
A Architecture of Cross-Attention (CA) Layer459

The CA layer consists of H attention heads, taking x as input and output xC.460

xC = x+CA(norm(x)), xn = norm(x), CA(xn) =

H∑
i=1

Att(i)(xe, xn), (28)

Att(i)(xe, xn) = W
(i)⊤
O W

(i)
V xe · Softmax((W

(i)
K xe)

⊤(W
(i)
Q xn)/

√
d), (29)

where xe is the outputs of the encoder, norm(x) represents the normalization function such as461

LayerNorm or RMSNorm, and WQ,WK ,WV ,WO ∈ Rdh×d represent the parameters of the CA462

layer. These parameters correspond to the query, key, value, and output matrices, respectively. Here,463

d denotes the hidden size, and dh = d/H denotes the attention head size.464

B Proof of Equation 7465

Let X be a matrix formed by concatenating a series of submatrices in the following manner:466

X =
[
L(1)(x1),· · ·, L(1)(xM), L(1∼2)(x1),· · ·, L(1∼2)(xM), L(1∼N)(x1),· · ·, L(1∼N)(xM)

]
.
(30)

Then, we have,467

argmin
P

E
x∈D

(
N∑
i=1

∥L(1∼i)(x)− PP⊤L(1∼i)(x)∥2F

)
s.t. P⊤P = I (31)

⇐⇒ argmin
P

M∑
j=1

(
N∑
i=1

∥L(1∼i)(xj)− PP⊤L(1∼i)(xj)∥2F

)
s.t. P⊤P = I (32)

⇐⇒ argmin
P

N∑
i=1

M∑
j=1

∥L(1∼i)(xj)− PP⊤L(1∼i)(xj)∥2F s.t. P⊤P = I (33)

⇐⇒ argmin
P

N∑
i=1

M∑
j=1

∥X[(i− 1) ∗M + j]− PP⊤X[(i− 1) ∗M + j]∥2F s.t. P⊤P = I

(34)

⇐⇒ argmin
P

∥X − PP⊤X∥2F P⊤P = I, (35)

where M = |D| is the number of the sampled data instances, X[(i − 1) ∗M + j] = L(1∼i)(xj)468

represents the submatrix associated with the i-th layer and the j-th data instance.469

Therefore, Eq. 6 is equivalent to the following equation,470

argmin
P

∥X − PP⊤X∥2F s.t. P⊤P = I. (36)

The optimization problem associated with Eq. 36 corresponds to one of the formulations of Principal471

Component Analysis [48]. Solving this problem yields the matrix U , which is obtained through the472

Singular Value Decomposition (SVD) of matrix X .473

C Normalization Function Approximation474

LayerNorm. For LayerNorm, we have,475

13

norm(x) = γ ∗ x− E(x)√
Var(x) + ϵ

+ β. (37)

Then, we have476

norm(Px̂) = γ ∗ Px̂− E(Px̂)√
Var(Px̂) + ϵ

+ β (38)

≈ P̂ ∗ (γn ∗
x̂− E(x̂)√
Var(x̂) + ϵ

+ βn) + b̂ (39)

≈ P̂ ∗ ˆnorm(x̂) + b̂, (40)

where P̂ = γ ∗ P ∗ γ−1
n , b̂ = β − Pn ∗ βn, and γn, βn can take any value as needed. Empirically,477

we find that replacing E(Px̂),Var(Px̂) with PE(x̂),Var(x̂) does not affect the model performance.478

Here, γ and β are learnable parameters of LayerNorm, E(x) represents the mean of x over hidden479

units, and Var(x) represents the variance of x over hidden units.480

BatchNorm. For BatchNorm, we have481

norm(x) = γ ∗ (x− xmean)√
xvar + ϵ

+ β. (41)

Then, we have,482

norm(Px̂) = γ ∗ (Px̂− xmean)√
xvar + ϵ

+ β (42)

= P̂ ∗ (γn ∗
x̂− 0

1
+ βn) + b̂ (43)

= P̂ ∗ ˆnorm(x̂) + b̂, (44)

where P̂ = γ√
xvar+ϵ

Pγ−1
n , b̂ = β − γ√

xvar+ϵ
xmean − P̂ βn, and γn, βn can take any value as needed.483

Here, γ and β are learnable parameters of BatchNorm, and xmean and xvar are the mean and variance484

of each dimension over data instances.485

D Transformer Compression with Post-Normalization486

For the transformer model with a post-normalization function (e.g., BERT), each layer of the model487

is formalized as:488

L(l)
n (xn) = norm(l)(L(l)(xn)), L(l)(xn) = xn + Layer(xn), xn = norm(l−1)(x), (45)

where l denotes the index of layer. We further define,489

L(1∼i)(x) = L(i) ◦ norm(i−1) . . . norm(1) ◦ L(1) ◦ norm(0)(x) (46)

L(1∼i)
n (x) = norm(i) ◦ L(i) ◦ norm(i−1) . . . norm(1) ◦ L(1) ◦ norm(0)(x). (47)

Then given an input x, we pass it through the transformer model starting from the first layer to the490

last N -th layer, resulting in the corresponding feature vector,491

14

L(1∼N)
n (x) = norm(N) ◦ L(N) ◦ norm(N−1) . . . norm(1) ◦ L(1) ◦ norm(0)(x). (48)

According to Eq. 6, we can use the projection matrix P to add dimensionality reduction and dimen-492

sionality enhancement operations between each layer, while preserving the final output, as shown in493

the following equation,494

L(1∼N)
n (x) ≈ norm(N) ◦ U ◦D ◦ L(N) . . . norm(1) ◦ L(1) ◦ U ◦D ◦ norm(0)(x) (49)

≈ P̂ (N)(ˆnorm(N) ◦ L̂(N) . . . ˆnorm(1) ◦ L̂(1) ◦ ˆnorm(0)(P⊤x)) (50)

≈ P̂ (N)L̂(1∼N)
n (P⊤x), (51)

where U(x) = Px represents the dimensionality enhancement operation, D(x) = P⊤x represents495

the dimensionality reduction operation, L̂(i) ◦ ˆnorm(i−1) = D ◦L(i) ◦norm(i−1) ◦U is the projected496

layer, and L̂
(1∼N)
n = ˆnorm(N) ◦ L̂(N) . . . ˆnorm(1) ◦ L̂(1) ◦ ˆnorm(0) is the projected model.497

For a projected layer L̂(i) ◦ ˆnorm(i−1)(x̂), we have,498

L̂(i) ◦ ˆnorm(i−1)(x̂) = D ◦ L(i) ◦ norm(i−1) ◦ U(x̂) (52)

= P⊤(norm(i−1)(Px̂) + Layer(norm(i−1)(Px̂))). (53)

According to appendix C, by the approximation of the post-normalization function, we can replace499

norm(Px̂) with P̂ ˆnorm(x̂) (For the sake of simplicity, we ignore bias here). Then we have,500

L̂(i) ◦ ˆnorm(i−1)(x̂) ≈ P⊤(P̂ (i−1) ˆnorm(i−1)(x̂) + Layer(P̂ (i−1) ˆnorm(i−1)(x̂))). (54)

With matrix fusion, we can compress the Layer function to ˆLayer, i.e.,501

L̂(i) ◦ ˆnorm(i−1)(x̂) ≈ P⊤P̂ (i−1) ˆnorm(i−1)(x̂) + ˆLayer(ˆnorm(i−1)(x̂)). (55)

There is an additional matrix P⊤P̂ (i−1) in Eq. 55, where P⊤P̂ (i−1) = P⊤γPγ−1
n . Since we can set502

the value of γn arbitrarily, we approximate P⊤γP with diag(P⊤γP) and set γn to diag(P⊤γP).503

Then, we have P⊤P̂ (i−1) ≈ I. Therefore, we finally have,504

L̂(i) ◦ ˆnorm(i−1)(x̂) ≈ ˆnorm(i−1)(x̂) + ˆLayer(ˆnorm(i−1)(x̂)). (56)

In our experiments, we find that compressing the first layer of the post-normalization transformer505

results in a significant decline in performance. Therefore, when compressing the post-normalization506

transformer, we choose to exclude the compression of its first layer.507

E CA Layer Compression508

For CA Layer, we have,509

ĈA(x̂n) =

H∑
i=1

P⊤W
(i)⊤
O W

(i)
V P̂ex̂e · Softmax((W

(i)
K P̂ex̂e)

⊤(W
(i)
Q P̂ x̂n)/

√
d) (57)

=

H∑
i=1

Ŵ
(i)⊤
O Ŵ

(i)
V x̂e · Softmax((Ŵ

(i)
K x̂e)

⊤(Ŵ
(i)
Q x̂n)/

√
d), (58)

where Ŵ
(i)
O = W

(i)
O P, Ŵ

(i)
V = W

(i)
V P̂e, Ŵ

(i)
K = W

(i)
K P̂e, Ŵ

(i)
Q = W

(i)
Q P̂ . The shape of these510

matrices is changed from dh × d to dh × k, retaining k/d of the original number of parameters.511

15

F Experiment Details512

F.1 Experiment Setup513

To establish the baseline models, we first download the pre-trained checkpoints from the HuggingFace514

Transformers repository [49]. For BERT, we conduct fine-tuning on the pre-trained model for 2515

epochs, employing a batch size of 16 and a learning rate of 3e-5 for tasks in the GLUE [41] and516

SQuAD [42, 50] benchmarks. For T5, we fine-tune the pre-trained model for 2 epochs, using a517

batch size of 16 and learning rates of 1e-4 and 3e-5 for tasks in the GLUE [41] and SQuAD [42, 50]518

benchmarks, respectively. Then, we employ a sample size of 2,000 to compress the transformer519

model. Finally, we refine the model weight using the same settings utilized during the fine-tuning of520

the baseline models. Other parameters are set to the default parameters provided by the framework.521

F.2 Datasets522

GLUE benchmark [41] consists of various tasks related to sentence similarity calculation, sentence523

classification, textual entailment, and natural language inference. It includes 10 tasks, namely AX,524

COLA, QQP, MNLI, MRPC, QNLI, QQP, RTE, SST-2, STS-B, and WNLI. The number of training525

examples for each task is as follows: 1.1k, 10.7k, 432k, 5.8k, 105k, 364k, 3k, 70k, 67k, 852,526

respectively. For our experiment, we select the datasets QQP, MNLI, MRPC, QNLI, QQP, SST-2,527

and STS-B based on the data scale and previous research [8]. The SQuAD 1.1 [42] and SQuAD 2.0528

[50] datasets involve question and answering tasks, each containing 88K and 130K training examples,529

respectively.530

F.3 Comparison of TCSP with Prior Methods on BERT531

Following the experimental setup of Kwon et al. [8], we compare TCSP against previous pruning532

methods and low-rank factorization methods for the transformer model on four GLUE tasks: QQP,533

QNLI, SST-2, and MRPC. It is important to note that our evaluation solely relies on the experimental534

results without any additional knowledge distillation. For DRONE, as the paper only reported the535

speed-up metric, the compression ratio is not provided. Additionally, the results for MRPC in Sajjad536

et al., DynaBERT, Kwon et al., FWSVD, and TFWSVD are reported in terms of accuracy instead537

of F1 score. Please refer to Table 6 for the detailed experimental outcomes. Our method TCSP538

demonstrates comparable or superior results compared to the prior methods.539

F.4 Performance Comparison of Compressed T5-base with T5-small540

We conduct a comparison between the compressed T5-base and T5-small models. As shown in Table541

7, the compressed T5-base, having twice the number of parameters, outperforms T5-small on all542

datasets. In the future, we aim to delve deeper into the layer compression algorithm to ensure that the543

compressed T5-base and T5-small models have an equal number of layers and hidden size. This will544

enable a fairer and more accurate comparison between the two models.545

F.5 Performance Analysis of Compressed T5-base at Various Compression Rates546

Table 8 illustrates the performance of the compressed T5-base model at different compression ratios.547

Notably, a reduction of 25% in the hidden size can be achieved while preserving accuracy.548

F.6 Performance of Compressed LLaMa549

We extend the application of TCSP to large transformer models, such as LLaMa-7B. Initially, We550

conduct LoRA-based fine-tuning on LLaMa-7B using the Stanford Alpaca dataset. After that, we551

apply TCSP to compress the transformer model. To maintain the performance, we also need to552

conduct LoRA-based fine-tuning on the Alpaca dataset after the compression process. To evaluate553

the performance of the compressed model in a zero-shot setting, we test it on three commonsense554

reasoning datasets: PIQA, HellaSwag, and WinoGrande. The accuracy of the model is reported for555

these three datasets. The experimental results shown in Table 9 demonstrate that we can compress556

the model by 12.5% of its parameters while incurring only a 3% degradation in performance.557

16

Table 6: Performance comparison of TCSP with previous compression methods on BERT.

Compression rate QQP QNLI SST-2 MRPC Diff.

Flop [9]
baseline - 91.6 92.7 90.9 - 0 0 0

33.3 - 89.0 92.1 88.6 - -2.6 -0.6 -2.3

SLIP [10]
baseline 90.6 91.6 92.7 90.9 0 0 0 0

34.4 89.7 90.7 91.7 89.9 -0.9 -0.9 -1.0 -1.0
38.5 88.9 89.5 91.8 88.1 -1.7 -2.1 -0.9 -2.8

Sajjad et al. [47]
baseline 91.1 91.1 92.4 88.0∗ 0 0 0 0

33.3 90.6 89.7 90.6 79.4∗ -0.4 -1.4 -1.8 -8.6
50.0 90.4 87.6 90.3 80.2∗ -0.7 -3.5 -2.2 -7.8

DynaBERT [23]
baseline - - 92.9 87.7∗ - - 0 0

25.0 - - 92.3 86.0∗ - - -0.6 -1.7
50.0 - - 91.9 86.0∗ - - -1.0 -1.7

EBERT [11]
baseline 87.9 91.5 93.2 - 0 0 0 -

40.0 87.5 90.2 92.2 - -0.4 -1.3 -1.0 -
50.0 87.9 89.6 91.6 - -0.7 -1.9 -1.6 -

BMP [12]
baseline 91.1 - 92.7 - 0 - 0 -

50.0 90.4 - 90.7 - -0.7 - -2.0 -

Kwon et al. [8]

baseline 91.0 91.4 93.6 86.3∗ 0 0 0 0
30.0 90.7 90.9 93.0 86.1∗ -0.3 -0.5 -0.6 -0.2
40.0 90.4 90.0 92.5 85.3∗ -0.6 -1.4 -1.1 -1.0
50.0 89.5 88.7 91.6 83.2∗ -1.5 -2.7 -2.0 -3.1

DRONE [14]
baseline 90.9 91.4 92.3 89.5 0 0 0 0

- 90.1 89.3 90.8 88.0 -0.8 -2.1 -1.5 -1.5

FWSVD [15]
baseline 87.8 91.3 93.0 87.4∗ 0 0 0 0

40.0 87.6 89.5 91.2 88.0∗ -0.2 -1.8 -1.8 +0.6

TFWSVD [16]
baseline 87.8 91.3 93.0 87.4∗ 0 0 0 0

40.0 86.9 90.3 91.1 89.0∗ -0.9 -1.0 -1.9 +1.6

TCSP
baseline 91.1 91.4 92.2 89.9 0 0 0 0

40.0 90.8 90.6 91.1 89.1 -0.3 -0.8 -1.1 -0.8

Table 7: Comparison of compressed T5-base with T5-small

MNLI QQP QNLI SST-2 STS-B MRPC SQuAD1.1 SQuAD2.0

T5-small 81.6 89.5 90.7 91.5 87.4 91.0 83.3 63.9
T5-base w TCSP {25%, 25%} + ft. 86.1 90.9 92.0 93.2 89.3 92.3 87.0 77.5

G Algorithm558

G.1 Projection Matrix Generation559

The pseudo-code of projection matrix generation is shown in Algorithm 1.560

G.2 TCSP561

The pseudo-code of TCSP is shown in Algorithm 2. The pseudo-code of TCSP combined with other562

compression methods is shown in Algorithm 3.563

17

Table 8: Performance of compressed T5-base at different compression ratios

MNLI QQP QNLI SST-2 STS-B MRPC SQuAD1.1 SQuAD2.0

T5-base 86.8 91.4 93.2 94.5 90.0 91.9 88.6 79.3
w TCSP {12.5%, 0%} + ft. 86.5 91.2 92.6 94.4 90.3 91.0 87.2 78.1
w TCSP {25%, 0%} + ft. 86.2 91.2 92.5 93.2 90.1 91.3 86.8 78.0
w TCSP {37.5%, 0%} + ft. 84.8 90.6 92.1 92.4 89.3 91.7 86.0 76.0
w TCSP {50%, 0%} + ft. 82.6 90.5 89.9 90.9 83.4 83.4 84.4 73.9

Table 9: Performance of compressed LLaMa

PIQA HellaSwag WinoGrande

LLaMa-7B+LoRa-ft. 77.4 73.9 63.2
+TCSP{12.5%, 0%} 74.3 68.0 60.7
+TCSP{12.5%, 0%}+LoRa-ft. 75.4 71.1 61.0
+TCSP{25.0%, 0%} 68.4 62.6 56.0
+TCSP{25.0%, 0%}+LoRa-ft. 72.7 63.3 59.6

G.3 TCSP-filter-pruning564

The pseudo-code of TCSP-filter-pruning is shown in Algorithm 4.565

G.4 TCSP-head-size-compression566

The pseudo-code of TCSP-head-size-compression is shown in Algorithm 5.567

H Societal Impacts568

We believe that our work will not have an immediate negative impact on society, as its primary569

objective is to accelerate model inference without compromising the output quality.570

I Limitation and Future Work571

There are two key considerations regarding TCSP. Firstly, it relies on performing SVD on the feature572

matrix for model compression. However, the computational overhead associated with SVD and the573

storage requirements for the feature matrix using a limited number of samples. Secondly, our current574

method exclusively supports compressing of models employing the Transformer structure. In the575

future, we intend to delve into alternative techniques for computing the projection matrix, offering576

greater flexibility for handling large-scale matrices. Additionally, we aim to extend the application of577

our compression methods to encompass diverse model structures.578

18

Algorithm 1: Projection Matrix Generation (PMG)

Input: r: compression ratio, T : sampled tokens size, D: a subset of training data, L(1∼N):
model, d: hidden size

Output: Projection Matrix P
X← []
for m← 0 to M do

x(0) ← D[m]
for i← 1 to N do

x(i) ← L(i)(x(i−1))

x
(i)
s = Sample(x(i), T)

X← Concate(X, x
(i)
s)

end
end
U,Σ, V ⊤ ← SVD(X)
k ← ⌈d ∗ r⌉
P ← U:,:k

Algorithm 2: TCSP
Input: r: compression ratio, T : sampled tokens size, D: a subset of the training data
Output: Compressed model L̂(1∼N)

P ← PMG(r, T,D)
for i← 1 to |MHA| do

for j ← 1 to H do
[γ,WO,WV ,WQ,WK]← MHA

(i)
j ▷ Load MHA Parameters

P̂ ←
√

d
kγP

ˆMHA
(i)

j ← [I,WOP,WV P̂ ,WQP̂ ,WK P̂] ▷ Set MHA Parameters
end

end
for i← 1 to |FFN | do

[γ,WD,WU]← FFN(i) ▷ Load FFN Parameters

P̂ ←
√

d
kγP

ˆFFN
(i)
← [I,WDP,WU P̂] ▷ Set FFN Parameters

end
M̂← [ˆMHA, ˆFFN]

19

Algorithm 3: TCSP-combine
Input: r: compression ratio, T : sampled tokens size, D: a subset of the training data
Output: Compressed model L̂(1∼N)

P ← PMG(r, T,D)
Mask← TFP(r, T,D)
UM , VM , UM ′ , VM ′ ← THSC(r, T,D)
for i← 1 to |MHA| do

for j ← 1 to H do
[γ,WO,WV ,WQ,WK]← MHA

(i)
j

P̂ ←
√

d
kγP

ˆMHA
(i)

j ← [I, V
(i)⊤
M ′,jWOP, U

(i)⊤
M ′,jWV P̂ , V

(i)⊤
M,j WQP̂ , U

(i)⊤
M,j WK P̂]

end
end
for i← 1 to |FFN | do

[γ,WD,WU]← FFN(i)

P̂ ←
√

d
kγP

ˆFFN
(i)
← [I,Mask(i)WDP,Mask(i)WU P̂]

end
L̂(1∼N) ← [ˆMHA, ˆFFN]

Algorithm 4: TCSP-filter-pruning (TFP)

Input: r: compression ratio, T : sampled tokens size, D: a subset of training data, L(1∼N):
model, df : number of filters

Output: TCSP Pruning Mask Mask
E[X]∗ ← 0
E[X2]∗ ← 0
for m← 1 to M do

x(0) ← D[m]
for i← 1 to N do

x(i) ← L(i)(x(i−1))

if L(i) is j-th FFN Layer FFN(j) then
E[X]j ← Update(E[X]j , x

(i))

E[X2]j ← Update(E[X2]j , x
(i) ∗ x(i))

end
end

end
K ← ⌈df ∗ r⌉
for i← 1 to |FFN | do

Ei ← E[X]i
stdi ←

√
E[X2]i − (E[X]i)2

Score(∗)← |WD,∗|(Ei,∗ + stdi,∗)
Index← TopK_Index(Score,K) ▷ Select Top-K important filters
Maskj ← GenerateMask(df , Index) ▷ Maskj is a RK×df matrix for pruning filters

end
Mask← [Mask1,Mask2, . . . ,Mask|FFN |]

20

Algorithm 5: TCSP-head-size-compression (THSC)

Input: r: compression ratio, T : sampled tokens size, D: a subset of training data, L(1∼N):
model, d: hidden size

Output: Projection Matrices UM , VM , UM ′ , VM ′

for i← 1 to |MHA| do
X

(i)
K ← []

X
(i)
Q ← []

X
(i)
V ← []

end
for m← 0 to M do

x(0) ← D[m]
for i← 1 to N do

x(i) ← L(i)(x(i−1))

if L(i) is j-th MHA Layer MHA(j) then
x
(i)
s = Sample(x(i), T)

X
(j)
Q ← Concate(X

(i)
Q ,W

(j)
Q x

(i)
s)

X
(j)
K ← Concate(X

(i)
K ,W

(j)
K x

(i)
s)

X
(j)
V ← Concate(X

(i)
V ,W

(j)
V x

(i)
s)

end
end

end
for i← 1 to N do

if L(i) is j-th MHA Layer MHA(j) then
▷ Solve Eq.26 and Eq.27 for each head

for k ← 1 to H do
U

(j)
M,k, V

(j)
M,k, U

(j)
M ′,k, V

(j)
M ′,k,← Solvek(X

(j)
Q , X

(j)
K , X

(j)
V)

end
end

end
UM ← [U

(1)
M , U

(2)
M , . . . , U

(|MHA|)
M]

VM ← [V
(1)
M , V

(2)
M , . . . , V

(|MHA|)
M]

UM ′ ← [U
(1)
M ′ , U

(2)
M ′ , . . . , U

(|MHA|)
M ′]

VM ′ ← [V
(1)
M ′ , V

(2)
M ′ , . . . , V

(|MHA|)
M ′]

21

