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ABSTRACT

While progress has been made in crafting visually imperceptible adversarial exam-
ples, constructing semantically meaningful ones remains a challenge. In this paper,
we propose a framework to generate semantics preserving adversarial examples.
First, we present a manifold learning method to capture the semantics of the inputs.
The motivating principle is to learn the low-dimensional geometric summaries of
the inputs via statistical inference. Then, we perturb the elements of the learned
manifold using the Gram-Schmidt process to induce the perturbed elements to
remain in the manifold. To produce adversarial examples, we propose an efficient
algorithm whereby we leverage the semantics of the inputs as a source of knowl-
edge upon which we impose adversarial constraints. We apply our approach on toy
data, images and text, and show its effectiveness in producing semantics preserving
adversarial examples which evade existing defenses against adversarial attacks.

1 INTRODUCTION

In response to the susceptibility of deep neural networks to small adversarial perturbations (Szegedy
et al., 2014), several defenses have been proposed (Liu et al., 2019; Sinha et al., 2018; Raghunathan
et al., 2018; Madry et al., 2017; Kolter & Wong, 2017). Recent attacks have, however, cast serious
doubts on the robustness of these defenses (Athalye et al., 2018; Carlini & Wagner, 2016). A standard
way to increase robustness is to inject adversarial examples into the training inputs (Goodfellow
et al., 2014a). This method, known as adversarial training, is however sensitive to distributional shifts
between the inputs and their adversarial examples (Ilyas et al., 2019). Indeed, distortions, occlusions
or changes of illumination in an image, to name a few, do not always preserve the nature of the image.
In text, slight changes to a sentence often alter its readability or lead to substantial differences in
meaning. Constructing semantics preserving adversarial examples would provide reliable adversarial
training signals to robustify deep learning models, and make them generalize better. However, several
approaches in adversarial attacks fail to enforce the semantic relatedness that ought to exist between
the inputs and their adversarial counterparts. This is due to inadequate characterizations of the
semantics of the inputs and the adversarial examples — Song et al. (2018) and Zhao et al. (2018b)
confine the distribution of the latents of the adversarial examples to a Gaussian. Moreover, the search
for adversarial examples is customarily restricted to uniformly-bounded regions or conducted along
suboptimal gradient directions (Szegedy et al., 2014; Kurakin et al., 2016; Goodfellow et al., 2014b).

In this study, we introduce a method to address the limitations of previous approaches by constructing
adversarial examples that explicitly preserve the semantics of the inputs. We achieve this by char-
acterizing and aligning the low dimensional geometric summaries of the inputs and the adversarial
examples. The summaries capture the semantics of the inputs and the adversarial examples. The
alignment ensures that the adversarial examples reflect the unbiased semantics of the inputs. We
decompose our attack mechanism into: (i.) manifold learning, (ii.) perturbation invariance, and (iii.)
adversarial attack. The motivating principle behind step (i.) is to learn the low dimensional geometric
summaries of the inputs via statistical inference. Thus, we present a variational inference technique
that relaxes the rigid Gaussian prior assumption typically placed on VAEs encoder networks (Kingma
& Welling, 2014) to capture faithfully such summaries. In step (ii.), we develop an approach around
the manifold invariance concept of (Roussel, 2019) to perturb the elements of the learned manifold
while ensuring the perturbed elements remain within the manifold. Finally, in step (iii.), we propose
a learning algorithm whereby we leverage the rich semantics of the inputs and the perturbations as a
source of knowledge upon which we impose adversarial constraints to produce adversarial examples.
Unlike (Song et al., 2018; Carlini & Wagner, 2016; Zhao et al., 2018b; Goodfellow et al., 2014b) that
resort to a costly search of adversarial examples, our algorithm is efficient and end-to-end.
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The main contributions of our work are thus: (i.) a variational inference method for manifold learning
in the presence of continuous latent variables with minimal assumptions about their distribution, (ii.)
an intuitive perturbation strategy that encourages perturbed elements of a manifold to remain within
the manifold, (iii.) an end-to-end and computationally efficient algorithm that combines (i.) and (ii.)
to generate adversarial examples in a black-box setting, and (iv.) illustration on toy data, images and
text, as well as empirical validation against strong certified and non-certified adversarial defenses.

2 PRELIMINARIES & ARCHITECTURE

Notations. Let x be a sample from the input space X , with label y from a set of possible labels
Y , and D = {xn}Nn=1 a set of N such samples x. Also, let d be a distance measure on X capturing
closeness in input space, or on Z , the embedding space of X , capturing semantics similarity.

Adversarial Examples. Given a classifier g, and a loss function `, an adversarial example of x is
produced by maximizing the objective below over an ε-radius ball around x (Athalye et al., 2017).

x′ = arg max
x′∈X

`(g(x′), y) such that x′ ∈ B(x; ε)

Above, the search region for adversarial examples is confined to a uniformly-bounded ball B(x; ε).
In reality, however, the shape imposed on B is quite restrictive as the optimal search region may have
a different topology. It is also common practice to produce adversarial examples in the input space
X — via an exhaustive and costly search procedure (Shaham et al., 2018; Song et al., 2018; Zhao
et al., 2018b; Athalye et al., 2017; Carlini & Wagner, 2016; Goodfellow et al., 2014b). Unlike these
approaches, however, we wish to operate in Z , the lower dimensional embedding space of X , with
minimal computational overhead. Our primary intuition is that Z captures well the semantics of D.
Thus, to construct semantics preserving adversarial examples, we propose the following attack model.

θm ∼ fη(ξm)

zm∼ p(z|x; θm)

Decoder pφ
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′
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Figure 1: Architecture. The set of model parameters
Θ = {θm}Mm=1 and Θ′ = {θ′m}Mm=1 are sampled from
the recognition networks fη and fη′ . Given an input x ∈
D, we use E to sample the latent codes z1, ..., zM via
Θ. These codes are passed to E′ to learn their perturbed
versions z′1, ..., z′M using Θ′. The output x′ ∼ pφ(x′|z′)
is generated via posterior sampling of a z′ (in red).

Attack Model. Given a sample x ∈ D and its
class y ∈ Y , we want to construct an adversarial
example x′ that shares the same semantics as
x. We assume the semantics of x (resp. x′)
is modeled by a learned latent variable model
p(z) (resp. p′(z′)) where z, z′ ∈ Z . In this
setting, observing x (resp. x′) is conditioned on
the observation model p(x|z) (resp. p(x′|z′))
with z ∼ p(z) (resp. z′ ∼ p′(z′)). We learn
this model in a way that d(x, x′) is small, with
x ∼ p(x|z) and x′ ∼ p(x′|z′). We ensure also
that d(z, z′) is small and g(x) = y ∧ g(x′) 6= y.

Intuitively, we get the latent z ∼ p(z) which
encodes the semantics of x. Then, we perturb
z in a way that its perturbed version z′ ∼ p′(z′)
lies in the manifold that supports p(z) while
ensuring d(z, z′) is small. We define a manifold
as a set of points in Z where every point is
locally Euclidean (Roussel, 2019). We devise
our perturbation procedure by generalizing the

manifold invariance concept of (Roussel, 2019) to Z . For that, we consider two embedding maps
h : X → Z and h′ : X → Z , parameterized by θ and θ′, and a map decφ : Z → X . We assume θ and
θ′ follow the implicit distributions p(θ) and p(θ′).1 We use h′ to find points in the vicinity of h(x)
that we map onto X using decφ. The mappings distant to x by ε that fool g are said to be adversarial.

Model Architecture. To implement our attack model, we propose as a framework the architecture
illustrated in Figure 1. Our framework is essentially a variational auto-encoder with two encoders E
and E’ that learn the geometric summaries of D via statistical inference. We present two inference
mechanisms — implicit manifold learning via Stein variational gradient descent (Liu & Wang, 2016)
and Gram-Schmidt basis sign method (Dukes, 2014) — to draw instances of model parameters from
the implicit distributions p(θ) and p(θ′) that we parameterize E and E’ with. Both encoders optimize

1Similar to (Kingma & Welling, 2014; Pu et al., 2017), we treat θ and θ′ as random variables.
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the uncertainty inherent to embedding D in Z while guaranteeing easy sampling via Bayesian
ensembling. Finally, the decoder pφ acts as a generative model for constructing adversarial examples.

Threat Model. We consider in this paper a black-box scenario where we, as an attacker, have only
access to the predictions of a classifier g. As the attacker, we want to construct adversarial examples
not knowing the intricacies of g such as its loss function, nor having access to its gradient. We focus
on this scenario because it is challenging and more plausible in real-life than the white-box case. This
threat model serves to evaluate both certified defenses and non-certified ones under our attack model.

3 IMPLICIT MANIFOLD LEARNING

Manifold learning is based on the assumption that high dimensional data lies on or near lower
dimensional manifolds in a data embedding space. In the variational auto-encoder (VAE) (Kingma &
Welling, 2014) setting, the datapoints xn ∈ D are modeled via a decoder xn ∼ p(xn|zn;φ). To learn
the parameters φ, one typically maximizes a variational approximation to the empirical expected
log-likelihood 1/N

∑N
n=1 log p(xn;φ), called evidence lower bound (ELBO), defined as:

Le(φ, ψ;x) = Ez|x;ψ log

[
p(x|z;φ)p(z)

q(z|x;ψ)

]
= −KL(q(z|x;ψ)‖p(z|x;φ)) + log p(x;φ). (1)

The expectation Ez|x;ψ can be re-expressed as a sum of a reconstruction loss, or expected negative
log-likelihood of x, and a KL(q(z|x;ψ)‖p(z)) term. The KL term acts as a regularizer and forces
the encoder q(z|x;ψ) to follow a distribution similar to p(z). In VAEs, p(z) is defined as a spherical
Gaussian distribution. The Gaussian form imposed on p(z) is, however, quite restrictive (Jimenez
Rezende & Mohamed, 2015) and may lead to learning poorly the semantics of D (Zhao et al.,
2017). To sidestep this issue, we minimize the divergence term KL(q(z|x;ψ)‖p(z|x;φ)) using Stein
Variational Gradient Descent (Liu & Wang, 2016) instead of explicitly optimizing the ELBO.

Stein Variational Gradient Descent (SVGD) is a nonparametric variational inference method that
combines the advantages of MCMC sampling and variational inference. Unlike ELBO (Kingma
& Welling, 2014), SVGD does not confine a target distribution p(z) it approximates to simple or
tractable parametric distributions. It remains yet an efficient algorithm. To approximate p(z), SVGD
maintains M particles z = {zm}Mm=1, initially sampled from a simple distribution, it iteratively
transports via functional gradient descent. At iteration t, each particle zt ∈ zt is updated as follows:

zt+1 ← zt + αtτ(zt) where τ(zt) =
1

M

M∑
m=1

[
k(zmt , zt)∇zmt log p(zmt ) +∇zmt k(zmt , zt)

]
,

where αt is a step-size and k(., .) is a positive-definite kernel. In the equation above, each particle
determines its update direction by consulting with other particles and asking their gradients. The
importance of the latter particles is weighted according to the distance measure k(., .). Closer particles
are given higher consideration than those lying further away. The term ∇zmk(zm, z) is a regularizer
that acts as a repulsive force between the particles to prevent them from collapsing into one particle.
Upon convergence, the particles zm will be unbiased samples of the true implicit distribution p(z).

Manifold Learning via SVGD. To faithfully characterize the manifold ofD, which we denoteM, we
optimize the divergence KL(q(z|x;ψ)‖p(z|x;φ)) using SVGD, similar to Pu et al. (2017). Learning
M, however, induces inherent uncertainty we ought to capture in order to learnM efficiently. Pu
et al. (2017) use dropout in their manifold learning to capture potentially such uncertainty. However,
according to Hron et al. (2017), dropout is not principled. Bayesian methods, on the contrary, provide
a principled way to model uncertainty through the posterior distribution over model parameters. In
this regard, we introduce M instances of model parameters Θ = {θm}Mm=1, where every θm ∈ Θ is a
particle that defines the weights and biases of a Bayesian neural network, to which we apply SVGD.

SVGD always maintains M particles. For large M , however, maintaining Θ can be computationally
prohibitive because of the memory footprint. Furthermore, the need to generate the particles during
inference for each test case is undesirable. To sidestep these issues, we maintain only one (recognition)
network fη that takes as input ξm ∼ N (0, I) and outputs a particle θm. The recognition network fη
learns the trajectories of the particles as they get updated via SVGD. fη serves as a proxy to SVGD
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Algorithm 1 Inversion with one particle θ.
Require: Input x ∈ D
Require: Model parameters η

1: Sample ξ ∼ N (0, I)
2: Sample θ ∼ fη(ξ)
3: Given x, sample z ∼ p(z|x;θ)
4: Sample x̃ ∼ p(x|z,φ)
5: Sample z̃ ∼ p(z|x̃,θ)
6: Use x and z̃ to compute p(z̃|x;θ)

Figure 2: Inversion. Process for computing the likelihood p(D|θ). As the decoder pφ gets accurate,
the error ‖x− x̃‖2 becomes small (see Algorithm 2), and we get closer to sampling the optimal z̃.

sampling strategy, and is refined through a small number of gradient steps to get good generalization.

ηt+1 ← arg min
η

M∑
m=1

∥∥∥ f(ξm; ηt)︸ ︷︷ ︸
θtm

− θt+1
m

∥∥∥
2

with θt+1
m ← θtm + αtτ(θtm),

where τ(θt) =
1

M

M∑
j=1

[
k(θtj , θ

t)∇
θ
j
t

log p(θtj) +∇
θ
j
t
k(θtj , θ

t)
]
.

(2)

We use the notation SVGDτ (Θ) to denote an SVGD update of Θ using the operator τ(.). As
the particles θ are Bayesian, upon observing D, we update the prior p(θtj) to obtain the posterior
p(θtj |D) ∝ p(D|θtj)p(θtj) which captures the uncertainty. We refer the reader to Appendix A for a
formulation of p(θtj |D) and p(D|θtj). The data likelihood p(D|θtj) is evaluated over all pairs (x, z̃)
where x ∈ D and z̃ is a dependent variable. However, z̃ is not given. Thus, we introduce the inversion
process described in Figure 2 to generate such z̃ using Algorithm 1. For any input x ∈ D, we sample
its latent code z from p(z|x;D), which we approximate by Monte Carlo over Θ; that is:

p(z|x;D) =

∫
p(z|x; θ)p(θ|D)dz ≈ 1

M

M∑
m=1

p(z|x; θm) where θm ∼ p(θ|D). (3)

4 PERTURBATION INVARIANCE

Here, we focus on perturbing the elements ofM. We want the perturbed elements to reside inM and
exhibit the semantics of D thatM captures. Formally, we seek a linear mapping h′ : M→M such
that for any point z ∈M, a neighborhood U of z is invariant under h′; that is: z′ ∈ U ⇒ h′(z′) ∈ U .
In this case, we say thatM is preserved under h′. Trivial examples of such mappings are linear
combinations of the basis vectors of subspaces S ofM called linear spans of S.

Rather than finding a linear span h′ directly, we introduce a new set of instances of model parameters
Θ′ = {θ′m}Mm=1. Each θ′m denotes the weights and biases of a Bayesian neural network. Then,
for any input x ∈ D and its latent code z ∼ p(z|x;D), a point in M, we set h′(z) = z′ where
z′ ∼ p(z′|x;D). We approximate p(z′|x;D) by Monte Carlo using Θ′, as in Equation 3. We leverage
the local smoothness ofM to learn each θ′m in a way to encourage z′ to reside inM in a close
neighborhood of z using a technique called Gram-Schmidt Basis Sign Method.

Gram-Schmidt Basis Sign Method (GBSM). Let X be a batch of samples of D, Zm a set of latent
codes zm ∼ p(z|x; θm) where x ∈ X, and θm ∈ Θ. For any m ∈ {1..,M}, we learn θ′m to generate
perturbed versions of zm ∈ Zm along the directions of an orthonormal basis Um. AsM is locally
Euclidean, we compute the dimensions of the subspace Zm by applying Gram-Schmidt (Dukes,
2014) to orthogonalize the span of representative local points. We formalize GBSM as follows:

arg min
δm, θ′m

%(δm, θ
′
m) :=

∑
zm

∥∥∥z′

m −
[
zm + δm � sign(uim)

]∥∥∥
2

where z′m ∼ p(z′|xi; θ′m).

The intuition behind GBSM is to utilize the fact that topological spaces are closed under their basis
vectors to renderM invariant to the perturbations δm. To elaborate more on GBSM, we first sample
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a model instance θ′m. Then, we generate z′m ∼ p(z′|x; θ′m) for all x ∈ X. We orthogonalize Zm and
find the perturbations δm that minimizes % along the directions of the basis vectors uim ∈ Um. We
want the perturbations δm to be small. With δm fixed, we update θ′m by minimizing % again. We use
the notation GBSM(Θ′,∆) where ∆ = {δm}Mm=1 to denote one update of Θ′ via GBSM.

Manifold Alignment. Although GBSM confers us latent noise imperceptibility and sampling speed,
Θ′ may deviate from Θ; in which case the manifolds they learn will mis-align. To mitigate this issue,
we regularize each θ′m ∈ Θ′ after every GBSM update. In essence, we apply one SVGD update on
Θ′ to ensure that Θ′ follows the transform maps constructed by the particles Θ (Han & Liu, 2017).

θ′t+1 ← θ′t + αtπ(θ′t) whereπ(θ′t) =
1

M

M∑
m=1

[
k(θ′t, θ

m
t )∇θmt log p(θmt ) +∇θmt k(θ′t, θ

m
t )
]
.

(4)
We use the notation SVGDπ(Θ′) to refer to the gradient update rule in Equation 4. In this rule, the
model instances Θ′ determine their own update direction by consulting only the particles Θ instead
of consulting each other. Maintaining Θ′ = {θ′m}Mm=1 for large M is, however, computationally
prohibitive. Thus, as in Section 3, we keep only one (recognition) network fη′ that takes as input
ξ′m ∼ N (0, I) and outputs θ′m ∼ f(ξ′m; η′). Here too we refine η′ through a small number of gradient
steps to learn the trajectories that Θ′ follows as it gets updated via GBSM and SVGDπ .

η′t+1 ← arg min
η′

M∑
m=1

∥∥∥ f(ξ′m; η
′t)︸ ︷︷ ︸

θ′tm

− θ
′t+1
m

∥∥∥
2

where θ
′t+1
m ← θ

′t
m + αtπ(θ

′t
m). (5)

5 GENERATING ADVERSARIAL EXAMPLES

In this paper, a black-box scenario is considered. In this scenario, we have only access to the
predictions of the classifier g. We produce adversarial examples by optimizing the loss below. The
first term is the reconstruction loss. This loss accounts for the dissimilarity between any input x ∈ D
and its adversarial counterpart x′, and is constrained to be smaller than εattack so that x′ resides within
an εattack-radius ball of x. The second term is an auxiliary log-likelihood loss (for g) of a target class
y′ ∈ Y \ {y} where y is the class of x. This loss defines the cost incurred for failing to fool g.

Lx′ = ‖x− x′‖2 + min
y′∈Y

[
1y=y′ · log (1− P (y′|x′))

]
such that ‖x− x′‖2 ≤ εattack. (6)

In Algorithm 2 (see also next page), we show how we unify our manifold learning and perturbation
invariance techniques into one learning procedure to generate adversarial examples without resorting
to an exhaustive search as in (Song et al., 2018; Zhao et al., 2018b; Goodfellow et al., 2014b).

Algorithm 2 Generating Adversarial Examples. Lines 2 and 4 compute distances between sets
keeping a one-to-one mapping between them. x′ is adversarial to x when Lx′ ≤ εattack and y 6= y′.

1: function INNERTRAINING(Θ,Θ′,η,η′,∆, x̃) . local gradient updates of fη , fη′ , ∆
Require: Learning rates β,β′

2: η ← η − β∇η‖Θ− SVGDτ (Θ)‖2 . apply inversion on x̃ and update η
3: ∆,Θ′ ← GBSM(Θ′,∆) . update ∆ and Θ′ using GBSM
4: η′ ← η′ − β′∇η′‖Θ′− SVGDπ(Θ′)‖2 . align Θ′ with Θ and update η′
5: return η,η′,∆

Require: Training samples (x, y) ∈ D ×Y
Require: Number of model instances M
Require: Number of inner updates T
Require: Initialize weights η, η′, φ . recognition nets fη , fη′ , decoder pφ
Require: Initialize perturbations ∆ := {δm}Mm=1 . latent (adversarial) perturbations
Require: Learning rates ε,α,α′, and noise margin εattack

6: Sample ξ1, ..., ξM from N (0, I) . inputs to recognition nets fη , fη′
7: for t = 1 to T do
8: Sample Θ = {θm}Mm=1 where θm ∼ fη(ξm)
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9: Sample Θ′ = {θ′m}Mm=1 where θ′m ∼ fη′(ξm)
10: Use Θ and Θ′ in Equation 3 to sample z and z′
11: Sample x̃ ∼ p(x|z,φ) and x′ ∼ p(x′|z′,φ) . clean and perturbed reconstructions
12: η,η′,∆←InnerTraining(Θ,Θ′,η,η′,∆, x̃)
13: Lx̃ := ‖x− x̃‖2; Lx′ := ‖x− x′‖2 . reconstruction losses on x̃ and x′

14: Lx′ :=

{Lx′ , if Lx′ > εattack

Lx′ + min
y′∈Y

[
1y=y′ · log (1− P (y′|x′))

]
, otherwise

15: η ← η −α∇ηLx̃; η′ ← η′ −α′∇η′Lx′ . SGD update using Adam optimizer
16: φ← φ− ε∇φ(Lx̃ + Lx′) . SGD update using Adam optimizer

6 RELATED WORK

Manifold Learning. VAEs are generally used to learn manifolds (Yu et al., 2018; Falorsi et al.,
2018; Higgins et al., 2016) by maximizing the ELBO of the data log-likelihood (Alemi et al.,
2017; Chen et al., 2017). Optimizing the ELBO entails reparameterizing the encoder to a Gaussian
distribution (Kingma & Welling, 2014). This reparameterization is, however, restrictive (Jimenez
Rezende & Mohamed, 2015) as it may lead to learning poorly the manifold of the data (Zhao et al.,
2017). To alleviate this issue, we use SVGD, similar to Pu et al. (2017). While our approach and that
of Pu et al. (2017) may look similar, ours is more principled. As discussed in (Hron et al., 2017),
dropout which Pu et al. (2017) use is not Bayesian. Since our model instances are Bayesian, we are
better equipped to capture the uncertainty. Capturing the uncertainty requires, however, evaluating the
data likelihood. As we are operating in latent space, this raises the interesting challenge of assigning
target dependent variables to the inputs. We overcome this challenge using our inversion process.

Adversarial Examples. Studies in adversarial deep learning (Athalye et al., 2018; Kurakin et al.,
2016; Goodfellow et al., 2014b; Athalye et al., 2017) can be categorized into two groups. The first
group (Carlini & Wagner, 2016; Athalye et al., 2017; Moosavi-Dezfooli et al., 2016) proposes to
generate adversarial examples directly in the input space of the original dat by distorting, occluding
or changing illumination in images to cause changes in classification. The second group (Song et al.,
2018; Zhao et al., 2018b), where our work belongs, uses generative models to search for adversarial
examples in the dense and continuous representations of the data rather than in its input space.

Adversarial Images. Song et al. (2018) propose to construct unrestricted adversarial examples in the
image domain by training a conditional GAN that constrains the search region for a latent code z′ in
the neighborhood of a target z. Zhao et al. (2018b) use also a GAN to map input images to a latent
space where they conduct their search for adversarial examples. These studies are the closest to ours.
Unlike in (Song et al., 2018) and (Zhao et al., 2018b), however, our adversarial perturbations are
learned and we do not constrain the search for adversarial examples to uniformly-bounded regions.
In stark contrast to Song et al. (2018) and Zhao et al. (2018b) approaches also, where the search for
adversarial examples is exhaustive and decoupled from the training of the GANs, our approach is
efficient and end-to-end. Lastly, by capturing the uncertainty induced by embedding the data, we
characterize the semantics of the data better, allowing us thus to generate sound adversarial examples.

Adversarial Text. Previous studies on adversarial text generation (Zhao et al., 2018a; Jia & Liang,
2017; Alvarez-Melis & Jaakkola, 2017; Li et al., 2016) perform word erasures and replacements
directly in the input space using domain-specific rules or heuristics, or they require manual curation.
Similar to us, Zhao et al. (2018b) propose to search for textual adversarial examples in the latent
representation of the data. However, in addition to the differences aforementioned for images,
the search for adversarial examples is handled more gracefully in our case thanks to an efficient
gradient-based optimization method in lieu of a computationally expensive search in the latent space.

7 EXPERIMENTS & RESULTS

Before, we presented an attack model whereby we align the semantics of the inputs with their
adversarial counterparts. As a reminder, our attack model is black-box and non-targeted. Our
adversarial examples reside within an εattack−radius ball of the inputs as our reconstruction loss,
which measures the amount of changes in the inputs, is bounded by εattack (see Equation 6). We
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validate the adversarial examples we produce based on three evaluation criteria: (i.) manifold
preservation, (ii.) adversarial strength, and (iii.) soundness via manual evaluation. We provide in
Appendix A examples of the adversarial images and sentences that we construct.

7.1 MANIFOLD PRESERVATION

We experiment with a 3D non-linear Swiss Roll dataset which comprises 1600 datapoints grouped in
4 classes. We show in Figure 3, on the left, the 2D plots of the manifold we learn. In the middle, we
plot the manifold and its elements that we perturbed and whose reconstructions are adversarial. On
the right, we show the manifold overlaid with the latent codes of the adversarial examples produced
by PGD (Madry et al., 2017) with εattack ≤ 0.3. Observe in Figure 3, in the middle plot, how the
latent codes of our adversarial examples espouse the Swiss Roll manifold, unlike the plot on the right.

Figure 3: Invariance. Swiss Roll manifold learned with our encoder E (left), and after perturbing its
elements with our encoder E′ (middle) vs. that of PGD adversarial examples (right) learned using E.

7.2 ADVERSARIAL STRENGTH

In this section, we evaluate the strength of the adversarial images and sentences we construct.

Setup. As argued in (Athalye et al., 2018), the strongest non-certified defense against adversarial
attacks is adversarial training with Projected Gradient Descent (PGD) (Madry et al., 2017). Thus, we
evaluate the strength of our MNIST, CelebA and SVHN adversarial examples against adversarially
trained ResNets (He et al., 2015) with a 40-step PGD and noise margin εattack ≤ 0.3. The ResNet
models follow the architecture design of (Song et al., 2018). For MNIST, we also target the certified
defenses of (Raghunathan et al., 2018; Kolter & Wong, 2017) with εattack set to 0.1, similar to Song
et al. (2018) whose attack model resembles ours.2 These defenses defend against Lp-norm attacks
like ours. For all the datasets, the accuracies of the models we target are higher than 96.3%. Next, we
present our adversarial success rates and give examples of our adversarial images in Figure 4.

Adversarial Success Rate (ASR) is the percentage of examples that are misclassified by the adver-
sarially trained Resnet models. For εattack = 0.3, the publicly known ASR of PGD attacks on MNIST
is 88.79%. However, our ASR for MNIST is 97.2%, higher than PGD. Also, with εattack = 0.3, we
achieve an ASR of 96.8% against (Kolter & Wong, 2017). Against the remaining adversarially trained
Resnet models, we achieve an ASR of 87.6% for SVHN, and 84.4% for CelebA.

7.2.1 ADVERSARIAL TEXT

Datasets. For text, we consider the SNLI (Bowman et al., 2015) dataset. SNLI consists of sentence
pairs where each pair contains a premise and a hypothesis, and a label indicating the relationship
(entailment, neutral, contradiction) between the premise and hypothesis. For instance, the following
pair is assigned the label entailment to indicate that the premise entails the hypothesis.
Premise: A soccer game with multiple males playing. Hypothesis: Some men are playing a sport.

2Note that our results are, however, not directly comparable with (Song et al., 2018) as their reported success
rates are for unrestricted adversarial examples manually computed from Amazon MTurkers votes, unlike ours.
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Table 1: Test samples and adversarial hypotheses: (P) for premise, (H) for Hypothesis.

True Input 1 P: A biker races. H: A person is riding a bike. Label: Entailment
Adversary 1 H: A man races. Label: Contradiction
True Input 2 P: The girls walk down the street. H: Girls walk down the street. Label: Entailment
Adversary 2 H: A choir walks down the street. Label: Neutral
True Input 3 P: Two dogs playing fetch. H: Two puppies play with a red ball. Label: Neutral
Adversary 3 H: Two people play in the snow. Label: Contradiction

(a) (b)

(c) (d)

(e) (f)

Figure 4: Inputs (left) - Adversarial exam-
ples (right, inside red boxes). MNIST: (a)-(b),
CelebA: (c)-(d), SVHN: (e)-(f). See Appendix
A for more samples with higher resolution.

Setup. We perturb the hypotheses sentences
to attack our SNLI classifier while keeping the
premise sentences unchanged. Similar to Zhao
et al. (2018b), we use ARAE (Zhao et al., 2018a)
for word embedding, and a CNN for sentence em-
bedding. To generate adversarial sentences from
the perturbed latent codes, we experiment with
three decoders: (i.) pφ is a transpose CNN, (ii.)
pφ is a language model, and (iii.) we use the de-
coder of a pre-trained ARAE (Zhao et al., 2018a)
model. In all three cases, we condition the genera-
tion of the adversarial hypotheses on the sentence
pairs premises. We detail the configuration design
of each decoder in Appendix B. We generate ad-
versarial text at word level using a vocabulary of
11,000 words only, similar to (Zhao et al., 2018b).

Adversarial Success Rate (ASR). With the trans-
pose CNN, we achieve an ASR of 77.77% against
the SNLI classifier that has an accuracy of 89.42%.
We generate more legible hypotheses with the tran-
pose CNN than with the langage model and the
pre-trained ARAE model. Table 1 shows samples
of the generated adversarial hypotheses. Also, the
hypotheses are more informative, and convey bet-
ter the meaning of the perturbed sentences. Some-
times, however, we notice some changes in the
meaning of the original hypotheses. We discuss
these limitations in Appendix A and provide more
examples of our adversarial hypotheses.

7.3 MANUAL EVALUATION

To validate our adversarial examples and assess
their soundness vs. Song et al. (2018), Zhao et al.
(2018b) and PGD (Madry et al., 2017) adversarial
examples, we carry out a pilot study whereby we
ask three yes-or-no questions: (Q1) are the adversarial examples semantically sound?, (Q2) are the
true inputs similar perceptually or in meaning to their adversarial counterparts? and (Q3) are there
any interpretable visual cues in the adversarial images that support their misclassification?

Pilot Study. For MNIST, we pick 50 images (5 for each digit), generate their clean reconstructions,
and their adversarial examples against a 40-step PGD ResNet with εattack ≤ 0.3. We target also the
certified defenses of Raghunathan et al. (2018) and Kolter & Wong (2017) with εattack = 0.1. We
hand the images and the questionnaire to 10 human subjects. We report the results in Table 2.

We carry out a similar pilot study for SVHN, CelebA, and SNLI. For SVHN, we attack a 40-step
PGD ResNet. For CelebA, we pick 50 images (25 for each gender) and generate adversarial examples
against a 40-step PGD ResNet. Finally, for SNLI, we select 20 pairs of sentences (premise and

8
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hypothesis). Using the transpose CNN as decoder pφ, we generate adversarial hypotheses for each
pair with the premise sentence kept unchanged. We also pick 20 pairs of sentences and adversarial
hypotheses generated using Zhao et al. (2018b)’s treeLSTM. We choose their treeLSTM as its
accuracy (89.04%) is close to that of our SNLI classifier (89.42%). We report the results in Table 3.

Table 2: Pilot Study (MNIST). Note that against the certified defenses of Raghunathan et al. (2018)
and Kolter & Wong (2017), Song et al. (2018) achieved (manual) success rates of 86.6% and 88.6%.

QUESTIONNAIRE
MNIST

40-STEP PGD RAGHUNATHAN ET AL. (2018) KOLTER & WONG (2017)

QUESTION Q1: YES 100 % 100 % 100 %
QUESTION Q2: YES 100 % 100 % 100 %
QUESTION Q3: NO 100 % 100 % 100 %

Table 3: Pilot Study. † Some adversarial images and original ones were found blurry to evaluate.

QUESTIONNAIRE CELEBA SVHN
SNLI

OUR METHOD ZHAO ET AL. (2018B)

QUESTION Q1: YES 100 % 95† % 82 % 76%
QUESTION Q2: YES 100 % 97 % 61 % 57%
QUESTION Q3: NO 100 % 100 %

We hand the same questionnaire to the subjects with 50 MNIST images, their clean reconstructions,
and the adversarial examples we craft with our method. We also handed the adversarial examples
generated using Song et al. (2018), Zhao et al. (2018b) and PGD methods. We ask the subjects
to assess the soundness of the adversarial examples based on the semantic features (e.g., shape,
distortion, contours, class) of the real MNIST images. We report the evaluation results in Table 4.

Table 4: Pilot Study. The adversarial examples are generated against the adversarially trained Resnets.

QUESTIONNAIRE OUR METHOD SONG ET AL. (2018) ZHAO ET AL. (2018B) PGD

QUESTION Q1: YES 100 % 85.9 % 97.8 % 76.7 %
QUESTION Q2: YES 100 % 79.3 % 89.7 % 66.8 %
QUESTION Q3: NO 100 % 71.8 % 94.6 % 42.7 %

Takeaways. As reflected in the pilot study, and in the adversarial success rates, we achieve good
results in the image and text classification tasks. In the image classification tasks, our results are
better than PGD and Song et al. (2018)’s results both against the certified and non-certified defenses.
The other key learning with our results is the following. Although the targeted defenses are resilient
to adversarial examples crafted in the input space, they remain to be as effective against adversarial
examples constructed in the latent space — Song et al. (2018) also reached the same conclusion,
or when the search region of adversarial examples is unrestricted. In text classification, we achieve
comparable with Zhao et al. (2018b)’s treeLSTM and LSTM results (see their paper for the LSTM).

8 CONCLUSION

Many approaches in adversarial attacks fail to enforce the semantic relatedness that ought to exist
between original inputs and their adversarial counterparts. Motivated by this fact, we developed a
method tailored to ensuring that the original inputs and their adversarial examples exhibit similar
semantics by conducting the search for adversarial examples in the manifold of the inputs. Our success
rates against certified and non-certified defenses known to be resilient to traditional adversarial attacks
illustrate the effectiveness of our method in generating sound and strong adversarial examples.

Although in the text classification task we achieved good results and generated informative adversarial
sentences, each of the three sentence generators we introduced has some limitations. First, they
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are small in size. Second, the language model and the pre-trained ARAE model performed poorly,
compared to the transpose CNN that generates legible sentences. Our intuition is that the compounding
effect of the perturbations affected the performance of the language model, and that ARAE suffered a
distributional shift. Also, as the transpose CNN gets more accurate — recall that it is partly trained
to minimize a reconstruction error, generating adversarial sentences that are different from the input
sentences and yet preserve their semantic meaning becomes more challenging. In the future, we
intend to build upon the recent advances in text understanding to improve our text generation process.
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APPENDIX A: DISCUSSION & ADVERSARIAL EXAMPLES

Posterior Formulation. Similar to (Kim et al., 2018), we formalize p(θ|D) for every θ ∈ Θ as:

p(θ|D) ∝ p(D|θ)p(θ) =
∏
(x,z̃)

p(z̃|x; θ)p(θ) where x ∈ D and z̃ is generated using Algorithm 1

=
∏
(x,z̃)

N (z̃|fW (x), γ−1)N (W |fη(ξ), λ−1)Gamma(γ|a, b)Gamma(λ|a′, b′)

For every θ′ ∈ Θ′, we compute p(θ′|D) the same way. Note that θ (resp. θ′) consists in fact of
network parameters W ∼ fη (resp. W ′ ∼ fη′) and scaling parameters γ and λ. For notational
simplicity, we used before the shorthands θ ∼ fη and θ′ ∼ fη′ . The parameters γ and λ are initially
sampled from a Gamma distribution and updated as part of the learning process. In our experiments,
we set the hyper-parameters of the Gamma distributions a and b to 1.0 and 0.1, and a′ and b′ to 1.0.

Latent Noise Level. We measure the amount of noise ∆ we inject into the latent codes of our inputs
by computing the average spectral norm of the latent codes of their adversarial counterparts. The
input changes are captured by our reconstruction loss which is bounded by εattack (see Equation 6). For
MNIST, CelebA, and SVHN, the noise levels are 0.004± 0.0003, 0.026± 0.005, and 0.033± 0.008.
The takeaways are: (i.) they are imperceptible, and (ii.) they show that the distributions Θ and Θ′

follow are similar. To validate (ii.), we compute the marginals of few clean and perturbed latent codes
sampled from Θ and Θ′. As shown in Figure 5, the marginal distributions overlap relatively well.

(a) MNIST (b) CelebA (c) SVHN (d) SNLI

Figure 5: Marginal distributions of clean (blue) and perturbed (red) latent codes over few minibatches.

Discussion. We discuss the choices pertaining to the design of our approach and their limitations.
We discuss also the evaluation process of our approach against (Song et al., 2018; Zhao et al., 2018b).

Space/Time Complexity. As noted in (Jimenez Rezende & Mohamed, 2015), the Gaussian prior
assumption in VAEs might be too restrictive to generate meaningful enough latent codes (Zhao
et al., 2017). To relax this assumption and produce informative and diverse latent codes, we used
SVGD. To generate manifold preserving adversarial examples, we proposed GBSM. Both SVGD and
GBSM maintain a set of M model instances. As ensemble methods, both inherit the shortcomings
of ensemble models most notably in space/time complexity. Thus, instead of maintaining 2 ∗M
model instances, we maintain only fη and fη′ from which we sample these model instances. We
experimented with M set to 2, 5, 10 and 15. As M increases, we notice some increase in sample
quality at the expense of longer runtimes. The overhead that occurs as M takes on larger values
reduces, however, drastically during inference as we need only fη′ to sample the model instances
θ′m ∈ Θ′ in order to construct adversarial examples. One way to alleviate the overhead during training
is to enforce weight-sharing for θm ∈ Θ and θ′m ∈ Θ′. However, we did not try this out.

Preserving Textual Meaning. To construct adversarial text, we experimented with three architecture
designs for the decoder pφ: (i.) a transpose CNN, (ii.) a language model, and (iii.) the decoder
of a pre-trained ARAE model (Zhao et al., 2018a). The transpose CNN generates more legible
text than the other two designs although we notice sometimes some changes in meaning in the
generated adversarial examples. Adversarial text generation is challenging in that small perturbations
in the latent codes can go unnoticed at generation whereas high noise levels can render the outputs
nonsensical. To produce adversarial sentences that faithfully preserve the meaning of the inputs, we
need good sentence generators, like GPT (Radford, 2018), trained on large corpora. Training such
large language models requires however time and resources. Furthermore, in our experiments, we
considered only a vocabulary of size 10,000 words and sentences of length no more than 10 words to
align our evaluation with the experimental choices of (Zhao et al., 2018b).
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Measuring Perceptual Quality is desirable when the method relied upon to generate adversarial
examples uses GANs or VAEs; both known to produce often samples of limited quality. As Song
et al. (2018) perform unrestricted targeted attacks — their adversarial examples might totally differ
from the true inputs — and Zhao et al. (2018b) do not target certified defenses, a fair side-by-side
comparison of our results and theirs using metrics like mutual information or frechet inception
distance, seems unachievable. Thus, to measure the quality of our adversarial examples and compare
our results with (Song et al., 2018) and (Zhao et al., 2018b), we carried out the pilot study.

ADVERSARIAL IMAGES: CELEBA

Table 5: CelebA samples, their clean reconstructions, and adversarial examples (in red boxes).

INPUTS

CLEAN
RECON-

STRUCTIONS

ADVERSARIAL
EXAMPLES
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ADVERSARIAL IMAGES: SVHN

Here, we provide few random samples of non-targeted adversarial examples we generate with our
approach on the SVHN dataset as well as the clean reconstructions.

Table 6: SVHN. Images in red boxes are all adversarial.

INPUTS

CLEAN
RECON-

STRUCTIONS

ADVERSARIAL
EXAMPLES
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ADVERSARIAL IMAGES: MNIST

Here, we provide few random samples of non-targeted adversarial examples we generate with our
approach on the MNIST dataset as well as the clean reconstructions.

Table 7: MNIST. Images in red boxes are all adversarial.

INPUTS

CLEAN
RECON-

STRUCTION

ADVERSARIAL
EXAMPLES
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ADVERSARIAL TEXT: SNLI

Here, we provide few random samples of non-targeted adversarial examples we generate with our
approach on the SNLI dataset.

Table 8: Examples of adversarially generated hypotheses with the true premises kept unchanged.

TRUE INPUT 1
P: A biker races.
H: A PERSON IS RIDING A BIKE.
Label: ENTAILMENT

ADVERSARY H: A MAN RACES. Label: CONTRADICTION

TRUE INPUT 2
P: The girls walk down the street.
H: GIRLS WALK DOWN THE STREET.
Label: ENTAILMENT

ADVERSARY H: A CHOIR WALKS DOWN THE STREET. Label: NEUTRAL

TRUE INPUT 3 P: Two wrestlers in an intense match.
H: TWO WRESTLERS ARE COMPETING AND ARE BROTHERS.
Label: NEUTRAL

ADVERSARY H: TWO WOMEN ARE PLAYING TOGETHER. Label: CONTRADICTION

TRUE INPUT 4
P: A group of people celebrate their asian culture.
H: A GROUP OF PEOPLE CELEBRATE.
Label: ENTAILMENT

ADVERSARY H: A GROUP OF PEOPLE CRUISING IN THE WATER. Label: NEUTRAL

TRUE INPUT 5
P: Cheerleaders standing on a football field.
H: CHEERLEADERS ARE WEARING OUTSIDE.
Label: ENTAILMENT

ADVERSARY H: PERSON STANDING ON A PLAYING FIELD. Label: NEUTRAL

TRUE INPUT 6
P: People are enjoying food at a crowded restaurant.
H: PEOPLE ARE EATING IN THIS PICTURE.
Label: ENTAILMENT

ADVERSARY
H: PEOPLE ARE ENJOYING LOOKING AT A CROWDED RESTAURANT.
Label: CONTRADICTION

TRUE INPUT 7
P: A wrestler celebrating his victory.
H: A WRESTLER WON A CHAMPIONSHIP.
Label: ENTAILMENT

ADVERSARY
H: A RIDER WON THE CHAMPIONSHIP.
Label: CONTRADICTION

TRUE INPUT 8
P: Lady making food on the streets.
H: THE LADY IS INSIDE HER BATHROOM.
Label: CONTRADICTION

ADVERSARY
H: THE LADY IS INSIDE HER SHOP.
Label: ENTAILMENT

17



Under review as a conference paper at ICLR 2020

APPENDIX B: EXPERIMENTAL SETTINGS

Table 9: Model Configurations + SNLI Classifier + Hyper-parameters.

NAME CONFIGURATION

RECOGNITION NETWORKS

fη
INPUT DIM: 50,

HIDDEN LAYERS: [60, 70],
OUTPUT DIM: NUM WEIGHTS & BIASES IN θm

f ′η
INPUT DIM: 50,

HIDDEN LAYERS: [60, 70],
OUTPUT DIM: NUM WEIGHTS & BIASES IN θ′m

MODEL INSTANCES

PARTICLES θm

INPUT DIM: 28× 28 (MNIST),
64× 64 (CELEBA),

32× 32 (SVHN), 300 (SNLI)
HIDDEN LAYERS: [40, 40]

OUTPUT DIM (LATENT CODE): 100

PARAMETERS θ′m

INPUT DIM: 28× 28 (MNIST),
64× 64 (CELEBA),

32× 32 (SVHN), 100 (SNLI)
HIDDEN LAYERS: [40, 40]

OUTPUT DIM (LATENT CODE): 100

FEATURE EXTRACTOR

INPUT DIM: 28× 28× 1 (MNIST), 64× 64× 3 (CELEBA),
32× 32× 3 (SVHN), 10× 100 (SNLI)

HIDDEN LAYERS: [40, 40]
OUTPUT DIM: 28× 28 (MNIST), 64× 64 (CELEBA),

32× 32 (SVHN), 100 (SNLI)

DECODER

TRANSPOSE CNN
FOR CELEBA & SVHN: [FILTERS: 64, STRIDE: 2,

KERNEL: 5]× 3
FOR SNLI: [FILTERS: 64, STRIDE: 1,

KERNEL: 5]× 3

LANGUAGE
MODEL

VOCABULARY SIZE: 11,000 WORDS
MAX SENTENCE LENGTH: 10 WORDS

SNLI CLASSIFIER INPUT DIM: 200, HIDDEN LAYERS: [100, 100, 100], OUTPUT DIM: 3

LEARNING RATES ADAM OPTIMIZER (δ = 5.10−4), α = 10−3, β = β′ = 10−2

MORE SETTINGS BATCH SIZE: 64, INNER-UPDATES: 3, TRAINING EPOCHS: 1000, M = 5
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