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ABSTRACT

Overfitting is a common issue in machine learning, which can arise when
the model learns to predict class membership using convenient but spuriously-
correlated image features instead of the true image features that denote a class.
These are typically visualized using saliency maps. In some object classification
tasks such as for medical images, one may have some images with masks, indi-
cating a region of interest, i.e., which part of the image contains the most relevant
information for the classification. We describe a simple method for taking advan-
tage of such auxiliary labels, by training networks to ignore the distracting features
which may be extracted outside of the region of interest, on the training images for
which such masks are available. This mask information is only used during train-
ing and has an impact on generalization accuracy in a dataset-dependent way. We
observe an underwhelming relationship between controlling saliency maps and
improving generalization performance.

1 INTRODUCTION

Overfitting is a common problem in machine learning, particularly when one uses powerful function
approximators such as deep neural networks. When training these models with backpropagation,
the network will evolve from modelling simple to more complicated functions until it finds salient
discriminative features in the data. Once the model has found these, the gradients of the loss do
not encourage the model to find other discriminative features in the data, even if they exist (Reed:
& Marksl [1999). In the classification case, this can be problematic if there exists some distractor
feature x4 in the data that is correlated with one of the output classes. This is a common issue
in industry data (e.g., medical) where datasets are typically small and there are many confounding
variables.

Consider the extreme case in a binary classification problem where in the training distribution there
exists a confounding distractor element 24 of the input data such that for Dyyqin, p(y = 1|zq) = 1,
while in the validation distribution D44, p(y = 0]x4) = 1 (Figure . In this scenario, predicting
using x4 is easier than predicting using the true features that denote class membership and a classifier
trained on Dy,.4;, with traditional classification loss would predict the incorrect class with 100%
probability on D,,q;;4. This is a textbook example of overfitting (Goodfellow et al.l |2016; Reed &
Marks|, [1999)). The existence of these overfit features is the motivation behind methods seeking to
learn domain-invariant representations (Ganin & Lempitsky, 2014; |[Fernando et al., 2014), and is a
common problem with real-world data (Badgeley et al., 2019;|Zhao et al.,|2019;|Young et al.,[2019).

In this paper, we explore the utility of various methods that allow one to use a mask on the input
data to guide the network to avoid predicting from the defined region and penalize the network for
attributing a prediction to a distractor. We present a synthetic dataset that encourages all models
tested to overfit to an easy to represent distractor instead of a more complicated counting task. We
present a novel “activation difference” (actdiff) regularizer which mitigates this behaviour directly.
We also present a method where we train an autoencoder/UNet to reconstruct a masked version of
the input, indirectly controlling feature representations used for classification. We compare these
methods with the recently-proposed gradmask (Simpson et al., 2019b), and present an expanded
analysis of this algorithm’s behaviour. All code for this paper, and this dataset, are available here:
https://github.com/bigtrellis2222/activmask.
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Figure 1: Example images from Dy,qin and D,q;:4 from both classes. In both distributions, cross
size can vary between samples. In Dy,.qin, two crosses (denoting class 0) are always accompanied
by a box x4 in the bottom right-hand corner, while a single cross (denoting class 1) is always ac-
companied by a distractor in the bottom left-hand corner. In D,,4;;4, the relationship between classes
and crosses remains the same, but the logic governing the location of the distractor is reversed. The
distractor is indicated with a red arrow.

We compare the real-life performance of these methods on open medical datasets with traditional
classifiers, and demonstrate the differences in their feature attributions using saliency maps. Finally,
we describe a medical dataset curated from two openly-available X-ray databases, and describe
how samples can be drawn from each to generate a dataset biased by a site-diagnosis correlation
inspired by previous work (Zhao et al.| 2019). We demonstrate that, similarly to our synthetic
datasets, classifiers are likely to predict using features unrelated to the task, and demonstrate that the
proposed methods do mitigate this and often successfully refine the saliency maps to focus on the
correct anatomy. However they do not consistently prevent overfitting.

2 RELATED WORK

It is a well-documented phenomenon that convolutional neural networks (CNNSs), instead of building
object-level representations of the input data, tend to find convenient surface-level statistics in the
training data that are predictive of class (Jo & Bengiol [2017). Previous work has attempted to
reduce the model’s proclivity to use distractor features by randomly masking out regions of the
input (DeVries & Taylor,[2017). By randomly removing information from the inputs to the network,
this method helped the network learn representations that aren’t dependent on single feature types in
the image. However, this regularization approach gives no control over the kinds of representations
learned by the model.

Recently, the Gradmask (Simpson et al.l 2019b) and CARE methods (Zhuang et al., 2019) both
proposed to control feature representations by penalizing the model for utilizing gradients outside
of regions of interest. CARE was additionally designed to deal with class imbalances by increasing
the impact of the gradients inside region of interest of the under-represented class.

In contrast to these two methods, we propose a new method which does not work with a saliency
map, which can be noisy due to the ReL.U activations allowing irrelevant features to pass through
the activation function (Kim et al [2019). Instead, this method operates directly on the activations
themselves, encouraging the model to produce similar activation patterns in the presence of, and
absence of, information outside of the region of interest.

3 METHODS

Actdiff Loss: To mitigate the effect of x4, we propose to explicitly regularize the network to ignore
x4 at test time by minimizing the distance between the network activations of the model when
presented with a full input image and one where the information outside of some mask on the image
has been corrupted. The model is only directly trained on unmasked examples. This encourages the
network to build features which appear inside the masked regions even though it always sees the
full image during training. The method requires having access to masks drawn by an expert who
can distinguish between interesting and non-interesting discriminatve features, as is often the case
in medical imaging. The actdiff regularization term is

1 n
Lact - E Z ||Ol(xmasked) - OZ(X)||27 (1)
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Figure 2: Schematic of the model used in all experiments (alongside an 18-layer ResNet). The
actdiff penalty was only applied to the encoder path of the model. The reconstruction path (post
classification) was optionally used when a reconstruction was requested of the model. Skip connec-
tions were optionally employed in the style of UNet. Both of these optional paths are denoted using
alternating dashed lines. All losses are denoted using standard dashed lines.

where o;(x) are the pre-activation outputs for layer ! of the n-layer network when the network
is presented with the original data x, and o;(Xaskeq) are the pre-activations outputs for layer [
when presented with masked data x,,,qskeq- We call this the actdiff penalty. X,,qskeq Should be
constructed by randomizing the indices of all pixels that fall outside of the mask, destroying any
spatial information available in those regions of the image, but retaining the distribution of intensities
found in the data. Furthermore to retain important context around a masked region, we always dilate
the mask by a set number of pixels.

Reconstruction Loss: In practice, the £,.; can be too strong, and prevent the network from find-
ing useful representations in the data in general. To alleviate this, we can employ an auto-encoder

architecture X = ¢(f(x)) which is tasked with reconstructing the inputs in the traditional way

Lorecon = % Z;"Zl [[xU) — %0)||,, where j indexes the pixel-wise difference between the input z:

and reconstruction z. In our experiments a reconstruction term is helpful for guiding the network
toward building useful representations of the data while employing £,.;. Furthermore, the recon-
struction task can be used to indirectly control feature representation learning by asking the model

to reconstruct a masked version of the input given the full input X,,,4skeq = ¢(f(x)) and minimizing
1

Lreconmasked = m Z =1 ||Xmasked ngjllsked”?‘

Gradmask Loss: Gradmask is a recently proposed [Simpson et al.| (2019b) method for controlling
which regions of the input are desirable for determining the class label using saliency maps. Salienc
maps, or “input feature attribution”, can be calculated as a{‘;“' for each 1nput T
2013}, [Simonyan et al 2014} [Lo et al} 2015). In these experiments we minimize the contrast
saliency between healthy and non- healthy classes (labels ¥y and y; respectively), as we expect that

input variance which increases the distinction between the two classes leads to overfitting and is
what we want to regularize. Therefore, we minimize

; (@)

2
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where o and g are the predicted outputs for our two classes and (1 — x,.,) is a binary mask that
covers everything outside the defined regions of interest.

4 SYNTHETIC DATASET

Method: To evaluate the proposed methods for combating overfitting in the presence of a distractor
variable, we generated a dataset following the description provided earlier (Figure([T)) with 500 train-
ing, 128 validation, and 128 test examples respectively. The position of the distractors was perfectly
correlated with class label in the training set and the logic governing this relationship was inverted
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for the validation and test sets. In cases where the model relies on the distractor to make a class
prediction, we expected 0.0 AUC for the validation and test sets.

To evaluate the effect of the actdiff loss, gradmask loss, and the reconstruction penalty during train-
ing, we constructed a simple CNN architecture that optionally deconvolved the final layer to generate
a reconstruction, or optionally did so in the style of a UNet (Ronneberger et al.| 2015)), see Figure[2]
We additionally tested all non-reconstructing approaches using a simple 18-layer ResNet model (He
et al.| 2016). As control experiments, we also evaluated classifier performance when simply trained
using masked versions of z, but evaluated on unmasked examples. All models were trained using
Adam for 500 epochs with a learning rate of 10e~4, batch size of 32, with Ager = 10, Agrad = 10,
and A,¢con, = 10 when applicable. Before masking, masks were blurred using a Gaussian filter us-
ing a 0 = 0.5, in order for some context to be included around the masked area. For reconstruction,
the binary cross entropy loss was used as the input images were binary.

Results: The results of all experiments are shown in Table[T} with the architectures that successfully
avoid overfitting in bold. All results are the average of 10 random model initilizations and data splits.
To determine the effect of actdiff on feature representations in the network, we display saliency maps
on the validation set during the final epoch of training in Figure 3]

Train AUC Valid AUC Best Epoch (/500)
Experiment Name

Conv AE Classify 1.00£0.00  0.06 £ 0.03 0.00 +0.00
Conv AE Actdiff 0.80+:0.26 0.80+0.26 140.10+156.84
Conv AE Gradmask 0.50 £ 0.00 0.50 + 0.00 44.70 + 102.68
Conv AE Actdiff & Gradmask  0.50 £ 0.00 0.50 + 0.00 0.00 £ 0.00
Conv AE Classify Masked 1.00+£0.00 0.53+0.01 127.00 + 132.24
Conv AE Reconstruct Masked ~ 1.00 £ 0.00 0.06 £ 0.05 0.00 £ 0.00
CNN Classify 1.00£0.00  0.00+£0.01 38.10 £ 120.13
CNN Actdiff 0.50+£0.00  0.5040.00 7.30 £23.08
CNN Gradmask 0.50+£0.00  0.50 4+ 0.00 0.00 +0.00
CNN Actdiff & Gradmask 0.50 £0.00  0.50 +0.00 0.00 +0.00
CNN Classify Masked 1.00+0.00 0.55+0.02 14.10 = 7.36
ResNet Classify 1.00 £ 0.00  0.00 4 0.000 0.000 + 0.00
ResNet Actdiff 1.00+0.00 1.00+0.00 147.60+ 148.59
ResNet Gradmask 0.554+0.06 0.54+0.073 243.10 & 218.66
ResNet Actdiff & Gradmask 0.534+0.04 0.52+0.03 143.60 + 190.57
ResNet Classify Masked 1.00£0.00 0.73+0.21 169.80 £ 178.95
UNet Classity 1.00+£0.00 0.05+0.02 0.00 +0.00
UNet Actdiff 1.004+0.00 0.90+0.31 43.50 £+ 30.06
UNet Gradmask 0.50 £0.00  0.50 +0.00 107.10 + 142.43
UNet Actdiff & Gradmask 0.634+0.14  0.60+0.09 348.00 £ 160.69
UNet Classify Masked 1.00£0.00 0.54 £0.04 51.40 + 96.29
UNet Reconstruct Masked 1.00 £ 0.00 0.01 £0.01 0.00 £ 0.00

Table 1: Synthetic Dataset Test AUC after 500 epochs, averaged over 10 seeds. Mean and standard
deviation presented.

First we demonstrate a CNN overfitting on Dy,.q;5, using a simple CNN architecture trained using
only the cross entropy loss L¢r = — vazl ylog yj;. This model achieves 1.0 AUC on Dy, and
0.0 AUC on D,;4. Note that the model is attributing all saliency to the distractor. When the
model is trained using masked inputs from Dy, and trained using L.; ¢, the model performs well
on Dyyqin but is unsure how to handle the distractor in D444, leading to performance similar to
chance.

A CNN trained using both the classification and actdiff loss fails to learn any useful representations,
scoring an AUC of 0.5 during train and validation (see "CNN Actdiff” from Table[T). If this model
is additionally trained using a reconstruction loss, it can successfully learns to ignore the distractor
when classifying the image x ("Conv AE Actdiff” and "UNet Actdiff”’). The classification loss with
reconstruction is insufficient to reproduce these results ("Conv AE Classify” and "UNet Classify”).
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Figure 3: Saliency maps showing the different major behaviours on D,;;4 observed across the
models tested on the input image (top left) with the dialated mask (bottom left). CNN classification
demonstrates overfitting, where the saliency is concentrated on the distractor (center top left). CNN
Classify Masked demonstrates that the model has not learned to ignore the distractor because it never
saw one during training (center bottom left). UNet actdiff (center top right) and ResNet18 actdiff
(center bottom right) demonstrate that the model has successfully learned to ignore the distractor.
Note that the network learned to reconstruct the distractor in the location observed during Dy;qn,
(top right, red circle). The gradmask model fails to ignore the distractor and does not pay equal
attention to the two features of interest (bottom right).

Experiments with an 18-layer ResNet demonstrate good performance using classification and actdiff
alone ("ResNet Actdiff™).

Gradmask proves to be too powerful a regularizer for this task, and never produces a model with
good generalizaion performance. We suspect this is because the saliency map is always non-zero
everywhere on the input, leading to a constant source of noise in the loss function.

The best performing models took many more epochs to reach the optimal solution than would be
expected for such a simple dataset. Note the "Best Epoch” for overfit models is misleading as the
best performance is chance. We found that models using a reconstruction loss more slowly approach
the vicinity of their optimum than a ResNet (Figure [7), and the ResNet model takes longer to each
its best epoch (see Table[T)).

5 SINGLE-SITE MEDICAL DATASET WITH SEGMENTATIONS

Method: We applied all previous methods to three medical imaging datasets from the Medical
Segmentation Decathlon (MSD) which show typical examples of overfitting in the form of credit
attribution to an incorrect image feature (Simpson et al.l 2019a). We tested our approaches on
tasks for liver detection in CT, cardiac left atrium detection in MRI, and pancreas detection in CT.
All results are the average of 10 independent seeds, which also lead to independent splits of the
data. For each seed 128 training samples, 256 valid samples, and 256 test samples were randomly
selected. The mask blur factor was ¢ = 16 for the Liver and Pancreas datasets, and ¢ = 8 for
the cardiac dataset. All images were resized to 100 x 100 pixels. All models were trained with an
Adam optimizer with a learning rate of 10e~* for the Pancreas and Liver datasets, and 4e 2 for the
Cardiac dataset, which were found to be the optimal learning rates using a hyperparameter search.
All models were trained with a batch size of 32 and batch shuffling. The regularizers were set to
Aact = 1, Agrag = 1, and Arecon = 1, when applicable. The reconstruction loss was the mean
squared error.

Results: We present in all test AUCs for the best valid AUC over 500 epochs of training in Table
[2) alongside the experiments from the previous section. For each model, the best-performing (or
otherwise notable) configurations are in bold.
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Synthetic Test AUC  Liver Test AUC  Cardiac Test AUC  Pancreas Test AUC
Experiment Name

CNN Classify 0.35+0.20 0.87 £ 0.02 0.86 +0.13 0.82 +0.02
CNN Actdiff 0.50 + 0.00 0.77+0.12 0.60 £0.11 0.66 +=0.12
CNN Gradmask 0.50 + 0.00 0.85 +0.01 0.75+0.20 0.82 +0.02
CNN Actdiff & Gradmask 0.50 +0.00 0.79+0.10 0.50 + 0.00 0.66 + 0.05
CNN Classify Masked 0.74 +£0.11 0.57 +0.05 0.75 +0.07 0.50 +0.01
ResNet Classify 0.50 + 0.00 0.86 + 0.02 0.90 + 0.03 0.81 +0.02
ResNet Actdiff 0.98 +0.01 0.86 + 0.02 0.88 +0.03 0.81 +0.02
ResNet Gradmask 0.71 £0.05 0.89 + 0.02 0.93 +0.01 0.82 +£0.03
ResNet Actdiff & Gradmask 0.67 +0.04 0.87 +0.02 0.92 +0.03 0.84 +0.01
ResNet Classify Masked 0.96 + 0.03 0.61 +0.03 0.77 +0.08 0.57 +0.05
Conv AE Classify 0.50 + 0.00 0.78 +0.10 0.76 +£0.17 0.77 +0.01
Conv AE Actdiff 0.78 £ 0.24 0.80 +0.02 0.84 +0.08 0.76 +0.02
Conv AE Gradmask 0.52 +0.05 0.75 + 0.09 0.89+0.10 0.77 £ 0.02
Conv AE Actdiff & Gradmask 0.50 +0.00 0.82+0.01 0.69 £0.17 0.78 + 0.02
Conv AE Classify Masked 0.79+0.11 0.59 + 0.05 0.69 +0.10 0.51 +0.03
Conv AE Reconstruct Masked 0.50 +0.00 0.84 +0.02 0.82+0.17 0.81 + 0.02
UNet Classify 0.50 + 0.00 0.81 +0.07 0.83 +0.17 0.77 +0.09
UNet Actdiff 0.95+0.12 0.82 +0.02 0.88 +0.03 0.78 +0.03
UNet Gradmask 0.55 +0.07 0.81 +0.02 0.82+0.13 0.79 +0.02
UNet Actdiff & Gradmask 0.63 +0.10 0.78 +0.04 0.78 +0.09 0.76 +0.02
UNet Classify Masked 0.74 +0.10 0.58 + 0.09 0.56 +0.10 0.53 +0.05
UNet Reconstruct Masked 0.50 +0.00 0.87 £ 0.01 0.75 4+ 0.20 0.81 +0.03

Table 2: Test Results (Best Valid Epoch over 500 epochs) on all 3 MSD Datasets. Results are
averaged over 10 seeds, and we present the standard deviation.

For CNN-based models, classification alone gave best performance. In contrast, the ResNet model
generally benefited from the addition of gradmask, in contrast to the synthetic dataset results. The
one notable exception was for the pancreas dataset, where the combination of classification, actdiff,
and gradmask gave the best performance.

The best-performing model at baseline was the ResNet model, which is unsurprising given its su-
perior expressive power over the simple CNN architecture we used for all other experiments. For
the Liver and Cardiac datasets, classification with gradmask outperformed the baseline and all other
models. In the case of the Pancreas dataset, classification with both actdiff and gradmask performed
best. In all cases, classification with actdiff alone performed as well as, or worse than, the baseline.

Surprisingly, the auto-encoding models showed the best performance when trained to reconstruct
a masked version of the input for the Liver and Pancreas dataset. For the Cardiac dataset, the
best performing method was classification with gradmask for the Convolutional AutoEncoder and
with actdiff for the UNet, and each achieve similar performance. This is likely because actdiff is
too strong of a regularizer for CNN models, so the skip connections in the UNet allow the model
to greatly reduce the actdiff penalty in the deeper layers of the encoder. The variance of model
performance across seeds is higher if trained with gradmask than actdiff. Again, training with actdiff
and gradmask outperforms either approach alone in the Liver and Pancreas datasets.

Saliency map examples for the Liver and Cardiac datasets can be found in Figure[d] In both the the
Liver and Cardiac dataset, actdiff encourages the ResNet model to focus on the correct anatomy,
but this does not lead to an increase in test AUC performance over baseline. In contrast, gradmask
less consistently encourages the model to focus its attention on the specified anatomy, but results
in consistent test AUC performance improvements relative to baseline. The combination of the two
methods (“Actgrad”) also produces improved feature attribution in the absence of improved gener-
alization performance. In the Pancreas dataset (Figure [8), we see both actdiff and gradmask both
focus the saliency maps of the model broadly across the anatomy. The gradmask and combination
actdiff and gradmask models improved over baseline, but there is no clear reason why this would be
true from the saliency maps. We therefore conclude an inconsistent relationship between improved
generalization performance and refined saliency maps.

6 MULTI-SITE X-RAY DATASET

Method: In an attempt to replicate the results of the synthetic dataset in a real world application,
we constructed an X-Ray dataset using a combination of the PadChest (Bustos et al., 2019) dataset
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Figure 4: Saliency maps showing where the model attributes areas of the visual input space to the
prediction made by the network for the Liver detection (top) and Caridac Left Atrium detection
(bottom) datasets. The top 10% of gradients are shown in each image for visualization. The top left
image shows the raw input, and to its right is the anatomy segmentation before and after blurring.
From left to right along the bottom, the ResNet model outputs are shown in the second row and
the UNet results are shown in the third row, for the baseline classification model, ActDiff, Grad-
mask, and ActDiff & Gradmask (“ActGrad”). The rightmost column shows outputs specific to the
UNet reconstructions: the top image shows the standard reconstruction, right middle image shows
the output of the Reconstruct Masked task, and bottom image shows the feature attribution of the
Reconstruct Masked model.

and the NIH Chestx-Ray8 (Wang et al.,|2017) dataset. A site-driven overfitting signal has previously
been reported when combining these datasets (Zech et al.| 2018)). We observe in this data a strong
effect of site bias around the edges of the image, far from the lungs (see the mean X-ray from
each dataset in Figure [J), and therefore hypothesized we could improve overfitting performance
by masking out the edges of the image using a circular mask. We constructed a joint dataset that
allowed us to define a site-pathology correlation in the training set, and then produce validation and
test set where the reverse relationship is true. In the training set, 90% of the unhealthy patients were
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Input Image Mask Resnet Baseline Resnet+Gradmask Resnet-+ActDiff

kLl |

Experiment Name AUC

Classify No SPC 0.70 + 0.02

Classify w/ SPC 0.44 £0.08
Input Image Mask Resnet Baseline Resnet+Gradmask Resnet+ActDiff Actdiff w/ SPC 0.53 £0.04

. Gradmask w/ SPC 0.48 +0.03
‘ All Masked w / SPC ~ 0.53 +0.03
] (b)

Figure 5: Results on the chest X-ray task. (a) Saliency maps of the different models with different
methods to prevent incorrect feature attribution. The task is to predict Emphysema (a lung con-
dition). Two different images from the test set are shown with the masks that were used during
training. The top image is a negative example and the bottom positive. (b) Test Results (Best Valid
Epoch) using a ResNet on the Chest X-ray task. SPC=site-pathology correlation.

(a)

drawn from the PadChest dataset and the remaining 10% of the unhealthy patients were drawn from
the NIH dataset, and the reverse logic was followed for the validation and test sets. In all splits the
classes and site distributions were always balanced, making it tempting for the classifier to use a site-
specific feature when predicting the class in the presence of site-pathology correlation. We chose
emphysema detection as the detection task, resulting in 998 samples for training, 498 samples for
validation and 504 samples for test. All images were resized to 128 x 128 pixels. All experiments
trained a 18-layer ResNet model using an Adam optimizer with a learning rate of 10e~2 for 100
epochs. All results were averaged over 10 seeds. We trained a classifier on the same dataset with
no site-pathology correlation as a baseline, and compare these results that with the same classifier in
the face of a site-pathology correlation of 90%. We train two models using L.+ and Lgyqq, as well
as a normal classifier where the masked region was set to zero in the train, valid, and test datasets to
obtain an upper bound on the expected performance of our model.

Results: See Table[5b] A ResNet trained on the dataset mixed, without a site-pathology bias scores
a test AUC of 0.7, while one trained in the presence of a strong site-pathology bias scores below
chance on the test set (0.44). Both actdiff and gradmask improve performance of the model, but
only actdiff scores above chance, and performs similarly to a model trained with the areas outside
of the mask completely removed. However, the saliency maps of the ResNet trained with actdiff
shows strong feature attribution from outside of the lungs. The model appears to be paying attention
to the brightest regions of the image, which might be predictive of the scanner. Since a region of
high intensity is available in the center of each X-Ray, actdiff when trained with these masks cannot
handle this case of overfitting. Models trained with gradmask appropriately attribute more saliency
to the lungs, but score below-chance level on the test set. Generally, the poor performance of all
models in the presence of a site-pathology bias suggests that there is no regional source of the site-
bias. This bias likely exists in almost every pixel of the dataset and therefore methods such as actdiff
or gradmask are not well-suited to controlling overfitting in these scenarios.

7 CONCLUSION

We hypothesized that poor generalization performance could be partially attributable to classifiers
exploiting spatially-distinct distractor features, and proposed the actdiff regularizer that prevents this
behaviour on a synthetic dataset. We compare the performance of this method against previously-
proposed methods operating on saliency maps and demonstrate that the methods influence feature
construction and generalization performance in a dataset-dependent manner. We conclude that while
our methods successfully control the features constructed from the data, and solve the overfitting
problem in a synthetic setting where the distracting feature is spatially distinct from the discrimi-
native features, in real data we found no evidence of a spatially-distinct signal that can be reliably
removed to mitigate overfitting. We now doubt the validity of using saliency maps for diagnosing
whether a model is overfit because improving them does consistently improve generalization. Im-
proved generalization performance observed in saliency-map based approaches may be more due
to the fact that these approaches add useful noise into the updates, similarly to cutout (DeVries &
Taylor, [2017)). We leave this conjecture to future work.
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APPENDIX

A MASK REQUIREMENT

Actdiff’s requirement for hand-drawn masks can be a detriment in practice as they are costly to
acquire from human experts. To determine whether actdiff has applicability in the setting where only
a subset of the training set has masks, we repeated our experiments detailed above, retaining either
20%, 40%, 60%, 80%, or 100% of the masks in the training set. We analyzed the resulting final test
AUC (Figure [6a) and the number of epochs (Figure [6b) required to reach this level of performance
on the two best-performing actdiff models: the UNet and the ResNet18 model, averaging across 5
seeds. In general, the ResNet18 model appears to be more robust to missing masks, although across
datasets, there does not seem to be a direct correlation between more masks and better performance.
In fact, the addition of more masks can decrease performance, suggesting that the quality of the
masks used is more important than the quantity (Figure [6a). There was no consistent effect of the
number of masks used during training and the number of epochs required to reach the best epoch. We
suspect having a small set of very precise masks is sufficient to guide the model toward developing
good representations of the anatomy given that more compute time is available.

B ARCHITECTURE OF THE CNN, AUTOENCODER, AND UNET MODEL

The encoder of the AutoEncoder and UNet model was shared with the CNN model and was 4
layers deep, with each layer consisting of a double convolution (kernel size of 3 and a stride of 1).
All predictions were made off of the deepest layer of the network. The number of input channels
was 16 for the synthetic dataset and 64 for the medical datasets, and doubled for each subsequent
layer. All activations for actdiff were saved before applying the ReLU activation during the forward
pass. During reconstruction, a sigmoid activation was optionally applied to the output to assist in
the binary output case (for the synthetic dataset). In the decoder path of the autoencoding models,
upsampling was applied using bilinear interpolation before each double convolution.
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best-performing Actdiff models (UNet and ResNet18).
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Figure 6: Results of the maximum masks experiments. (a) Best Test AUC for the best Valid AUC
for each of the maximum masks conditions. (b) Best valid Epoch for each of the maximum masks

conditions.
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Figure 7: Line plots showing the Valid AUC for each of the 500 epochs during training for all models
on the synthetic dataset. We can see that training models with masked data has no substantial benefit
on the validation set, models simply trained to classify (or, in addition, reconstruct a masked version
of the input) overfit early in training, gradmask models fails to train, and actdiff surpasses the
performance in all cases where it is effective (i.e., not the CNN model).
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Figure 8: Saliency maps showing where the model attributes areas of the visual input space to the
prediction made by the network for the Pancreas dataset. The top left image shows the raw input,
and to its right is the anatomy segmentation before and after blurring. From left to right along the
bottom, the ResNet model outputs are shown in the second row and the UNet results are shown in
the third row, for the baseline classification model, ActDiff, Gradmask, and ActDiff & Gradmask
(“ActGrad”). The rightmost column shows outputs specific to the UNet reconstructions: the top
image shows the standard reconstruction, right middle image shows the output of the Reconstruct
Masked task, and bottom image shows the feature attribution of the Reconstruct Masked model.
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Figure 9: Mean resized X-Ray from the NIH dataset (left) and PadChest dataset (right). There are
clear differences in the site distributions that are obvious around the edges of the image.
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