve the inner optimization (Equation 2) completely. Thus, gradient
error caused by such approximation leads to suboptimality. Third, MiLeNAS is a generic framework
to model the NAS and even hyperparameter tuning problem. Once the training loss Ltr(w,α) and
validation loss Lval(w,α) share the same form, MiLeNAS can be applied to these problems.

Extensive experiments validate the effectiveness of MiLeNAS. We first correlate MiLeNAS with
single-level and bilevel methods by comparing their respective gap between the training loss and the
evaluation loss. The result shows MiLeNAS can overcome overfitting, and single-level and bilevel
optimizations are special cases of MiLeNAS. Furthermore, MiLeNAS achieves a better validation
accuracy with three times faster than bi-level optimization. Evaluation on searched architectures
shows MiLeNAS has reached an error rate of 2.51% ± 0.11% (best: 2.34%) on CIFAR-10, largely
exceeding bilevel optimization methods (DARTS-2.76%, GDAS-2.82%). The transferability eval-
uation on ImageNet shows that MiLeNAS has a top-1 error rate of 24.7% and top-5 error rate of
7.6%, exceeding bilevel optimization methods by around 1% to 2%. Moreover, we demonstrate
that MiLeNAS is generic by applying it to sampling-based methods, and verify that MiLeNAS can
optimize performance for different model sizes, achieving better architectures than bilevel methods.

We summarize our contributions as follows:

• We propose a novel solution to the NAS problem, by reformulating it as a mixed-level
optimization instead of bilevel optimization, alleviating gradient error caused by approxi-
mation in bilevel optimization. This leads to a reliable first order method as efficient as that
of the single-level method.

• MiLeNAS can search for better architectures with faster convergence rates. Extensive ex-
periments on image classification demonstrate that MiLeNAS can achieve lower validation
error and enjoy a search time three times shorter than bilevel optimization.

• MiLeNAS is a generic framework for gradient-based NAS problems. Our experiments
show its versatility in sampling-based methods to obtain better architectures.

The source code of MiLeNAS is available at https://tinyurl.com/milenas-code

2 METHOD

2.1 MIXED-LEVEL OPTIMIZATION

Our mixed-level optimization aims to overcome the difficulty of solving bilevel optimization and
to fully exploit information embedded in the training data that is not used by current NAS algo-
rithms when updating architecture parameter α (as shown in Equation 1). We propose mixed-level
optimization, which gives a trade-off between single level and bilevel optimization. It maintains
a simple implementation and avoids the gradient error problem caused by second-order gradient
approximation. Mixed-level optimization additionally overcomes the overfitting problem of single-
level optimization.

2

https://tinyurl.com/milenas-code

Under review as a conference paper at ICLR 2020

Next, we derive the mixed-level optimization from the single-level optimization, aiming to reduce α
overfitting by considering both the training and validation loss. First, the single-level optimization
problem is defined as:

min
w,α
Ltr(w,α) :≡ min

α
Ltr(w∗(α), α) (3)

where Ltr(w,α) denotes the loss with respect to training data. When training neural network
weights w, methods such as dropout are used to avoid overfitting with respect to w. However,
directly minimizing Equation 3 to obtain the optimal weight and architecture parameter will lead
to overfitting with respect to α. Because α solely depends on the training data, when it is opti-
mized, there is a disparity between Ltr(w,α) and Lval(w,α). Thus, the objective function defined
in Equation 3 is inadequate for neural network search.

To solve the overfitting problem of α, we resort to the most popular regularization method and use
Lval(w,α) as the regularization term. We minimize Equation 3 subject to the constraint

Lval(w
∗(α), α) ≤ Ltr(w

∗(α), α) + δ,

where δ is a constant scalar. The above constraint means that the validation loss should not be much
larger than the training loss. By the Lagrangian multiplier method, we minimize

w∗(α) = arg min
w
Ltr(w,α)

min
α

(1− λ′)Ltr(w∗(α), α) + λ′Lval(w∗(α), α)− λ′δ, with 0 ≤ λ′ ≤ 1.

Because δ is a constant which does not affect the minimization, after normalizing the parameter
before Ltr(w(α), α) to one, we obtain the following mixed-level optimization using Equation 3:

min
α,w

[Ltr(w,α) + λLval(w∗(α), α)] , (4)

where λ is a non-negative regularization parameter that balances the importance of training loss
and validation loss. This is different from the bilevel optimization Equation 1 and 2 and single-level
optimization Equation 3. Instead of only minimizing the loss with respect to α on the validation data
given w as in Equation 1, the minimizer α in Equation 4 must guarantee that both Ltr(w,α) and
Lval(w,α) are small to achieve optimality. As the name mixed-level implies, we mix single-level
with bilevel optimization. Specifically, when λ = 0, mixed-level optimization degrades to the single
level optimization, while when λ approaches infinity, mixed-level reduces to bilevel optimization.
Therefore, it can be stated that both single and bilevel optimization are special cases of mixed-level
optimization.

Furthermore, by taking the underlying relation between training loss and validation loss into account,
our mixed-level optimization can overcome the overfitting problem and search for architectures with
higher accuracy compared to single-level and bilevel optimization.

Algorithm 1 Mixed-Level Optimization based NAS.
1: Input: Set parameter λ (usually set to be one). Initialize w and α.
2: while not converge do
3: Update w = w − ηw∇wLtr(w,α);
4: Update the structure parameter α using the loss Ltr(w,α) + λLval(w,α).
5: end while

Our mixed-level optimization can be solved as efficiently as the single-level method. First, we
update the network weights w using only training loss. Second, we update α using both training
loss and validation loss. Specifically, if we apply the mixed-level method to the gradient-based NAS
problem, we only require the first-order method (stochastic gradient descent) to solve equation 4 as
follows:

w =w − ηw∇wLtr(w,α)

α =α− ηα (∇αLtr(w,α) + λ∇αLval(w,α)) ,
(5)

where ηw and ηα are step sizes related to w and α, respectively. Note that in this simplified first
order method, when updating α, we replace w∗(α) by its approximation w, and we do not take the
derivative with respect tow∗(α). As our experiments will demonstrate, this method can optimize the
mixed-level objective function more reliably than second order methods for the bi-level formulation,
due to the fact that the derivative of w∗(α) has significantly less impact in the mixed level formula-
tion than that of the bi-level formulation. It is possible to incorporate second order information, but
we find that this is not necessary in practical NAS applications.

3

Under review as a conference paper at ICLR 2020

2.2 COMPARISON WITH BILEVEL OPTIMIZATION

Our mixed-level optimization is a generic framework for NAS problems. We apply it to the gradient-
based NAS method and compare it with DARTS, whose algorithm is derived from bilevel opti-
mization (Liu et al., 2018b). When optimizing α, DARTS attempts to approximate the gradient
∇αLval (w∗(α), α) by

∇αLval (w∗(α), α) ≈ ∇αLval (w′, α)︸ ︷︷ ︸
g1

− ξ∇2
α,wLtrain(w,α)∇w′Lval (w′, α)︸ ︷︷ ︸

g2

, (6)

where w′ = w − ξ∇wLtrain(w,α) denotes the weights for a one-step forward model. For efficient
implementation, DARTS tries to use the finite difference to approximate g2 in 6 simplified as

∇αLval (w∗(α), α) ≈ ∇αLval (w′, α)− ξ
∇αLtrain

(
w+
val, α

)
−∇αLtrain

(
w−val, α

)
2εval

(7)

where w±val = w ± εval∇w′Lval (w′, α).

However, DARTS fails to converge to a (locally) optimal solution for two reasons. First, when
calculating∇αLval (w∗(α), α), the optimal w∗(α) is not obtained due to one step training. Second,
the finite difference approximation of g2 causes biased gradient error. Thus, the approximation to
∇αLval used in DARTS leads to a serious drawback: when α is approaching to the optima, the
approximate gradient related to α in equation 7 will lead to large deviation from true gradient.

In contrast, our mixed-level method only uses the first-order information (shown in Equation 5),
which does not involve gradient errors caused by approximation. Stochastic gradient descent guar-
antees that our mixed-level optimization converges to a (locally) optimal solution. Furthermore,
comparing with Equation 7 and our update of α in Equation 5, we can see that our mixed-level
method requires much fewer operations for forward and backward propagation than the bilevel
method (2nd-order DARTS), resulting in a faster convergence speed.

2.3 OVERALL PIPELINE

skip

pooling
conv↵1

<latexit sha1_base64="50qbi6W/a3z+sUZAxW6ihb7mDUc=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae2oUy2m3bpZhN2N0IJ/RdePCji1X/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKj1kPRTLCad/rlytu1Z2DrBIvJxXI0eiXv3qDmKYRk4YK1LrruYnxM1SGU8GmpV6qWYJ0jEPWtVRixLSfzS+ekjOrDEgYK1vSkLn6eyLDSOtJFNjOCM1IL3sz8T+vm5rw2s+4TFLDJF0sClNBTExm75MBV4waMbEEqeL2VkJHqJAaG1LJhuAtv7xKWrWqd1Gt3V9W6jd5HEU4gVM4Bw+uoA530IAmUJDwDK/w5mjnxXl3PhatBSefOYY/cD5/AH+ykMw=</latexit>

↵2
<latexit sha1_base64="+9ip0e2xOklxloqUPrfy3jSbcag=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae2oUy2m3bpZhN2N0IJ/RdePCji1X/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKj1kPRTLCab/WL1fcqjsHWSVeTiqQo9Evf/UGMU0jJg0VqHXXcxPjZ6gMp4JNS71UswTpGIesa6nEiGk/m188JWdWGZAwVrakIXP190SGkdaTKLCdEZqRXvZm4n9eNzXhtZ9xmaSGSbpYFKaCmJjM3icDrhg1YmIJUsXtrYSOUCE1NqSSDcFbfnmVtGpV76Jau7+s1G/yOIpwAqdwDh5cQR3uoAFNoCDhGV7hzdHOi/PufCxaC04+cwx/4Hz+AIE2kM0=</latexit>

↵6
<latexit sha1_base64="sxzcfac3rAbU2I8do3Xz+86U8yE=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Vj04rGC/cA2lMl20y7dbMLuRiih/8KLB0W8+m+8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqyho0FrFqB6iZ4JI1DDeCtRPFMAoEawWj26nfemJK81g+mHHC/AgHkoecorHSY9ZFkQxx0rvslcpuxZ2BLBMvJ2XIUe+Vvrr9mKYRk4YK1LrjuYnxM1SGU8EmxW6qWYJ0hAPWsVRixLSfzS6ekFOr9EkYK1vSkJn6eyLDSOtxFNjOCM1QL3pT8T+vk5rw2s+4TFLDJJ0vClNBTEym75M+V4waMbYEqeL2VkKHqJAaG1LRhuAtvrxMmtWKd16p3l+Uazd5HAU4hhM4Aw+uoAZ3UIcGUJDwDK/w5mjnxXl3PuatK04+cwR/4Hz+AIdGkNE=</latexit>

↵7
<latexit sha1_base64="pUKAXrU2wq5ZF3mAgnN4Ue8yln0=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KkkV6rHoxWMF+4FtKJPtpl262YTdjVBC/4UXD4p49d9489+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVlDVpLGLVCVAzwSVrGm4E6ySKYRQI1g7GtzO//cSU5rF8MJOE+REOJQ85RWOlx6yHIhnhtF/rl8puxZ2DrBIvJ2XI0eiXvnqDmKYRk4YK1LrruYnxM1SGU8GmxV6qWYJ0jEPWtVRixLSfzS+eknOrDEgYK1vSkLn6eyLDSOtJFNjOCM1IL3sz8T+vm5rw2s+4TFLDJF0sClNBTExm75MBV4waMbEEqeL2VkJHqJAaG1LRhuAtv7xKWtWKd1mp3l+V6zd5HAU4hTO4AA9qUIc7aEATKEh4hld4c7Tz4rw7H4vWNSefOYE/cD5/AIjKkNI=</latexit>

…

Validation
Data

Train
Data

min
w

Ltr(w,↵)
<latexit sha1_base64="8IjR7zFS2L7nFQQPM9ukDt2t63w=">AAACFHicbVBNS8NAEN3U7/oV9ehlsQgVpSRVUDyJXjx4ULBWaEqYbKd26WYTdzeWEvIjvPhXvHhQxKsHb/4b09qDWh8MPN6bYWZeEAuujeN8WoWJyanpmdm54vzC4tKyvbJ6paNEMayxSETqOgCNgkusGW4EXscKIQwE1oPuycCv36HSPJKXph9jM4Qbyducgckl3972Qi79Hk3P/NSojJZ7O9QDEXdgK6OegABFireHvczzir5dcirOEHScuCNSIiOc+/aH14pYEqI0TIDWDdeJTTMFZTgTmBW9RGMMrAs32MiphBB1Mx0+ldHNXGnRdqTykoYO1Z8TKYRa98Mg7wzBdPRfbyD+5zUS0z5oplzGiUHJvhe1E0FNRAcJ0RZXyIzo5wSY4vmtlHVAATN5joMQ3L8vj5OrasXdrVQv9kpHx6M4Zsk62SBl4pJ9ckROyTmpEUbuySN5Ji/Wg/VkvVpv360FazSzRn7Bev8CZwmdxw==</latexit>

min
↵

Ltr(w,↵) + �Lval(w,↵)
<latexit sha1_base64="bO/fLU0rHY15+9/qYSuMzEg1ZBI=">AAACOXicbVC7SgNBFJ31bXxFLW0Gg6AoYVcFxUq0sbCIYBIhG5a7kxszZHZ2nZlVwrK/ZeNf2Ak2ForY+gNOHoWvAwOHc+5j7gkTwbVx3SdnbHxicmp6ZrYwN7+wuFRcXqnpOFUMqywWsboKQaPgEquGG4FXiUKIQoH1sHva9+u3qDSP5aXpJdiM4FryNmdgrBQUK37EZZD5IJIO5DQ7DzKjcrp5t0OH2hbdpr6wA1tArXkL4oebWy9EkeHN0XBEUCy5ZXcA+pd4I1IiI1SC4qPfilkaoTRMgNYNz01MMwNlOBOYF/xUYwKsC9fYsFRChLqZDS7P6YZVWrQdK/ukoQP1e0cGkda9KLSVEZiO/u31xf+8Rmrah82MyyQ1KNlwUTsV1MS0HyNtcYXMiJ4lwBS3f6WsAwqYsWEXbAje75P/ktpu2dsr717sl45PRnHMkDWyTjaJRw7IMTkjFVIljNyTZ/JK3pwH58V5dz6GpWPOqGeV/IDz+QUovayN</latexit>

Model Size

A
cc

ur
ac

y

Epoch

A
cc

ur
ac

y

si
<latexit sha1_base64="4IM4h66ALecpZBG48PUUBFr80pg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPu8X664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj91Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2RC85ZdXSatW9S6qtfvLSv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP1pAjdc=</latexit>

sj
<latexit sha1_base64="FZ3bbkynLQl1lKhojfiSPbfFoik=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM12067dbMLuRCihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXFtRKwecJxwP6IDJULBKFrp3vQee6WyW3FnIMvEy0kZctR7pa9uP2ZpxBUySY3peG6CfkY1Cib5pNhNDU8oG9EB71iqaMSNn81OnZBTq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieOVnQiUpcsXmi8JUEozJ9G/SF5ozlGNLKNPC3krYkGrK0KZTtCF4iy8vk2a14p1XqncX5dp1HkcBjuEEzsCDS6jBLdShAQwG8Ayv8OZI58V5dz7mrStOPnMEf+B8/gBbxI3Y</latexit>

Search ProcessSearch AlgorithmSearch Space Evaluation

↵<latexit sha1_base64="+wSBPeL8nxBdvzPXA2qswhGhfpg=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3btZhN2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKrR6KZIT9csWtunOQVeLlpAI5Gv3yV28Q0zRi0lCBWnc9NzF+hspwKti01Es1S5COcci6lkqMmPaz+bVTcmaVAQljZUsaMld/T2QYaT2JAtsZoRnpZW8m/ud1UxNe+xmXSWqYpItFYSqIicnsdTLgilEjJpYgVdzeSugIFVJjAyrZELzll1dJq1b1Lqq1+8tK/SaPowgncArn4MEV1OEOGtAECo/wDK/w5sTOi/PufCxaC04+cwx/4Hz+AIzPjxw=</latexit> : architecture parameters

!<latexit sha1_base64="tlCosEe7acB15WG/y1yAvFPNxVY=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKexGQY9BLx4jmAckS5id9CZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNoUkVV7oTEQOcSWhaZjl0Eg1ERBza0fh25refQBum5IOdJBAKMpQsZpRYJ7V6SsCQ9MsVv+rPgVdJkJMKytHol796A0VTAdJSTozpBn5iw4xoyyiHaamXGkgIHZMhdB2VRIAJs/m1U3zmlAGOlXYlLZ6rvycyIoyZiMh1CmJHZtmbif953dTG12HGZJJakHSxKE45tgrPXscDpoFaPnGEUM3crZiOiCbUuoBKLoRg+eVV0qpVg4tq7f6yUr/J4yiiE3SKzlGArlAd3aEGaiKKHtEzekVvnvJevHfvY9Fa8PKZY/QH3ucPkX+PHw==</latexit>

: network weights

Sampling-basedMixed Operation-based

skip

pooling
conv↵1

<latexit sha1_base64="50qbi6W/a3z+sUZAxW6ihb7mDUc=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae2oUy2m3bpZhN2N0IJ/RdePCji1X/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKj1kPRTLCad/rlytu1Z2DrBIvJxXI0eiXv3qDmKYRk4YK1LrruYnxM1SGU8GmpV6qWYJ0jEPWtVRixLSfzS+ekjOrDEgYK1vSkLn6eyLDSOtJFNjOCM1IL3sz8T+vm5rw2s+4TFLDJF0sClNBTExm75MBV4waMbEEqeL2VkJHqJAaG1LJhuAtv7xKWrWqd1Gt3V9W6jd5HEU4gVM4Bw+uoA530IAmUJDwDK/w5mjnxXl3PhatBSefOYY/cD5/AH+ykMw=</latexit>

↵2
<latexit sha1_base64="+9ip0e2xOklxloqUPrfy3jSbcag=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae2oUy2m3bpZhN2N0IJ/RdePCji1X/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKj1kPRTLCab/WL1fcqjsHWSVeTiqQo9Evf/UGMU0jJg0VqHXXcxPjZ6gMp4JNS71UswTpGIesa6nEiGk/m188JWdWGZAwVrakIXP190SGkdaTKLCdEZqRXvZm4n9eNzXhtZ9xmaSGSbpYFKaCmJjM3icDrhg1YmIJUsXtrYSOUCE1NqSSDcFbfnmVtGpV76Jau7+s1G/yOIpwAqdwDh5cQR3uoAFNoCDhGV7hzdHOi/PufCxaC04+cwx/4Hz+AIE2kM0=</latexit>

↵6
<latexit sha1_base64="sxzcfac3rAbU2I8do3Xz+86U8yE=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Vj04rGC/cA2lMl20y7dbMLuRiih/8KLB0W8+m+8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqyho0FrFqB6iZ4JI1DDeCtRPFMAoEawWj26nfemJK81g+mHHC/AgHkoecorHSY9ZFkQxx0rvslcpuxZ2BLBMvJ2XIUe+Vvrr9mKYRk4YK1LrjuYnxM1SGU8EmxW6qWYJ0hAPWsVRixLSfzS6ekFOr9EkYK1vSkJn6eyLDSOtxFNjOCM1QL3pT8T+vk5rw2s+4TFLDJJ0vClNBTEym75M+V4waMbYEqeL2VkKHqJAaG1LRhuAtvrxMmtWKd16p3l+Uazd5HAU4hhM4Aw+uoAZ3UIcGUJDwDK/w5mjnxXl3PuatK04+cwR/4Hz+AIdGkNE=</latexit>

↵7
<latexit sha1_base64="pUKAXrU2wq5ZF3mAgnN4Ue8yln0=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KkkV6rHoxWMF+4FtKJPtpl262YTdjVBC/4UXD4p49d9489+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVlDVpLGLVCVAzwSVrGm4E6ySKYRQI1g7GtzO//cSU5rF8MJOE+REOJQ85RWOlx6yHIhnhtF/rl8puxZ2DrBIvJ2XI0eiXvnqDmKYRk4YK1LrruYnxM1SGU8GmxV6qWYJ0jEPWtVRixLSfzS+eknOrDEgYK1vSkLn6eyLDSOtJFNjOCM1IL3sz8T+vm5rw2s+4TFLDJF0sClNBTExm75MBV4waMbEEqeL2VkJHqJAaG1LRhuAtv7xKWtWKd1mp3l+V6zd5HAU4hTO4AA9qUIc7aEATKEh4hld4c7Tz4rw7H4vWNSefOYE/cD5/AIjKkNI=</latexit>

…

si
<latexit sha1_base64="4IM4h66ALecpZBG48PUUBFr80pg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPu8X664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj91Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2RC85ZdXSatW9S6qtfvLSv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP1pAjdc=</latexit>

sj
<latexit sha1_base64="FZ3bbkynLQl1lKhojfiSPbfFoik=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM12067dbMLuRCihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXFtRKwecJxwP6IDJULBKFrp3vQee6WyW3FnIMvEy0kZctR7pa9uP2ZpxBUySY3peG6CfkY1Cib5pNhNDU8oG9EB71iqaMSNn81OnZBTq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieOVnQiUpcsXmi8JUEozJ9G/SF5ozlGNLKNPC3krYkGrK0KZTtCF4iy8vk2a14p1XqncX5dp1HkcBjuEEzsCDS6jBLdShAQwG8Ayv8OZI58V5dz7mrStOPnMEf+B8/gBbxI3Y</latexit>

↵<latexit sha1_base64="+wSBPeL8nxBdvzPXA2qswhGhfpg=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3btZhN2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKrR6KZIT9csWtunOQVeLlpAI5Gv3yV28Q0zRi0lCBWnc9NzF+hspwKti01Es1S5COcci6lkqMmPaz+bVTcmaVAQljZUsaMld/T2QYaT2JAtsZoRnpZW8m/ud1UxNe+xmXSWqYpItFYSqIicnsdTLgilEjJpYgVdzeSugIFVJjAyrZELzll1dJq1b1Lqq1+8tK/SaPowgncArn4MEV1OEOGtAECo/wDK/w5sTOi/PufCxaC04+cwx/4Hz+AIzPjxw=</latexit> : architecture parameters

!<latexit sha1_base64="tlCosEe7acB15WG/y1yAvFPNxVY=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKexGQY9BLx4jmAckS5id9CZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNoUkVV7oTEQOcSWhaZjl0Eg1ERBza0fh25refQBum5IOdJBAKMpQsZpRYJ7V6SsCQ9MsVv+rPgVdJkJMKytHol796A0VTAdJSTozpBn5iw4xoyyiHaamXGkgIHZMhdB2VRIAJs/m1U3zmlAGOlXYlLZ6rvycyIoyZiMh1CmJHZtmbif953dTG12HGZJJakHSxKE45tgrPXscDpoFaPnGEUM3crZiOiCbUuoBKLoRg+eVV0qpVg4tq7f6yUr/J4yiiE3SKzlGArlAd3aEGaiKKHtEzekVvnvJevHfvY9Fa8PKZY/QH3ucPkX+PHw==</latexit>

: network weights mixed-level

single-level
bilevel

Figure 1: Overview of the pipeline designed to evaluate MiLeNAS.

As the pipeline in Figure 1 illustrated, we evaluate MiLeNAS extensively in three ways: 1. ap-
plicability in different search space or NAS methods; 2. comparison with single-level and bilevel
optimization methods; 3. verification on different model sizes.

First, since our proposed MiLeNAS is a generic framework, we evaluate our method in two search
space settings. The first one is the mixed-operation search space defined in DARTS, where architec-
ture search only performs on convolutional cells to find candidate operations (e.g., convolution, max
pooling, skip connection, zero) between nodes inside a cell. To make the search space continuous,
we relax the categorical choice of a connection to a softmax over all possible operations:

ō(i,j)(x) =

d∑
k=1

exp(α
(i,j)
k)∑d

k′=1 exp(α
(i,j)
k′)︸ ︷︷ ︸

pk

ok(x) (8)

The weight pk of the mixed operation ō(i,j)(x) for a pair of nodes (i, j) is parameterized by a vector
αi,j . Thus, all architecture operation options inside a network (model) can be parameterized as
α. By this definition, MiLeNAS aims at simultaneously optimizing architecture parameters α and

4

Under review as a conference paper at ICLR 2020

model weights w. Another setting is the sampling search space: instead of the mixed operation as
Equation 8, GDAS uses differentiable sampler (Gumbel-Softmax) to choose an operation between
two nodes in a cell. We substitute bilevel optimization in GDAS with mixed-level optimization to
verify the versatility of MiLeNAS. More details of search space are covered in Appendix § A.

Second, we run different optimization methods to compare their validation accuracy, including
bilevel optimization, single-level optimization, and MiLeNAS with different λ settings.

Third, the assumption that the model size determines the maximum accuracy motivates us to inves-
tigate how optimization methods perform in different model sizes. Throughout the search process,
we track the best validation accuracy for every parameter number range, which is calculated by
counting the number of convolutional operations in the searched cell. We did not manually define
parameter number range because discrete operation choice naturally determines it.

3 EXPERIMENTS AND RESULTS

In this section, we first introduce our settings and present experimental results on a comparison of
MiLeNAS with single-level and bilevel methods. We then demonstrate the applicability of MiLe-
NAS in other NAS methods. We further evaluate the accuracy of searched architectures with differ-
ent model sizes. Finally, we conclude the transferability of MiLeNAS on ImageNet.

3.1 SETTINGS

MiLeNAS contains two stages: architecture search and architecture evaluation. For the first search
and evaluation stages, MiLeNAS is applied to image classification dataset CIFAR-10 (Krizhevsky
et al., 2009). ImageNet was used for the transferability evaluation. To maintain a fair comparison,
a search space definition similar to that of DARTS was chosen. Details regarding search space are
continued in Appendix §A. The search was run under two settings: 50 epochs and 200 epochs. Each
search round was run four times. In the evaluation stage, the architecture with the highest validation
accuracy in the search stage was chosen with confidence (Experimental evidence has proven that
the highest validation accuracy for runs in the search stage is consistent with the highest accuracy
in the evaluation stage). Our code implementation is based on PyTorch 1.2.0 and Python 3.7.4.
Experiments were run on NVIDIA GTX 1080Ti.

3.2 CORRELATION WITH SINGLE-LEVEL AND BILEVEL METHODS

Figure 2: Training and Validation Gap
(average value with smoothing)

Ac
cu

ra
cy

 G
ap

 (%
)

single-level
mixed-level (0.1)
mixed-level (1.0)
mixed-level (999)
bilevel (2nd)

We correlate our mixed-level method with single-level
and bilevel methods by verifying the gap between train-
ing accuracy and validation accuracy. For MiLeNAS, we
choose three λ settings (λ = 0.1, λ = 1, λ = 999) to as-
sign different proportions between training loss and vali-
dation loss. For single-level method, we update α and w
both on the training dataset, while for the bilevel method,
we use 2nd-order DARTS (Liu et al., 2018b). The epoch
number was set to 50 (as set in second-order DARTS). In
total, the five settings were run four times each, and the
final result was based on the averages. From the result
shown in Figure 2, we can see that the single-level method
has the largest gap, while the bilevel has the smallest gap.
Our mixed-level method lies between them: when λ is small (0.1), the gap is closer to that of the
single-level method, while when λ is large (999), the gap is closer to that of the bilevel method.
This result confirms our assertion that single-level and bilevel optimizations are special cases of
mixed-level optimization with λ = 0 and λ→∞, respectively.

As demonstrated in Figure 3a, the single-level method gains the lowest validation accuracy due to
overfitting, and more importantly, MiLeNAS with λ = 1 and λ = 0.1 achieves higher validation
accuracy than the bilevel algorithm (2nd-order DARTS, on a 50-epoch setting). This phenomenon is
due to the difficulty in solving a bilevel optimization (MiLeNAS takes only about 1/3 of the compu-
tational cost of 2nd-order DARTS). When α is close to optimal, w∗ in Equation 2 should be solved

5

Under review as a conference paper at ICLR 2020

30 35 40 45 50

epoch
86

86.5

87

87.5

88

88.5

89

mixed-level (0.1)

single-level
bilevel (2nd)
bilevel (1st)

mixed-level (1.0)
mixed-level (999)
bilevel + mixed-level

(a) Validation Accuracy
10 20 30 40 50

Time (hours)
40

50

60

70

80

single-level

mixed-level (0.1)
mixed-level (1.0)
mixed-level (999)
bilevel (2nd)

(b) Training Time

Figure 3: Comparison MiLeNAS with single-level and bilevel methods.

with high precision and ∇αLval (w∗(α), α) should be well-approximated. However, this cannot be
guaranteed in 2nd-order DARTS. Thus, from Figure 3a, we can observe that in the later phase of
the search (e.g., after around 35th epoch), 2nd-order DARTS barely increases its validation accu-
racy. Furthermore, we observe that when λ = 999, MiLeNAS has a high probability of achieving
similar validation accuracy to 2nd-order bilevel optimization. This proves our claim that the bilevel
optimization is the special case of mixed-level optimization with λ approaching infinity.

To remedy the approximation issue and confirm the effectiveness of MiLeNAS, we performed an-
other experiment running bilevel optimization for the first 35 epochs, then switching to our MiLe-
NASmethod. When comparing its result (the green curve in Figure 3a) to that of the pure bilevel
optimization (the blue curve in Figure 3a), we can see that MiLeNAS continues to improve the val-
idation accuracy in the late phase of the search process. This observation confirms that our mixed-
level algorithm mitigates the gradient approximation issue, and SGD (stochastic gradient descent)
guarantees an increased validation accuracy, outperforming bilevel optimization.

Furthermore, as shown in Figure 3b, MiLeNAS is over three times faster than second-order DARTS.
MiLeNAS performs a faster search due to its simple first-order algorithm, while the second-order
approximation in DARTS requires more gradient computation (discussed in section 2.2).

3.3 EVALUATION RESULTS ON CIFAR-10

Table 1: Comparison with state-of-the-art image classifiers on CIFAR-10

Architecture Test Error Params Search Cost Search
(%) (M) (GPU days) Method

DenseNet-BC (Huang et al., 2017) 3.46 25.6 - manual
NASNet-A + cutout (Zoph et al., 2018) 2.65 3.3 2000 RL
BlockQNN (Zhong et al., 2018) 3.54 39.8 96 RL
AmoebaNet-B + cutout (Real et al., 2019) 2.55± 0.05 2.8 3150 evolution
Hierarchical evolution (Liu et al., 2017) 3.75± 0.12 15.7 300 evolution
PNAS (Liu et al., 2018a) 3.41± 0.09 3.2 225 SMBO
ENAS + cutout (Pham et al., 2018) 2.89 4.6 0.5 RL

DARTS (second order) (Liu et al., 2018b) 2.76± 0.09 3.3 4 gradient-based
SNAS (moderate) (Xie et al., 2018) 2.85± 0.02 2.8 1.5 gradient-based
SNAS (aggressive) (Xie et al., 2018) 3.10± 0.04 2.3 1.5 gradient-based
GDAS (Dong & Yang, 2019) 2.82 2.5 0.17 gradient-based

MiLeNAS 2.51± 0.11 (best: 2.34) 3.87 0.3 gradient-based
MiLeNAS 2.80± 0.04 (best: 2.72) 2.87 0.3 gradient-based
MiLeNAS 2.50 2.86 0.3 gradient-based
MiLeNAS 2.76 2.09 0.3 gradient-based

In the evaluation stage, 20 searched cells were stacked to form a larger network; it was subsequently
trained from scratch for 600 epochs with a batch size of 96 and a learning rate set to 0.03. The
CIFAR-10 evaluation results are shown in Table 1 (all architectures were searched using λ = 1). The
test error of our method is on par with the state-of-the-art RL-based and evolution-based NAS while

6

Under review as a conference paper at ICLR 2020

using three orders of magnitude fewer computation resources. Furthermore, our method outperforms
ENAS, 2nd-order DARTS, SNAS, and GDAS with both a lower error rate and fewer parameters.
We also demonstrated that our algorithm could search architectures with smaller parameters while
maintaining high accuracy. Figure 4 shows examples of searched architectures.

c_{k-2}

0

sep_conv_3x3

1
skip_connect

2

skip_connect 3

skip_connect

c_{k-1}

sep_conv_3x3

sep_conv_3x3

skip_connect

sep_conv_5x5 c_{k}
c_{k-2}

0

max_pool_3x3

1

max_pool_3x3

2

max_pool_3x3

3
avg_pool_3x3

c_{k-1}

max_pool_3x3

skip_connect

skip_connect

skip_connect

c_{k}

c_{k-2}

0

sep_conv_3x3

1
dil_conv_3x3

2

skip_connect 3

sep_conv_3x3

c_{k-1}

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

sep_conv_5x5 c_{k} c_{k-2} 0dil_conv_3x3

1max_pool_3x3

3max_pool_3x3

c_{k-1}

sep_conv_3x3

skip_connect

2skip_connect

skip_connect

c_{k}

dil_conv_5x5

Figure 4: Searched Architectures. The left two sub-figures show an architecture that has an error
rate of 2.34% with a parameter size of 3.87M; The right two sub-figures show an architecture that
has an error rate of 2.50% with a parameter size of 2.86M.

Note that recently, several new NAS algorithms have been proposed which achieve lower test er-
rors than MiLeNAS. For example, XNAS achieves a 1.81% test error (Nayman et al., 2019) and
SharpDarts achieves 1.93% test error (Hundt et al., 2019). However, XNAS takes 1500 epochs and
well-tuned learning rate to evaluate the chosen architecture as opposed to the 600 epochs used in
both in MiLeNAS and DARTS experiments. SharpDarts defines new search spaces, which is the
main reason why it obtains such a low test error.

We argue that our mixed-level optimization is a generic method that can be applied to these algo-
rithms to improve optimization. For example, we can use the loss function defined in Equation 4
instead of Equation 1 to further improve XNAS (Nayman et al., 2019). Next, we combine mixed-
level optimization with Gumbel-Softmax sampling to improve the performance of GNAS (Dong &
Yang, 2019) and further demonstrate the power of mixed-level optimization.

3.3.1 APPLICABILITY TO OTHER NAS METHODS

MiLeNAS is universal and can substitute the bilevel optimization in other NAS methods to improve
their search performance. We performed verification experiments on the Gumbel-Softmax sampling
method GDAS (Dong & Yang, 2019). We reproduced GDAS1 and substituted its bilevel optimiza-
tion with MiLeNAS, denoted as MiLeNAS (Gumbel). As shown in Figure 5, MiLeNAS (Gumbel)
can achieve a better validation accuracy (GDAS: 65.79%; MiLeNAS (Gumbel): 69.56%), leading
to better architectures with lower error rates (GDAS: 2.82%; MiLeNAS (Gumbel): 2.57%).

ML-NAS (Gumbel)
GDAS

Figure 5: Applying MiLeNAS to GDAS

1.5 2.0 2.5 3.0 3.5 4.0 4.5
Model Size

2.6

2.8

3.0

3.2

er
ror

 ra
te

(%
)

the optimal
range

curve
real data

Figure 6: Evaluation on Different Model Sizes

3.3.2 EVALUATION ON DIFFERENT MODEL SIZE

To further verify the effectiveness of MiLeNAS, we investigated the accuracy of the searched archi-
tectures in different model sizes (the parameter number of architecture). In this setting, the epoch
number was set to 200 and the parameter range was tracked by using the method introduced in sec-
tion 2.3. We evaluated the best architecture in each parameter range, and then found the relationship
between the parameter number and the model performance (accuracy). From Figure 6, we learn
that our method can also find high-performance architecture with a smaller parameter number. For
example, a smaller parameter number of 2.86M gains an error rate of 2.50%, exceeding the reported

1As of the publication of this paper, GDAS still has not published the source code.

7

Under review as a conference paper at ICLR 2020

accuracy reported in DARTS (2.76%, 3.3M). The optimal parameter number range (between 3.5M
and 4.5M) is consistent with most reported architectures in other NAS methods. Thus, evaluation on
different model size verifies that MiLeNAS can solve the NAS problem better than bilevel method.

3.4 ARCHITECTURE TRANSFERABILITY EVALUATION ON IMAGENET

Table 2: Comparison with state-of-the-art image classifiers on ImageNet

Architecture Test Error (%) Params +× Search Cost Search

top-1 top-5 (M) (M) (GPU days) Method

Inception-v1 (Szegedy et al., 2015) 30.2 10.1 6.6 1448 - manual
MobileNet (Howard et al., 2017) 29.4 10.5 4.2 569 - manual
ShuffleNet (Zhang et al., 2018) 26.3 - ∼ 5 524 - manual
NASNet-A (Zoph et al., 2018) 26.0 8.4 5.3 564 2000 RL
AmoebaNet-A (Real et al., 2019) 25.5 8.0 5.1 555 3150 evolution
AmoebaNet-C (Real et al., 2019) 24.3 7.6 6.4 570 3150 evolution
PNAS (Liu et al., 2018a) 25.8 8.1 5.1 588 ∼ 225 SMBO

DARTS (Liu et al., 2018b) 26.7 8.7 4.7 574 1 gradient-based
SNAS (Xie et al., 2018) 27.3 9.2 4.2 522 1.5 gradient-based
GDAS (Dong & Yang, 2019) 27.5 9.1 4.4 497 0.17 gradient-based
GDAS (Dong & Yang, 2019) 26.0 8.5 5.3 581 0.21 gradient-based

MiLeNAS 25.4 7.9 4.9 570 0.3 gradient-based
MiLeNAS 24.7 7.6 5.3 584 0.3 gradient-based

Transferability is a crucial criterion used to evaluate the potential of the learned cells (Zoph et al.,
2018). To show if the cells learned through our method on CIFAR-10 can be generalized to larger
datasets, we use the same cells as in CIFAR-10 for the classification task on ImageNet. More details
of the transfer learning experiments can be found in Appendix B.1.1. Table 2 presents the results
of the evaluation on ImageNet and shows that the cell found by our method on CIFAR-10 can be
successfully transferred to ImageNet. Our method can find smaller cell architectures that achieve
relatively better performance with three times faster than the bi-level method (2nd-order DARTS).

4 RELATED WORKS

There are three major methods for Neural Architecture Search (NAS). The first method relies on
evolutionary algorithms (Real et al., 2017; Elsken et al., 2018). These algorithms can simultaneously
optimize architectures and network weights. However, their demand for enormous computational
resources makes them highly restrictive. For example, AmoebaNet requires 3150 GPU days to
achieve state-of-the-art performance (Real et al., 2019). The second method, reinforcement learning
(RL) based NAS, formulates the design process of a neural network as a sequence of actions and
regards the model accuracy as reward (Bello et al., 2016; Pham et al., 2018). The third method is
gradient-based (Liu et al., 2018b; Xie et al., 2018; Elsken et al., 2018; Luo et al., 2018). This relaxes
the categorical design choices to continuous variables and then leverages the efficient gradient back-
propagation so that it can finish searching within as little as several GPU days.

5 CONCLUSION

We proposed MiLeNAS, a novel perspective to the NAS problem and reformulated it as mixed-
level optimization instead of bilevel optimization. MiLeNAS can alleviate gradient error caused
by approximation in bilevel optimization and enjoys the first-order efficiency as that of the single-
level method. Thus, MiLeNAS can search for better architectures with faster convergence rate.
Extensive experiments on image classification have demonstrated that MiLeNAS can gain lower
validation error while enjoying a search time three times shorter than 2nd-order bilevel optimization.
MiLeNAS is a generic method. Applicability experiments verify that it can be used to the sampling-
based method to search for better architectures.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Irwan Bello, Barret Zoph, Vijay Vasudevan, and Quoc V. Le. Neural optimizer search with rein-
forcement learning. 2016.

Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four gpu hours. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1761–1770,
2019.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Efficient multi-objective neural architecture
search via lamarckian evolution. arXiv preprint arXiv:1804.09081, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Andrew Hundt, Varun Jain, and Gregory D Hager. sharpdarts: Faster and more accurate differen-
tiable architecture search. arXiv preprint arXiv:1903.09900, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan
Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In Proceed-
ings of the European Conference on Computer Vision (ECCV), pp. 19–34, 2018a.

Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray Kavukcuoglu. Hier-
archical representations for efficient architecture search. arXiv preprint arXiv:1711.00436, 2017.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018b.

Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architecture optimization.
In Advances in neural information processing systems, pp. 7816–7827, 2018.

Niv Nayman, Asaf Noy, Tal Ridnik, Itamar Friedman, Rong Jin, and Lihi Zelnik-Manor. Xnas:
Neural architecture search with expert advice. arXiv preprint arXiv:1906.08031, 2019.

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture search
via parameter sharing. In International Conference on Machine Learning, pp. 4092–4101, 2018.

Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan,
Quoc V Le, and Alexey Kurakin. Large-scale evolution of image classifiers. In Proceedings
of the 34th International Conference on Machine Learning-Volume 70, pp. 2902–2911. JMLR.
org, 2017.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pp. 4780–4789, 2019.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas: stochastic neural architecture search.
arXiv preprint arXiv:1812.09926, 2018.

9

Under review as a conference paper at ICLR 2020

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 6848–6856, 2018.

Zhao Zhong, Zichen Yang, Boyang Deng, Junjie Yan, Wei Wu, Jing Shao, and Cheng-Lin
Liu. Blockqnn: Efficient block-wise neural network architecture generation. arXiv preprint
arXiv:1808.05584, 2018.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8697–8710, 2018.

10

Under review as a conference paper at ICLR 2020

A SEARCH SPACE DEFINITION

The network is formed by stacking convolutional cells for multiple times. Cell k takes the outputs
of cell k − 2 and cell k − 1 as input. Each cell contains seven nodes: two input nodes, one output
node, and the other four intermediate nodes inside the cell. The input of the first intermediate node is
set equal to two input nodes, and the other intermediate nodes take all previous intermediate nodes’
output as input. The output node concatenates all intermediate nodes’ output in depth-wise. There
are two types of cells: the normal cell and the reduction cell. The reduction cell is designed to
reduce the spatial resolution of feature maps, locating at the 1/3 and 2/3 of the total depth of the
network. Architecture parameters determine the discrete operation value between two nodes. All
normal cells and all reduction cells share the same architecture parameters αn and αr, respectively.
By this definition, our method alternatively optimizes architecture parameters (αn, αr) and model
weight parameters w.

B EXPERIMENT DETAILS

B.1 EVALUATION

B.1.1 IMAGENET

The model is restricted to be less than 600M. A network of 14 cells is trained for 250 epochs with
batch size 128, weight decay 3×10−5 and initial SGD learning rate 0.1 (decayed by a factor of 0.97
after each epoch). The training takes 3 days on a server within 8 GPU cards.

11

	Introduction
	Method
	Mixed-Level Optimization
	Comparison With Bilevel Optimization
	Overall Pipeline

	Experiments and Results
	Settings
	Correlation with Single-level and Bilevel methods
	Evaluation Results on CIFAR-10
	Applicability to other NAS methods
	Evaluation on Different Model Size

	Architecture Transferability Evaluation on ImageNet

	Related Works
	CONCLUSION
	Search Space Definition
	Experiment Details
	Evaluation
	ImageNet

