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ABSTRACT

Deep generative models can emulate the perceptual properties of complex image
datasets, providing a latent representation of the data. However, manipulating such
representation to perform meaningful and controllable transformations in the data
space remains challenging without some form of supervision. While previous work
has focused on exploiting statistical independence to disentangle latent factors, we
argue that such requirement can be advantageously relaxed and propose instead
a non-statistical framework that relies on identifying a modular organization of
the network, based on counterfactual manipulations. Our experiments support that
modularity between groups of channels is achieved to a certain degree on a variety
of generative models. This allowed the design of targeted interventions on complex
image datasets, opening the way to applications such as computationally efficient
style transfer and the automated assessment of robustness to contextual changes in
pattern recognition systems.

Figure 1: Counterfactual manipulation of samples of a BigGan trained on ImageNet (see section 4.2).

1 INTRODUCTION

Deep generative models, by learning a non-linear function mapping a latent space to the space
observations, have proven successful at designing realistic images in a variety of complex domains
(objects, animals, human faces, interior scenes). In particular, two kinds of approaches emerged as
state-of-the-art (SOTA): Generative Adversarial Networks (GAN) (Goodfellow et al., 2014), and
Variational Autoencoders (VAE) (Kingma & Welling, 2013; Rezende et al., 2014).

Efforts have been made to have such models produce disentangled latent representations that can
control interpretable properties of images (Kulkarni et al., 2015; Higgins et al., 2017). However, the
resulting models are not necessarily mechanistic (or causal) in the sense that interpretable properties
of an image cannot be ascribed to a particular part, a module, of the network architecture. Gaining
access to a modular organization of generative models would benefit the interpretability and allow
extrapolations, such as generating an object in a background that was not previously associated with
this object, as illustrated in a preview of our experimental results in Fig. 1.

Such extrapolations are an integral part of human representational capabilities (consider common
expressions such as ”like an elephant in a china shop”) and consistent with the modular organization
of its visual system, comprising specialized regions encoding objects, faces and places (see e.g. Grill-
Spector & Malach (2004)). Extrapolations moreover likely support adaptability to environmental
changes and robust decision making (Dvornik et al., 2018). How to leverage trained deep generative
architectures to perform such extrapolations is an open problem, largely due to the non-linearities
and high dimensionality that prevent interpretability of computations performed in successive layers.
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In this paper, we propose a causal framework to explore modularity, which relates to the causal
principle of Independent Mechanisms, stating that the causal mechanisms contributing to the overall
generating process do not influence nor inform each other (Peters et al., 2017).1 We study the effect of
direct interventions in the network from the point of view that the mechanisms involved in generating
data can be modified individually without affecting each other. This principle can be applied to
generative models to assess how well they capture a causal mechanism (Besserve et al., 2018).
Causality allows to assay how an outcome would have changed, had some variables taken different
values, referred to as a counterfactual (Pearl, 2009; Imbens & Rubin, 2015). We use counterfactuals
to assess the role of specific internal variables in the overall functioning of trained deep generative
models, along with a rigorous definition of disentanglement in a causal framework. Then, we analyze
this disentanglement in implemented models based on unsupervised counterfactual manipulations.
We show empirically how VAEs and GANs trained on image databases exhibit modularity of their
hidden units, encoding different features and allowing counterfactual editing of generated images.

Related work. Our work relates to the interpretability of convolutional neural networks, which has
been intensively investigated in discriminative architectures (Zeiler & Fergus, 2014; Dosovitskiy &
Brox, 2016; Fong & Vedaldi, 2017; Zhang et al., 2017b;a). Generative models require a different
approach, as the downstream effect of changes in intermediate representations are high dimensional.
InfoGANs. β-VAEs and other works (Chen et al., 2016; Mathieu et al., 2016; Kulkarni et al., 2015;
Higgins et al., 2017) address supervised or unsupervised disentanglement of latent variables related
to what we formalize as extrinsic disentanglement of transformations acting on data points. We
introduce the novel concept of intrinsic disentanglement to uncover the internal organization of
networks, arguing that many interesting transformations are statistically dependent and are thus
unlikely to be disentangled in the latent space. This relates to Bau et al. (2018) who proposed a
framework based on interventions on internal variables of a GAN which, in contrast to our fully
unsupervised approach, requires semantic information. Higgins et al. (2018) suggest a definition
of disentanglement based on group representation theory. Compared to this proposal, our approach
(introduced independently in (Anonymous, 2018)) is more flexible as it applies to arbitrary continuous
transformations, free from the strong requirements of representation theory (see Appendix F).

2 FROM DISENTANGLEMENT TO COUNTERFACTUALS AND BACK

We introduce a general framework to formulate precisely the notion of disentanglement and bridge it
to causal concepts. This theory section will be presented informally to ease high level understanding.
Readers interested in the mathematical aspects can refer to Appendix A where we provide all details.

2.1 A CAUSAL GENERATIVE MODEL (CGM) FRAMEWORK

We consider a generative model M that implements a function gM which maps a latent space Z to a
manifold YM where the learned data points live, embedded in ambient Euclidean space Y (Fig. 2a). A
sample from the model is generated by drawing a realization z from a prior latent variable distribution
with mutually independent components, fully supported in Z . We will use the term representation to
designate a mapping r from YM to some representation spaceR (we also call r(y) the representation
of a point y ∈ YM ). In particular, we will assume (see Def. 6 and Prop. 6, in Appendix A) that gM is
(left)-invertible, such that g−1M is a representation of the data, called the latent representation.

Assuming the generative model is implemented by a non-recurrent neural network, we can use a causal
graphical model representation of the entailed computational graph implementing the mapping gM
through a succession of operations (called functional assignments in causal language), as illustrated
in Fig. 2b, that we will call Causal Generative Model (CGM). In addition to the latent representation,
we can then choose a collection of possibly multi-dimensional endogenous (internal) variables
represented by nodes in the causal graph, such that the mapping gM is computed by composing the
endogenous variable assignment vM with the endogenous mapping g̃M according to the diagram

Z vM→ VM
g̃M→ YM .

A paradigmatic choice for the internal representation is to use the collection of output activation of
each channel in one hidden layer of a convolutional neural network, as illustrated in Fig. 2b. As for

1Note that this is not a statistical independence; the quantities transformed by the mechanisms of course do
influence each other and can be statistically dependent.
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Figure 2: (a) Illustration of the generative mapping and a disentangled transformation. (b) Causal
graph of an example CGM showing different types of independence between nodes. (c) Commutative
diagram showing sparse transformation T ′ in latent space associated to a disentangled transformation
T . (d) Illustration of intrinsic disentanglement with E = {2}.

the latent case, we use mild conditions that guarantee g̃M to be left-invertible, defining the internal
representation of the network (see Def. 6 and Prop. 3 in Appendix A). Given the typical choice of
dimensions for latent and endogenous variables, the Vk’s are also constrained to take values in subsets
Vk
M of smaller dimension than their Euclidean ambient space Vk. As detailed in Appendix A, we will

denote the endogenous image sets of the form VEM =
{
v ∈

∏
k∈E Vk : v = (vk(z))k∈E , z ∈ Z

}
for a subset of variables indexed by E (amounting to VM when E includes all endogenous variables).

This CGM framework allows defining counterfactuals in the network following Pearl (2014).

Definition 1 (Unit level counterfactual, informal). Given CGM M , the interventional model Mh

is obtained by replacing assignments of the subset variables E and by the vector of assignments h.
Then for any latent input z, called unit, the unit-level counterfactual is the output of Mh: gMh

(z) .

Def. 1 is also in line with the concept of potential outcome (Imbens & Rubin, 2015). Importantly,
counterfactuals induce a transformation of the output of the generative model.

Definition 2 (Counterfactual mapping). Given an embedded CGM, we call the transformation

y
Y
E

h : y 7→ gMh

(
g−1M (y)

)
the h-counterfactual mapping. We say it is faithful to M whenever

y
Y
E

h [YM ] ⊂ YM .

We introduce faithfulness of a counterfactual mapping to account for the fact that not all interventions
on internal variables will result in an output that could have been generated by the original model. In
the context of generative model, non-faithful counterfactuals generate examples that leave the support
of the distribution learned from data, possibly resulting in an artifactual output (assigning a large
value to a neuron may saturate downstream neurons), or allowing extrapolation to unseen data.

2.2 UNSUPERVISED DISENTANGLEMENT: FROM STATISTICAL TO CAUSAL PRINCIPLES

The classical notion of disentangled representation (e.g. Bengio et al. (2013); Kulkarni et al. (2015)),
posits individual latent variables “sparsely encode real-world transformations”. Although the concept
of real-world transformations remains elusive, this insight, agnostic to statistical concepts, has
driven supervised approaches to disentangling representations, where relevant transformations are
well-identified and manipulated explicitly using appropriate datasets and training procedures.

In contrast, unsupervised learning approaches to disentanglement need to learn such real-world
transformations from unlabeled data. In order to address this challenge, SOTA approaches seek to
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encode such transformations by changes in individual latent factors, and resort to a statistical notion
of disentanglement, enforcing conditional independence between latent factors (Higgins et al., 2017).
This statistical approach leads to several issues:

• The i.i.d. constraints on the prior distribution of latent variables, impose statistical independence
between disentangled factors on the data distribution. This is unlikely for many relevant properties,
counfounded by factors of the true data generating mechanisms (e.g. skin and hair color).
• Independence constraints are not sufficient to specify a disentangled representation, such that

the problem remains ill-posed (Locatello et al., 2018). As a consequence, finding an appropriate
inductive bias to learn a representation that benefits downstream tasks remains an open question.
• To date, SOTA unsupervised approaches are mostly demonstrated on synthetic datasets, and

beyond MNIST disentangling complex real world data has been limited to the well-calibrated
CelebA dataset. On complex real-world datasets, disentangled generative models exhibit visual
sample quality far below non-disentangled SOTA (e.g. BigGAN exploited in our work (Brock
et al., 2018)).

We propose an non-statistical definition of disentanglement by first phrasing mathematically the
transformation-based insights (Bengio et al., 2013; Kulkarni et al., 2015). Consider a transformation
T acting on the data manifold YM . As illustrated by the commutative diagram of Fig. 2c, disentan-
glement of such property then amounts to having T correspond to a transformation T ′ of the latent
space that would act only on a single variable zk, using transformation f , leaving the other latent
variables available to encode other properties. More explicitly we have

T ′(z) : (z1, .., zk, .., zK) 7→ (z1, .., f(zk), .., zK) , and T (gM (z)) = gM (T ′(z)) .

It is then natural to qualify two transformations T1 and T2 as disentangled (from each other), whenever
they modify different components of the latent representation (see Def. 9. This amounts to saying
that the transformations follow the causal principle of independent mechanisms (Peters et al., 2017;
Parascandolo et al., 2018).

Due to the fact that it relies on transformation of the latent representation, that are exogenous to the
CGM, we call this notion extrinsic disentanglement. This “functional” definition has the benefit of
being agnostic the the subjective choice of the property to disentangle, and to the statistical notion of
independence. However, we can readily notice that, if applied to the latent space (where components
are i.i.d. distributed), this functional notion of disentangled transformation still entails statistical
independence between disentangled factors. We thus need to exploit a different representation to
uncover possibly statistically related properties, but disentangled in the sense of our definition.

2.3 DISENTANGLING BY MANIPULATING INTERNAL REPRESENTATIONS

As illustrated in the CGM of Fig. 2b, in contrast to latent variables, properties encoded by endogenous
variables of the graphical model are not necessarily statistically independent due to common latent
cause, but may still reflect interesting properties of the data that can be intervened on indepen-
dently, following the principle of independence of mechanisms. We thus extend our definition of
disentanglement to allow transformations of the internal variables of the network as follows.
Definition 3 (Intrinsic disentanglement, informal). In a CGMM , a transformation T : YM → YM is
intrinsically disentangled with respect to a subset E of endogenous variables, if there is transformation
T ′ acting on the internal representation space such that for any endogenous value v

T (g̃M (v)) = g̃M (T ′(v)) (1)

where T ′(v) only affects the variables indexed by E .

Fig. 2d illustrates this second notion of disentanglement, where the split node indicates that the
value of V2 is computed as in the original CGM (Fig. 2b) before applying transformation T 2 to the
outcome. While the above definition applies to a single transformation, straightforward extensions
of this concept to families of transformations are provided in Appendix F. Faithful counterfactuals
represent examples of disentangled transformations:
Proposition 1 (Counterfactuals and disentanglement, informal). Consider an intervention on subset
E , its associated counterfactual mapping is faithful if and only if it is disentangled. For interventions
on variables that remain within the support of the original marginal distribution, it is sufficient that E
and its complement E do not have common latent ancestors.
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Figure 3: Generation of influence maps. (a) Principle of sample hybridization through counterfac-
tuals. (b) Left: Clustering of influence maps for a BEGAN trained on the CelebA dataset (see text).
Center: example EIM of each cluster. Right: samples of the hybridization procedure using as module
all channels of the intermediate layer belonging to the cluster of corresponding row.

This indicates that finding faithful counterfactuals can be used to learn disentangled transformations.

3 FINDING MODULARITY IN DEEP GENERATIVE MODELS

3.1 DEFINING MODULARITY

Building on Sec. 2, we define modularity as a structural property of the internal representation, allow-
ing (with the immediately following Prop. 2) to implement arbitrary disentangled transformations.

Definition 4 (Modularity). A subset of endogenous variables E is called modular whenever VM is
the Cartesian product of VEM by VEM .

Proposition 2 (Modularity implies disentanglement). If E is modular, then and transformation
applied to it staying within its input domain is disentangled.

The proof is a natural extension of Proposition 1. Both the definition and the proposition have obvious
extensions to multiple modules (based on Appendix F).

3.2 HYBRIDIZATION AS A DISENTANGLED TRANSFORMATION

As stated in Sec. 2, a functional definition of disentanglement, leaves unanswered how to find relevant
transformations. Prop. 1 and 2 provide the following hints: (1) Once a modular structure is found in
the network, a broad class of disentangled transformations are available, (2) Transformations that stay
within their input domain are good candidates of disentanglement, (3) Counterfactual interventions
implicitly defines transformation. We follow these guidelines by assigning a constant value v0 to a
subset of endogenous variables E to define counterfactuals (i.e. h is a constant functions), aiming for
faithful ones by constraining v0 to belong to VEM . To avoid characterizing VEM , we rely on sampling
from the (joint) marginal distribution of the variables in E .

To illustrate the procedure, we consider a standard feed-forward multilayer neural network and choose
endogenous variables to be the collection of all output activations of channels of a given layer `. Let
E be a subset of these channels, the hybridization procedure, illustrated in Fig. 3a goes as follows.
We take two independent examples of the latent variable z1 and z2, that will generate two original
examples of the output (y1,y2) = (gM (z1), gM (z2)) (that we call Original 1 and Original 2). We
also memorize the tuple v(z2) gathering values of variables indexed by E when generating Original
2, and ṽ(z1) the tuple of values taken by all other endogenous variables on this layer, but when
generating Original 1. Assuming the choice of E identifies a modular structure, ṽ(z1) and v(z2)
would encode different aspects of their corresponding generated images, such that one can generate a
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hybrid example mixing these features by assigning the collection of output values of layer ` with the
concatenated tuple (ṽ(z1), v(z2)) and feeding it to the downstream part of the generator network.

3.3 MEASURING CAUSAL EFFECTS

The above counterfactual hybridization framework allows assessing how a given module E affects
the output of the generator. For this purpose we quantify its causal effect by repetitively generating
pairs (z1, z2) from the latent space, where both vectors are sampled independently of each other.
We then generate and collect hybrid outputs following the above described procedure for a batch of
samples and use them to estimate an influence map as the mean absolute effect:

IM (E) = Ez2∼P (Z)Ez1∼P (Z)

∣∣∣Y Ev(z2)
(z1)− Y (z1)

∣∣∣ (2)

where Y (z1) = gM (z1) is the non-intervened output of the generator for latent input z1. In eq. 2,
the difference inside the absolute value can be interpreted as a unit-level causal effect in the potential
outcome framework (Imbens & Rubin, 2015), and taking the expectation is analogous to computing
the average treatment effect. Our approach has however two specificities: (1) we take the absolute
value of the unit-level causal effects, as their sign may not be consistent across units, (2) the result is
averaged over many interventions corresponding to different values of z2.

While IM has the same dimension as the output image, we then average it across color channels to
get a single grayscale heat-map pixel map. We also define a scalar quantity to quantify the magnitude
of the causal effect, the individual influence of module E , by averaging IM across output pixels.

3.4 UNSUPERVISED DETECTION OF MODULES AND COUNTERFACTUAL IMAGES

A challenge with the hybridization approach is to select the subsets E to intervene on, especially
with networks containing a large amount of units or channels per layer. We use a fine to coarse
approach to extract such groups, that we will describe in the context of convolutional layers. First,
we estimate elementary influence maps (EIM) associated to each individual output channel c of each
convolutional layer of the network (i.e. we set E = {c} in equation (2)). Then influence maps are
grouped by similarity to define modules at a coarser scale.

Representative EIMs for channels of convolutional layers of a VAE trained on the CelebA face
dataset (see result section) are shown in Supplementary Fig. 6 and suggest channels are functionally
segregated, with for example some influencing finer face feature (eyes, mouth,...) and others affecting
the background of the image or the hair. This supports the idea that individual channels can be
grouped into modules that are mostly dedicated to one particular aspect of the output.

In order to achieve this grouping in an unsupervised way, we perform clustering of channels using
their EIMs as feature vectors as follows. We first pre-process each influence map by: (1) performing a
local averaging with a small rectangular sliding window to smooth the maps spatially, (2) thresholding
the resulting maps at the 75% percentile of the distribution of values over the image to get a binary
image. After flattening image dimensions, we get a (channel×pixels) matrix S which is then fed to
a Non-negative Matrix Factorization (NMF) algorithm with manually selected rank K, leading to
the factorization S = WH. From the two resulting factor matrices, we get the K cluster template
patterns (by reshaping each rows of H to image dimensions), and the weights representing the
contribution of each of these pattern to individual maps (encoded in W). Each influence map is
then ascribed a cluster based on which template pattern contributes to it with maximum weight.
The choice of NMF is justified by its success in isolating meaningful parts of images in different
components (Lee & Seung, 1999). However, we will also compare our approach to the classical
k-means clustering algorithm.

4 EXPERIMENTS

4.1 DCGAN, β-VAE AND BEGAN ON THE CELEBA DATASET

We first investigated modularity of genrative models trained on the CelebFaces Attributes Dataset
(CelebA)(Liu et al., 2015).We first used a basic architecture: a plain β-VAE (https://github.com/
yzwxx/vae-celebA (Higgins et al., 2017). We ran the full procedure described in Sec. 3, comprised
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of EIM calculations, clustering of channels into modules, and hybridization of generator samples
using these modules. Hybridization procedures were performed by intervening on the output of the
intermediate convolutional layer (indicated in Supplemental Fig. 7). The results are summarized
in Supplemental Fig. 8. We observed empirically that setting the number of clusters to 3 leads
consistently to highly interpretable cluster templates as illustrated in the figure, with one cluster
associated to the background, one to the face and one to the hair. This observation was confirmed
by running the following cluster stability analysis: we partition at random the influence maps in 3
subsets, and we use this partition to run the clustering twice on two thirds of the data, both runs
overlapping only on one third. The obtained clusters were then matched in order to maximize the
label consistency (the proportion of influence maps assigned the same label by both runs) on the
overlapping subset, and this maximum consistency was used to assess robustness of the clustering
across the number of clusters. The consistency results are provided in Supplemental Fig. 9 and show
3 clusters is a reasonable choice as consistency is large (> 90%) and drops considerably for 4 clusters.
Moreover, these results also show that the NMF-based clustering outperforms clustering with the
more standard k-means algorithm. In addition, we also assessed the robustness of the clustering by
looking at the cosine distance between the templates associated to matching clusters, averaged across
clusters. The results, also provided in Supplemental Fig. 9, are consistent with the above analysis with
an average cosine similarity of .9 (scalar product between the normalized feature vectors) achieved
with 3 clusters (maximum similarity is 1 for perfectly identical templates). Exemplary influence maps
shown in Supplemental Fig. 8 (center panel) reflect also our general observation: some maps may
spread over image locations reflecting different clusters.

Interestingly, applying the hybridization procedure to the resulting 3 modules obtained by clustering
leads to a replacement of the features associated to the module we intervene on, as shown in Sup-
plemental Fig. 8 (center panel), while respecting the overall structure of the image (no discontinuity
introduced). For example, on the middle row we see the facial features of the Original 2 samples are
inserted in the Original 1 image (shown on the left), while preserving the hair.

While the β-VAE is in principle optimal for extrinsic disentanglement, these above results could also
be reproduced in the official tensorlayer DCGAN implementation, equipped with a similar architecture
(https://github.com/tensorlayer/dcgan) (see Appendix E). This suggests that our approach can be applied
to models that have not been optimized for disentanglement. After these experiments with basic
models, we used a pretrained (https://github.com/Heumi/BEGAN-tensorflow) Boundary Equilibrium GAN
(BEGAN) (Berthelot et al., 2017), which used to set a milestone in visual quality for higher resolution
face images. The good quality and higher resolution of the generated images combined with the
relatively simple generator architecture of BEGAN allows us to test our hypothesis with minimal
modifications of the computational graph. Most likely due to the increase in the number of layers, we
observed that obtaining counterfactuals with noticeable effects required interventions on channels
from the same cluster in two successive layers. The results shown in Fig. 3b, obtained by intervening
on layers 5 and 6, reveal a clear selective transfer of features from Original 2 to Original 1. As the
model was trained on face images cropped with a tighter frame than for the above models, leaving
little room for the hair and background, we observe only one module associated to these features
(Fig. 3b, middle row) showing a clear hair transfer. The remaining two modules are now encoding
different aspects of face features: eye contour/mouth/nose for the top row and eyelids/face shape for
the bottom row module. We further evaluated the relative quality of the counterfactual images with
respect to the original generated images using the Frechet Inception Distance (FID) (Heusel et al.,
2017) (Table 2 in the appendix), supporting that the hybridization procedure only mildly affects the
image quality, in comparison to the original samples.

4.2 BIGGAN ON THE IMAGENET DATASET

In order to check whether our approach could scale to high resolution generative models, and general-
ize to complex image datasets containing a variety of objects, we used the BigGAN-deep architecture
(Brock et al., 2018), pretrained (https://tfhub.dev/deepmind/biggan-deep-256/1) on the ImageNet dataset
(http://www.image-net.org/). This is a conditional GAN architecture comprising 12 so-called Gblocks,
each containing a cascade of 4 convolutional layers (see Appendix C for details). Each Gblock also
receives direct input from the latent variables and the class label, and is bypassed by a skip connection.
We then checked that we were able to generate hybrids by mixing the features of different classes. As
for the case of BEGAN, intervening on two successive layers within a Gblock was more effective to
generate counterfactuals (examples are provided for the 7th Gblock). Examples provided in Fig. 4
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Figure 4: Examples of BigGAN hybridizations across classes. Left: ostrich-cock, right: koala-teddy.

Figure 5: Analysis of classifier robustness to counterfactual changes (bars indicate standard error).

(cock against ostrich) show that it is possible to generate high quality counterfactuals with modified
background while keeping a very similar object in the foreground. In a more challenging situation,
with objects of different nature (Koala-teddy bear on the same figure), meaningful combinations of
each original samples are still generated: e.g. a teddy bear in a tree (bottom row), or a “teddy-koala”
merging teddy texture with the color of a koala on a uniform indoor background with a slight wooden
texture (top row).

In order to investigate how the generated counterfactual images can be used to probe and improve the
robustness of classifiers to contextual changes, we compared the ability of several SOTA pretrained
classifier available on Tensorflow-hub (https://tfhub.dev/, see Appendix C for details) to recognize
one of the original classes. Fig. 5 shows the average recognition rate of the most recognized original
class (teddy-bear or koala), as a function of layer depth tends overall to increase. We first observe
that high recognition rates are in line with the small pixel distance between hybrids and original
when intervening at layers closest to the output (right panel). Interestingly, at intermediate blocks
5-6, there is a clear contrast between classifiers, with the Inception resnet performing better than the
others. Interestingly, examples of non-consensual classification results in Supplementary Table 3,
together with the associated hybrids (Supplementary Fig. 12) suggest different SOTA classifiers rely
on different aspects of the image content to take their decision (e.g. background versus object).

CONCLUSION

We introduced a mathematical definition of disentanglement, related it to the causal notion of
counterfactual and used it for the unsupervised characterization of the representation encoded by
different groups of channels in deep generative architectures. We found evidence for interpretable
modules of internal variables in four different generative models trained on two complex real world
datasets. Our framework opens a way to a better understanding of complex generative architectures
and applications such as the style transfer (Gatys et al., 2015) of controllable properties of generated
images at low computational cost (no further optimization is required), and the automated assessment
of robustness of object recognition systems to contextual changes. From a broader perspective, this
research direction contributes to a better exploitation of deep neural networks obtained by costly
and highly energy-consuming training procedures, by (1) enhancing their interpretability and (2)
allowing them to be used for tasks their where not trained for. This offers a perspective on how more
sustainable research in Artificial Intelligence could be fostered in the future.
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Supplementary information
APPENDIX A: FORMAL DEFINITIONS AND RESULTS FOR CAUSAL GENERATIVE
MODELS (SECTION 2)

We rely on the assumption that a trained generator architecture can be exploited as a mechanistic
model, such that parts of this model can be manipulated independently. A mathematical representation
of such models can be given using structural causal models (SCMs, that rely on structural equations
(SEs) of the form Y := f(X1, X2, · · · , XN , ε) , denoting the assignment of a value to variable Y ,
computed from the values of other variables Xk in the system under consideration, and of putative
exogenous influences ε, imposed by factors outside the system under study. As in the above equation,
we will use uppercase letters to indicate variables being the outcome of a structural assignment, while
specific values taken by them will be lower case. SEs stay valid even if right-hand side variables
undergo a change due to interventions (Pearl, 2009; Peters et al., 2017, e.g.), and can model the
operations performed in computational graphs of modern neural network implementations. Such
graphs then depict SCMs made of interdependent modules, for which assignments’ dependencies
are represented by a directed acyclic graph G. Without loss of generality, we introduce a Causal
Generative Model (CGM) M capturing the computational relations between a selected subset of
variables comprising: (1) the input latent variables {zk}, (2) the generator’s output Y (typically multi-
dimensional), and (3) a collection of possibly multi-dimensional endogenous (internal) variables
forming an intermediate representation such that the generator’s output can be decomposed into
two successive steps as {Zk} 7→ {Vk} 7→ Y . In a feed-forward neural network, one Vk may for
instance represent one channel of the output of a convolutional layer (e.g. after application of the
ReLU non-linearity).

Definition 5 (Causal Generative Model (CGM)). Given K real-valued latent variables z = (zk)

taking arbitrary values on domain Z =
∏K

k=1Zk, where all Zk’s are closed intervals, the CGM
M = G(Z,S,G) comprises a directed acyclic graph G and a set S of N +1 deterministic continuous
structural equations that assign:
• N endogenous variables {Vk := fk(Pak)}k=1..N taking values in Euclidean spaces (Vk)k=1..N ,

based on their endogenous or latent parents Pak in G,2

• one output Y := fy(Pay) taking values in Euclidean space Y , parents Pay in G being endogenous.

Moreover, zk’s are the only sources and Y is the only sink.3

The graph of an example CGM is exemplified on Fig. 2b, consisting of 3 endogenous variables, 2
latent inputs and the output. This aligns with the definition of a deterministic structural causal model
by Pearl (2009, chapter 7), once our latent variables are identified with exogenous ones. CGMs have
however specificities reflecting the structure of models encountered in practice. For instance, variable
assignments may or may not involve latent/exogenous variables in their right-hand side, which is
unusual in causal inference. This allows modeling feed-forward networks consisting in a first layer
receiving latent inputs followed by a cascade of deterministic operations in downstream layers. The
above definition guaranties several basic properties found in the computational graph of existing
generative networks: (1) all endogenous variables Vk are unambiguously assigned once z is chosen,
(2) the output Y is unambiguously assigned once either z is chosen, or, alternatively, if an appropriate
subset of Vk’s, such as Pay , is assigned. This allows us to introduce several useful mappings.

In an ideal case, while the support of the latent distribution covers the whole latent space Z ,
internal variables and outputs typically live on manifolds of smaller dimension than their am-
bient space. These can be defined as the images4 of Z by operations of the graph: the out-
put image YM = Y [Z], the endogenous images Vk

M = Vk[Z] for a single variable, VEM ={
v ∈

∏
k∈E Vk : v = (vk(z))k∈E , z ∈ Z

}
for a subset of variables indexed by E , and VM when E

includes all endogenous variables.

2A is a parent of (child) B whenever there is an arrow A → B.
3Sources are parentless nodes, sinks are childless.
4An image f [A] is the subset of outputs of f for a subset A of input values.
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Functions assigning Y from latent variables and from endogenous variables, respectively, are

gM :
Z → YM ,
z 7→ Y (z)

and g̃M :
VM → YM ,

v 7→ Y (v) ,

and we call them latent and endogenous mappings, respectively. Given the typical choice of dimen-
sions for latent and endogenous variables, the Vk’s and Y are constrained to take values in subsets
of their euclidean ambient space. We will assume that g̃M and gM define proper embeddings, in
particular implying that they are both invertible. We call a CGM satisfying these assumptions an
embedded CGM.

With this vocabulary we can for example verify the example of Fig. 2b contains exactly two layers (in
green). Note gM and g̃M are well defined because the output can be unambiguously computed from
their inputs by successive assignments along G, and are both surjective due to appropriate choices for
domains and codomains. All defined image sets ( V`

M , YM , ...) are constrained by the parameters
of M , and are typically not easy to characterize. For example VM is likely a strict subset of the
Cartesian product

∏
k Vk

M .

Importantly, the image set YM of a trained model is of particular significance, as it should approximate
at best the support of the data distribution we want to model. Learning the generator parameters such
that YM precisely matches the support of the target data distribution is arguably a major goal for
generative models (see e.g. Sajjadi et al. (2018)).

As we will manipulate properties of the output, we restrict ourselves to transformations that respect
the topology of YM , and use embeddings as the basic structure for it, allowing inversion of gM .

Definition 6 (Embedded CGMs). If f : X → Y is a continuous injective function with continuous
inverse f−1 : f [X]→ Y , we call f an embedding of X in Y . We say that a CGM M is embedded if
gM and g̃M are respective embeddings of Z and VM in Y .

Since Definition 5 imposes continuous structural equations,which is satisfied for all operations in
standard generative models, injectivity of gM is the key additional requirement for embedded CGMs.

Proposition 3. If Z of CGM M is compact (all Zk’s are bounded), then M is embedded if and only
if gM is injective.

Proof is provided in Appendix B. This implies that generative models based on uniformly distributed
latent variables (the case of many GANs), provided they are injective, are embedded CGMs. While
VAEs’ latent space is typically not compact (due to the use of normally distributed latent variables),
we argue that restricting it to a product of compact intervals (covering most of the probability mass)
will result in an embedded CGM that approximates the original one for most samples.

Based on this precise framework, we can now provide the formal definitions and results described
informally in main text.

The CGM framework allows defining counterfactuals in the network following Pearl (2014).

Definition 7 (Unit level counterfactual). Given CGM M , for a subset of endogenous variables
E = {e1, .., en}, and a tuple of values v0 ∈

∏
k∈E Vk jointly taken by these variables, we define

the interventional CGM Mh obtained by replacing structural assignments for V|E by assignments
{Vek := hk(z)}ek∈E . Then for a given value z of the latent variables, called unit, the unit-level
counterfactual is the output of Mh: Y Eh (z) = gMh

(z) .

Definition 7 is also in line with the concept of potential outcome (Imbens & Rubin, 2015). Importantly,
conterfactuals induce a transformation of the output of the generative model.

Definition 2 (Counterfactual mapping). Given an embedded CGM, we call the continuous map

y
Y
E

h : y 7→ Y Eh
(
g−1M (y)

)
the (E ,h)-counterfactual mapping. We say it is faithful to M whenever

y
Y
E

h [YM ] ⊂ YM .

Our approach then relates counterfactuals to a form of disentanglement allowing transformations of
the internal variables of the network as follows.
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Definition 3 (Intrinsic disentanglement). In a CGM M , endomorphism T : YM → YM is intrinsi-
cally disentangled with respect to a subset E of endogenous variables, if it exists a transformation T ′
of endogenous variables such that for any latent z ∈ Z , leading to the tuple of values v ∈ VM ,

T (Y (v)) = Y (T ′(v)) (3)

where T ′(v) only affects the variables indexed by E .

In this definition, Y (v) corresponds to the unambiguous assignment of Y based on endogenous
values.5 Fig. 2d illustrates this second notion of disentanglement, where the split node indicates that
the value of V2 is computed as in the original CGM (Fig. 2b) before applying transformation T 2 to
the outcome.

Intrinsic disentanglement relates to a causal interpretation of the generative model’s structure in the
sense that it expresses a form of robustness to perturbation of one of its subsystems. Counterfactuals
represent examples of such perturbations, and as such, may be disentangled given their faithfulness.
Proposition 1 (Counterfactuals and disentanglement, formal). For an embedded CGM M and

continuous assignment h, the (E ,h)-counterfactual mapping
y
Y
E

h is faithful if and only if it is
intrinsically disentangled with respect to subset E . Moreover, if h[Z] ⊂ VEM , it is sufficient that E

and E do not have common latent ancestors for
y
Y
E

h to be faithful.

The proof is provided in Appendix B.

APPENDIX B: ADDITIONAL DETAILS FOR SECTION 2

TOPOLOGICAL CONCEPTS

Continuity. We recall the classical definition of continuity of f : X → Y . Given the respective
topologies τX and τY of domain and codomain (the sets of all open sets), f is continuous whenever
for all A ∈ τY , f−1(A) ∈ τX .

Euclidean topology. For defining continuity between Euclidean spaces, we rely on the Euclidean (or
standard) topology naturally induced by the metric: as set is open if and only if it contains and open
ball around each if its points.

Subset topology. When restricting the domain or codomain of a mapping to a subset A of the
Euclidean space, we rely on the subspace topology, that consists in the intersection of A will all open
sets.

PROOF OF PROPOSITION 3

Following a result stated in Armstrong (2013), since Z is compact and the codomain of gM is
Hausdorff (because Euclidean), then a continuous (by definition) and injective gM is an embedding.
In addition, gM injective implies g̃`M ’s are injective on their respective domains V`

M . Moreover,
the V`

M ’s being image of a compact Z by a continuous mapping (by the CGM definition), they are
compact, such that the respective g̃`M ’s are also embeddings.

PROOF OF PROPOSITION 1

Part 1: Proof of the equivalence between faithful and disentangled. One conditional is trivial: if
a transformation is disentangled, it is by definition an endomorphism of YM so the counterfactual
mapping must be faithful.

For the second conditional, let us assume a faithful
y
Y
E

v0
and denote the (unambiguous) map from V

to the output

YM :
V` → Y
v 7→ Y (v)

.

5Note the mapping v 7→ Y (v) differs from g̃`M because its domain is not restricted to the image set V`
M .
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This map differs from g̃M due to its broader domain and codomain, such that it is neither necessarily
an injection nor a surjection, but they coincide on the image VM . We can first notice (using
Definition 7 and the embedding property) that the counterfactual mapping can be decomposed as

y
Y
E

v0
= YM ◦ T ′ ◦ (g̃M )

−1
, where T ′ : VE × VE → VE × VE

(ṽ, v) 7→ (ṽ, v0)
.

Since
y
Y
E

v0
is faithful, it is then an endomorphism of it YM (continuity comes form the composition

of continuous functions), as required by the definition of disentanglement.

For any v ∈ V , consider then the quantity
y
Y
E

v0
(Y (v)) =

y
Y
E

v0
◦ g̃M (v) ,

using the above decomposition, we can rewrite it as
y
Y
E

v0
(Y (v)) = YM ◦ T ′ ◦ (g̃M )

−1 ◦ g̃M (v) = YM ◦ T ′(v) ,
where T ′ is a transformation that only affects endogenous variables in E , demonstrating that
y
Y
E

v0
(Y (v)) is disentangled with respect to E .

Part 2: Sufficient condition. This is a direct application of the following Proposition 4 after
observing that in our case, the endomorphism TE required in this proposition is the constant function
with value v0.
Proposition 4. For embedded CGM M , if a subset E of endogenous variables does not share
common latent ancestors6 with the reminder of endogenous variables E , then any endomorphism
T E : VEM → VEM leads to a transformation

T : y 7→ g̃M ◦ T ′ ◦ (g̃M )−1(y) ,

with T ′ : VEM × VEM → VEM × VEM ,
(ṽ, v) 7→ (ṽ, T E(v)) ,

such that T is disentangled with respect to E in M .

Proof of Proposition 4. The absence of common latent ancestor between E and E ensures that values
in both subsets are unambiguously assigned by non-overlapping subsets of latent variables, A and B
respectively, such that we can write(

V|E , V|E

)
= (fA(zA), fB(zB))

This implies that the image set of this layer fully covers the Cartesian product of the image sets of the
two subsets of variables, i.e. VM = VEM ×VEM , and guaranties that T ′ is and endomorphism of V`

M
for any choice of endomorphism T E . This further implies T is well defined and an endomorphism.

APPENDIX C: ARCHITECTURE DETAILS

VANILLA β-VAE AND DCGAN

The β-VAE architecture is presented in Supplementary Fig. 7 and is very similar to the DCGAN
architecture. Hyperparameters for both structures are specified in Table 1.

BEGAN CELEBA

We used the method proposed in Berthelot et al. (2017) for CelebA dataset. We used the pre-trained
model with the same architecture as was used in the paper. It consists of three blocks of convolutional
layers each followed by an upsampling layer. The filter size of convolutional layers is (3, 3) all over
the generator. There is also skip connections in the model that is argued to increase the sharpness of
images. Consult (Berthelot et al., 2017, Figure 1) for architectural details.

6A is an ancestor of B whenever there is a directed path A → .. → B in the graph
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BIGGAN-DEEP-256 ARCHITECTURE DETAILS

The pretrained model is taken from Tensorflow-hub (https://tfhub.dev/, we summarize below the
main aspects of the architectures. We used the BigGan-deep architecture of Brock et al. (2018)
as a pre-trained model on 256x256 ImageNet. We did not retrain the model. The architecture
consists of several ResBlocks which are the building block of the generator. Each ResBlock contains
BatchNorm-ReLU-Conv Layers followed by upsampling transformations and augmented with skip
connections that bring fresh signal from the input to every ResBlock. Consult Brock et al. (2018) for
architectural details.

CLASSIFIERS ARCHITECTURE DETAILS

All pretrained models are taken from Tensorflow-hub (https://tfhub.dev/, we summarize below the
main aspects of the architectures.

INCEPTION RESNET V2

Inception ResNet V2 is a neural network architecture for image classification, originally published by

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi: ”Inception-v4,
Inception-ResNet and the Impact of Residual Connections on Learning”, 2016.

INCEPTION V3

Inception V3 is a neural network architecture for image classification, originally published by

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, Zbigniew
Wojna: ”Rethinking the Inception Architecture for Computer Vision”, 2015.

NASNET LARGE

NASNet-A is a family of convolutional neural networks for image classification. The architecture of
its convolutional cells (or layers) has been found by Neural Architecture Search (NAS). NAS and
NASNet were originally published by

Barret Zoph, Quoc V. Le: ”Neural Architecture Search with Reinforcement Learn-
ing”, 2017. Barret Zoph, Vijay Vasudevan, Jonathon Shlens, Quoc V. Le: ”Learning
Transferable Architectures for Scalable Image Recognition”, 2017.

NASNets come in various sizes. This TF-Hub module uses the TF-Slim implementation nasnet large
of NASNet-A for ImageNet that uses 18 Normal Cells, starting with 168 convolutional filters (after
the ”ImageNet stem”). It has an input size of 331x331 pixels.

RESNET V2 50

ResNet V2 is a family of network architectures for image classification with a variable number of
layers. It builds on the ResNet architecture originally published by

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun: ”Deep Residual Learning
for Image Recognition”, 2015.

The full preactivation ’V2’ variant of ResNet used in this module was introduced by

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun: ”Identity Mappings in
Deep Residual Networks”, 2016.

APPENDIX D: ADDITIONAL FILES.

The file influence.py provided at the link https://www.dropbox.com/sh/
4qnjictmh4a2soq/AAAa5brzPDlt69QOc9n2K4uOa?dl=0 contains key elements of
the code for counterfactual analysis of generative models.
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APPENDIX E: ADDITIONAL RESULTS

INFLUENCE MAP CLUSTERING AND HYBRIDIZATION IN DCGANS

We replicated the above approach for GANs on the CelebA dataset. The result shown in Supplemental
Fig. 11 summarize the main differences. First, the use of three clusters seemed again optimal
according to the stability of the obtained cluster templates. However, we observed that the eyes and
mouth location were associated with the top of the head in one cluster, while the rest of the face and
the sides of the image (including hair and background) respectively form the two remaining clusters.
In this sense, the GAN clusters are less aligned with high level concepts reflecting the causal structure
of these images. However, such clustering still allows a good visual quality of hybrid samples.

APPENDIX F: ADDITIONAL DISCUSSION

EXTENSION AND RELATION TO OTHER FRAMEWORKS

While we defined disentanglement of transformations, this concept has been classically attributed to
a representation, or factors of variation. Focusing on a transformation aligns to our aim of providing
an agnostic definition, in the sense that it only relies on the generator architecture and a given
transformation, but neither on data, nor on properties that are not stated explicitly in the definition. In
contrast, disentangled representation is usually understood as intervening on meaningful/interpretable
features in the image, which may be subjective, or at least referring to some external knowledge.
Alternatively, one might expect that what should be disentangled is a property or a factor of variation
(say “hair color”). We argue that we can state a property is disentangled by the generalizing our
notion of disentanglement to a family of transformations as follows.
Definition 8 (Disentangled family). A family of transformations (possibly parametric) is disentangled
if all members are disentangled with respect to the same E .

Then a property may be disentangled if the class of all transformations changing “only” the value of
this specific property is disentangled according to Definition 8. Finally, one might also expect that
several transformations (or families of transformations) should be disentangled with respect to each
other, e.g. allowing to state that hair color should be disentangled from hair length. This relative
disentanglement is easily defined based on our original definition.
Definition 9 (Relative disentanglement). The families of functions (Fi)i∈1..N are called jointly
disentangled whenever they are disentangled with respect to non-overlapping subsets of variables
(Ei)i∈1..N within a given layer.7

We argue that the notion introduced in Higgins et al. (2018) can be framed as a special case of
Definition 9.

SUPPLEMENTARY FIGURES AND TABLES

Architecture VAE CelebA GAN CelebA
Nb. of deconv. layers/channels of generator 4/(64,64,32,16,3) 4/(128,64,32,16,3)

Size of activation maps of generator (8,16,32,64) (4,8,16,32)
Latent space 128 150

Optimization algorithm Adam (β = 0.5) Adam (β = 0.5)
Minimized objective VAE loss (Gaussian posteriors) GAN loss

batch size 64 64
Beta parameter 0.0005 NA

Table 1

7or within the latent space for extrinsic disentanglement
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Figure 6: Generation of influence maps. Example of influence maps generated by a VAE on the
CelebA dataset (lighter pixel indicate larger variance and thus stronger influence of the perturbations
on that pixel).

Table 2: FID analysis of BEGAN hybrids. Distance between different pairs of classes (R: Real data,
G: Generated data, Ck: Hybrids by intervention on cluster k). The distances are is computed for
balanced number of examples (10k) for each class and normalized by the FID between the real data
and the generated data. It can be seen in the table that Hybrids have a small distance to the generated
and also to each other. This can be interpreted as closeness of the distribution of Hybrids to that of
generated data suggesting that Hybridization produces visually plausible images.

G 1 0
C0 1.022 0.036 0
C1 1.143 0.093 0.096 0
C2 1.158 0.097 0.099 0.045 0

R G C0 C1 C2

Decoder
Encoder
Image

FCLatent var.

FCPosterior

Coarse level
64

Intermediate level
64

Fine level
32

Image level
16

3

Figure 7: VAE architecture. FC indicates a fully connected layer, z is a 100-dimensional isotropic
Gaussian vector, horizontal dimensions indicate the number of channels of each layer. The output
image size is 64× 64 (or 32× 32 for cifar10) pixels and these dimensions drop by a factor 2 from
layer to layer. (reproduced from (Radford et al., 2015).
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Figure 8: Left: Clustering of influence maps for a VAE trained on the CelebA dataset (see text)..
Center: samples of the hybridization procedure using as module all channels of the intermediate
layer belonging to the cluster of corresponding row. Right: magnitude of causal effects. (top:
average influence of modules derived from clustering as a function of the number of clusters; bottom:
individual influence of each modules, as a function of the number of channels they contain, dashed
line indicate linear regression).

Figure 9: Label consistency (left) and cosine similarity (right) of the clustering of influence maps for
the NMF and k-means algorithm. Errorbars indicate standard deviation across 20 repetitions.
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Figure 10: Clustering of influence maps and generation of hybrid samples for a VAE trained on the
CelebA dataset (see text).

Figure 11: Clustering of influence maps and generation of hybrid samples for a GAN trained on the
CelebA dataset (see text).
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Left Image Model resnet v2 50 inception v3 nasnet large inception resnet v2
Output koala koala koala koala

Middle Image Model resnet v2 50 inception v3 nasnet large inception resnet v2
Output koala koala teddy teddy

Right Image Model resnet v2 50 inception v3 nasnet large inception resnet v2
Output koala teddy teddy koala

Table 3: The classification outcome of several discriminative models for three randomly chosen
koala+teddy hybrids (see Figure. 12). The purpose of this experiment is to investigate the use of
the proposed intervention procedure for assessing robustness of classifiers. As can be seen in the
following images, the resultant hybrids are roughly a teddy bear in a koala context. An ideal classifier
must be sensitive to the object present in the scene not the contextual information. A teddy bear must
still be classified as a teddy bear even if it appears on a tree which is the koala environment in most
of the koala images in the ImageNet dataset. It can be seen in the following table that nasnet large is
more robust to the change of context compared to other classifiers.

Figure 12: Three koala+teddy hybrids as the inputs to the classifiers of Table. 3
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