459

460

461
462
463
464

465

467

468
469

470

471
472
473

474

475

A Architecture of Cross-Attention (CA) Layer

The CA layer consists of [attention heads, taking x as input and output zc.

zc =z + CA(norm(x)), x, =norm(x), CA(z,) E:Att(Z (e, n), (28)
AttD (2, 2,) = VVg)TW‘(,i)ace : Softmax((Wl(;)xe)T(Wg)xn)/\/g), (29)

where . is the outputs of the encoder, norm(z) represents the normalization function such as
LayerNorm or RMSNorm, and W, Wi, Wy, W € R *4 represent the parameters of the CA
layer. These parameters correspond to the query, key, value, and output matrices, respectively. Here,
d denotes the hidden size, and d;, = d/H denotes the attention head size.

B Proof of Equation 7

Let X be a matrix formed by concatenating a series of submatrices in the following manner:

X = [L(l)(ml),~ . .7L(1)($M)7L(1~2)(x1)’. . -,L(1N2)(5L‘M),L(1NN)($1>,- . ~,L(1NN)($M)] .

(30)
Then, we have,
N . .
argmin E (Z L3~ (z) — PPTL(lN’)(cEH%) st. PTP=1I (31)
P zeD P
M N)
— arg;ning <z_; | LA~ () — PPT LD (xj)|%> st. PTP=1I (32)
= argmlnzz | L~ (z;) — PPTLOD (2)|% st. PTP=1 (33)
i=1 j=1
N M
= argminy > || X[(i—1)«M+j] - PPTX[(i—1)«M+j]|% st. PTP=1I
P Ny X
i=1 j=1
34)
< argmin|X - PPTX||2 P'P=1, (35)
P

where M = |D| is the number of the sampled data instances, X [(i — 1) * M + j] = LU~ (z;)
represents the submatrix associated with the i-th layer and the j-th data instance.

Therefore, Eq. 6 is equivalent to the following equation,

argmin | X — PPTX||% st. PTP=1 (36)
P

The optimization problem associated with Eq. 36 corresponds to one of the formulations of Principal
Component Analysis [48]. Solving this problem yields the matrix U, which is obtained through the
Singular Value Decomposition (SVD) of matrix X.

C Normalization Function Approximation

LayerNorm. For LayerNorm, we have,

13

476

477
478
479
480

481

482

483

484
485

486

487
488

489

490
491

z — E(x)

— S S . 37
norm(x) = v * Var(a) 1 ¢ +8 (37)
Then, we have
R Pi — E(Pz%)
Pz) = [— S A, 38
norm(Pz) * ISR +8 (38)
. & — E(2) -
~ P N ——) + b 39
* (Y * VM@HGJFB)* 39)
~ P xnotm(&) + b, (40)

where P = v x Px~v,;1,b = 3 — P, x 3, and 7, 3, can take any value as needed. Empirically,
we find that replacing E(Pz), Var(P#) with PE(Z), Var(z) does not affect the model performance.
Here, v and 3 are learnable parameters of LayerNorm, E(x) represents the mean of over hidden
units, and Var(x) represents the variance of x over hidden units.

BatchNorm. For BatchNorm, we have

(1‘ - mmean)

norm(x) = 7y * + B. 41
Then, we have,
A (Pj: - Imean)
Pz) = —_———— 42
norm(Pz) =y - + 3 42)
. : 0 .

= Pox (qu x == + Ba) + 43)

= P« notm(z) + b, (44)
where P> = \/zlﬁp'ygla b=p— \/ﬁxmean — PB,, and “Yn, Br. can take any value as needed.

Here, v and f3 are learnable parameters of BatchNorm, and & ean, and @,, are the mean and variance
of each dimension over data instances.

D Transformer Compression with Post-Normalization

For the transformer model with a post-normalization function (e.g., BERT), each layer of the model
is formalized as:

L;l)(mn) = norrn(l)(L(l)(fzrn))7 L(l)(xn) =z, + Layer(z,), z, = norm(l*l)(m)7 (45)

where [denotes the index of layer. We further define,

L) (2) = L® o norm® Y .. norm™ o LM o norm® () (46)
LI~ (2) = norm™ o L® o norm® Y .. norm™ o L™ o norm® (). 47)

Then given an input x, we pass it through the transformer model starting from the first layer to the
last N-th layer, resulting in the corresponding feature vector,

14

492
493
494

495
496

497

498

500

501

502
503

504

505
506
507

508

509

510
511

LM () = norm™) o L™ o norm™ =Y .. norm™ o LM o norm©® (z:). (48)
According to Eq. 6, we can use the projection matrix P to add dimensionality reduction and dimen-

sionality enhancement operations between each layer, while preserving the final output, as shown in
the following equation,

LI~N)(2) ~ norm™ o U o Do L™ . norm™ o LM 6 U 0 D 0 norm® () (49)

~ PN (notm™ o L) . noim™ o LM o noim® (P z)) (50)
~ PN LA~ (pTy), (51)

where U (x) = Pux represents the dimensionality enhancement operation, D(z) = Pz represents
the dimensionality reduction operation, L(® onotm ™ = Do L® onorm~Y o U is the projected
layer, and &™) = notm™ o L™ . noim™ o LM o noim® is the projected model.

For a projected layer L) o notm~Y (%), we have,
LD o notm V(&) = Do L o norm~Y o U () (52)

= P"(norm"~Y(Pz) 4 Layer(norm~Y (Pz))). (53)

According to appendix C, by the approximation of the post-normalization function, we can replace
norm(P:#) with Pnorm () (For the sake of simplicity, we ignore bias here). Then we have,

LD o notm Y (2) ~ PT (P Unoim =Y (2) + Layer(PY Unotm =Y (2))). (54)

With matrix fusion, we can compress the Layer function to LaS/er, ie.,
LD onotm~ Y (2) & PT P Ynotm =Y (2) + Layer(notm =Y (2)). (55)
There is an additional matrix P P(—1 in Eq. 55, where PTPE-D) — PTyP~;t. Since we can set

the value of +,, arbitrarily, we approximate P ~P with diag(P "~ P) and set 7, to diag(P T vP).
Then, we have P P(—1) ~ I. Therefore, we finally have,

LD o notm V(&) ~ notm Y (2) 4 Layer(notm = (2)). (56)
In our experiments, we find that compressing the first layer of the post-normalization transformer

results in a significant decline in performance. Therefore, when compressing the post-normalization
transformer, we choose to exclude the compression of its first layer.

E CA Layer Compression

For CA Layer, we have,

H
A(dn) = Z PTWE "W P, - Softmax(Wy Pie) T (W) Pi,)/Vd) (57)
= Z WS TW P &, - Softmax((W)T (WS &)/ Vd), (58)

where W(- W(Z)P W(Z) W(z)Pe, W(Z) W(Z)Pe, W(Q- W(Z)P The shape of these
matrices is changed from dh x d to dy, X k, retaining k/d of the original number of parameters.

15

512

513

514
515
516
517
518

520
521

522

523
524
525
526
527
528

530

531

533
534
535
536
537
538
539

540

541
542
543
544
545

546

547
548

549

550
551
552
553
554
555
556
557

F Experiment Details

F.1 Experiment Setup

To establish the baseline models, we first download the pre-trained checkpoints from the HuggingFace
Transformers repository [49]. For BERT, we conduct fine-tuning on the pre-trained model for 2
epochs, employing a batch size of 16 and a learning rate of 3e-5 for tasks in the GLUE [41] and
SQuAD [42, 50] benchmarks. For T5, we fine-tune the pre-trained model for 2 epochs, using a
batch size of 16 and learning rates of 1e-4 and 3e-5 for tasks in the GLUE [41] and SQuAD [42, 50]
benchmarks, respectively. Then, we employ a sample size of 2,000 to compress the transformer
model. Finally, we refine the model weight using the same settings utilized during the fine-tuning of
the baseline models. Other parameters are set to the default parameters provided by the framework.

F.2 Datasets

GLUE benchmark [41] consists of various tasks related to sentence similarity calculation, sentence
classification, textual entailment, and natural language inference. It includes 10 tasks, namely AX,
COLA, QQP, MNLI, MRPC, QNLI, QQP, RTE, SST-2, STS-B, and WNLI. The number of training
examples for each task is as follows: 1.1k, 10.7k, 432k, 5.8k, 105k, 364k, 3k, 70k, 67k, 852,
respectively. For our experiment, we select the datasets QQP, MNLI, MRPC, QNLI, QQP, SST-2,
and STS-B based on the data scale and previous research [8]. The SQuAD 1.1 [42] and SQuAD 2.0
[50] datasets involve question and answering tasks, each containing 88K and 130K training examples,
respectively.

F.3 Comparison of TCSP with Prior Methods on BERT

Following the experimental setup of Kwon et al. [8], we compare TCSP against previous pruning
methods and low-rank factorization methods for the transformer model on four GLUE tasks: QQP,
QNLI SST-2, and MRPC. It is important to note that our evaluation solely relies on the experimental
results without any additional knowledge distillation. For DRONE, as the paper only reported the
speed-up metric, the compression ratio is not provided. Additionally, the results for MRPC in Sajjad
et al., DynaBERT, Kwon et al., FWSVD, and TFWSVD are reported in terms of accuracy instead
of F1 score. Please refer to Table 6 for the detailed experimental outcomes. Our method TCSP
demonstrates comparable or superior results compared to the prior methods.

F.4 Performance Comparison of Compressed T5-base with T5-small

We conduct a comparison between the compressed T5-base and T5-small models. As shown in Table
7, the compressed T5-base, having twice the number of parameters, outperforms T5-small on all
datasets. In the future, we aim to delve deeper into the layer compression algorithm to ensure that the
compressed T5-base and T5-small models have an equal number of layers and hidden size. This will
enable a fairer and more accurate comparison between the two models.

F.5 Performance Analysis of Compressed T5-base at Various Compression Rates

Table 8 illustrates the performance of the compressed T5-base model at different compression ratios.
Notably, a reduction of 25% in the hidden size can be achieved while preserving accuracy.

F.6 Performance of Compressed LLaMa

We extend the application of TCSP to large transformer models, such as LL.aMa-7B. Initially, We
conduct LoRA-based fine-tuning on LL.aMa-7B using the Stanford Alpaca dataset. After that, we
apply TCSP to compress the transformer model. To maintain the performance, we also need to
conduct LoRA-based fine-tuning on the Alpaca dataset after the compression process. To evaluate
the performance of the compressed model in a zero-shot setting, we test it on three commonsense
reasoning datasets: PIQA, HellaSwag, and WinoGrande. The accuracy of the model is reported for
these three datasets. The experimental results shown in Table 9 demonstrate that we can compress
the model by 12.5% of its parameters while incurring only a 3% degradation in performance.

16

Table 6: Performance comparison of TCSP with previous compression methods on BERT.

Compression rate | QQP QNLI SST-2 MRPC Diff.
baseline - 91.6 92.7 90.9 - 0 0 0
Flop [9] 33.3 - 89.0 92.1 88.6 - 26 -06 23
baseline 90.6 91.6 92.7 90.9 0 0 0 0
SLIP [10] 34.4 89.7 90.7 91.7 89.9 -09 -09 -1.0 -1.0
38.5 889 895 91.8 88.1 -1.7 21 -09 -28
baseline 91.1 911 92.4 88.0" 0 0 0 0
Sajjad et al. [47] 333 90.6 89.7 90.6 794* | 04 -14 -1.8 -8.6
50.0 904 87.6 90.3 80.2* | -0.7 -35 -22 -7.8
baseline - - 92.9 87.7" - - 0 0
DynaBERT [23] 25.0 - - 92.3 86.0" - - -06 -1.7
50.0 - - 91.9 86.0" - - -0 -1.7
baseline 879 915 93.2 - 0 0 0 -
EBERT [11] 40.0 87.5 90.2 922 - -04 -13 -1.0 -
50.0 879 89.6 91.6 - -0.7 -19 -16 -
BMP [12] baseline 91.1 - 92.7 - 0 - 0 -
50.0 90.4 - 90.7 - -0.7 - 2.0 -
baseline 91.0 914 93.6 86.3" 0 0 0 0
30.0 90.7 909 93.0 86.1" | -03 -05 -06 -02
Kwon et al. [8] .
40.0 90.4 90.0 92.5 85.3 -06 -14 -1.1 -1.0
50.0 89.5 83.7 91.6 83.2* | -1.5 27 20 -3.1
DRONE [14] baseline 909 914 92.3 89.5 0 0 0 0
- 90.1 89.3 90.8 83.0 -08 -2.1 -15 -15
FWSVD [15] baseline 87.8 91.3 93.0 87.4 0 0 0 0
40.0 87.6 89.5 91.2 88.0° | -02 -1.8 -1.8 +0.6
TEWSVD [16] baseline 87.8 913 93.0 87.4* 0 0 0 0
40.0 86.9 90.3 91.1 89.0 -09 -1.0 -19 +16
TCSP baseline 91.1 91.4 922 89.9 0 0 0 0
40.0 90.8 90.6 91.1 89.1 -03 -08 -1.1 -0.8
Table 7: Comparison of compressed T5-base with T5-small
| MNLI QQP QNLI SST-2 STS-B MRPC SQuAD,; SQuAD,,
T5-small 81.6 89.5 90.7 91.5 87.4 91.0 83.3 63.9
T5-base w TCSP {25%, 25%} + ft. 86.1 90.9 92.0 93.2 89.3 92.3 87.0 77.5

sss G Algorithm

s59 G.1 Projection Matrix Generation

s60 The pseudo-code of projection matrix generation is shown in Algorithm 1.

61 G.2 TCSP

s62 The pseudo-code of TCSP is shown in Algorithm 2. The pseudo-code of TCSP combined with other
563 compression methods is shown in Algorithm 3.

17

564

565

566

567

568

569
570

571

572
573
574
575

577
578

Table 8: Performance of compressed TS5-base at different compression ratios

| MNLI QQP QNLI SST2 STS-B MRPC SQuAD,, SQuAD,,

T5-base 86.8 914 932 94.5 90.0 91.9 88.6 79.3
w TCSP {12.5%, 0%} + ft. 86.5 912 926 94.4 90.3 91.0 87.2 78.1
w TCSP {25%, 0%} + ft. 86.2 912 925 93.2 90.1 91.3 86.8 78.0
w TCSP {37.5%, 0%} + ft. 84.8 90.6 921 92.4 89.3 91.7 86.0 76.0
w TCSP {50%, 0%} + ft. 82.6 90.5 899 90.9 83.4 83.4 84.4 73.9

Table 9: Performance of compressed LLaMa

| PIQA HellaSwag ~ WinoGrande

LLaMa-7B+LoRa-ft. 77.4 73.9 63.2
+TCSP{12.5%, 0%} 74.3 68.0 60.7
+TCSP{12.5%, 0%}+LoRa-ft. | 754 71.1 61.0
+TCSP{25.0%, 0%} 68.4 62.6 56.0
+TCSP{25.0%, 0% }+LoRa-ft. | 72.7 63.3 59.6

G.3 TCSP-filter-pruning

The pseudo-code of TCSP-filter-pruning is shown in Algorithm 4.

G.4 TCSP-head-size-compression

The pseudo-code of TCSP-head-size-compression is shown in Algorithm 5.

H Societal Impacts

We believe that our work will not have an immediate negative impact on society, as its primary
objective is to accelerate model inference without compromising the output quality.

I Limitation and Future Work

There are two key considerations regarding TCSP. Firstly, it relies on performing SVD on the feature
matrix for model compression. However, the computational overhead associated with SVD and the
storage requirements for the feature matrix using a limited number of samples. Secondly, our current
method exclusively supports compressing of models employing the Transformer structure. In the
future, we intend to delve into alternative techniques for computing the projection matrix, offering
greater flexibility for handling large-scale matrices. Additionally, we aim to extend the application of
our compression methods to encompass diverse model structures.

18

Algorithm 1: Projection Matrix Generation (PMG)

Input: r: compression ratio, 7": sampled tokens size, ID: a subset of training data, LA~N).
model, d: hidden size
Output: Projection Matrix P
X<+
for m < 0to M do
(9 < D[m)]
fori <+ 1to N do
10 @) (x(ifl))
2 = Sample(z®, T)
X + Concate(X, xgz))
end

end

U, S, VT + SVD(X)
k<« [dx*r]

P+ U:7:k

Algorithm 2: TCSP

Input: r: compression ratio, 7": sampled tokens size, [D: a subset of the training data
Output: Compressed model L(1~N)

P + PMG(r,T,D)

fori < 1to |[MHA|do

for j «+ 1to H do
v, Wo, Wy, Wo, Wk] + MHA;” > Load MHA Parameters
P+ \/%fyP
MI:IAi-Z) +— [I,WoP, Wy P, Wo P, WKP] > Set MHA Parameters
end
end
fori« 1to[FFN|do
[v, Wp, Wy] + FEN® > Load FFN Parameters
P« \/%vP
FENY [, WpP, Wy P > Set FEN Parameters
end

M « [MHA, FFN]

19

Algorithm 3: TCSP-combine

Input: r: compression ratio, 7": sampled tokens size, ID: a subset of the training data

Output: Compressed model LO~N)

P + PMG(r,T,D)

Mask < TFP(r, T, D)

Unts Ve, Unpry Vs < THSC(T’, T,]D))
fori < 1to |[MHA|do

for j < 1to H do

[v: Wo, Wy, W, Wik] + MHAE-“

P+ \/%'yP
a0 (9) DT)T ~)T S DT -
MHA;” « [Vi) TWo P, U T Wy P, Vi TWo P, U T Wi P)

end

end
ori<« 1to|FFN|do

[y, Wp, Wy] « FFN®
P« \/%VP
(1)

[~

FEN'" « [I, Mask® W, P, Mask) Wy, P]
end

LO~N) « IMHA, FFN]

Algorithm 4: TCSP-filter-pruning (TFP)

Input: r: compression ratio, T: sampled tokens size, ID: a subset of training data, L(1~):
model, d¢: number of filters
Output: TCSP Pruning Mask Mask
E[XL* +—0
E[X4«0
for m < 1 to M do
(9 < Dlm)]
for i + 1to N do
()« L@ (2(-D)
if L) is j-th FFN Layer FFNY) then
E[X]; + Update(E[X];,z(®)
E[X2]; + Update(E[X2];, 2" 2(9))

end
end

end

K « [df 7]

fori < 1to |[FFN|do

E; «+ E[X]z

Score(x) < [Wp «|(E; « + std;)

Index « TopK_Index(Score, K) > Select Top-K important filters
Mask; < GenerateMask(d s, Index) > Mask; is a RE*%/ matrix for pruning filters

end
Mask < [Maski, Masks, ..., Mask|pp)]

20

Algorithm 5: TCSP-head-size-compression (THSC)

Input: r: compression ratio, 7": sampled tokens size, D: a subset of training data, La~N).
model, d: hidden size

Output: Projection Matrices Uy, Var, Upsr, Vg

fori < 1to |[MHA|do

3

Xé 1

X{

end

for m < 0to M do

2(©) < D[m)]

for i < 1to N do

if LY is j-th MHA Layer MHA"Y) then
2 = Sample(z®, T)
Xg) — Concate(Xg), Wg)mgz))

X%) — Concate(X%), W[(g)xgi))
Xg) — Concate(XE}), ‘(/])xgl))
end
end

end
fori < 1to N do
if L) is j-th MHA Layer MHAY) then
> Solve Eq.26 and Eq.27 for each head
for k < 1to H do

| U Vi USD o Vi o+ Solver(x§), x30, X{7)

end
end
end
Un < [UP, U2, UMD
Vi < VP, v v MEAD)
Un: « [UG, U2, U MEAD
Vi < [V, v® . yIMEAD

21

