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ABSTRACT

From a young age humans learn to use grammatical principles to hierarchically
combine words into sentences. Action grammars is the parallel idea; that there is
an underlying set of rules (a “grammar”) that govern how we hierarchically com-
bine actions to form new, more complex actions. We introduce the Action Gram-
mar Reinforcement Learning (AG-RL) framework which leverages the concept
of action grammars to consistently improve the sample efficiency of Reinforce-
ment Learning agents. AG-RL works by using a grammar inference algorithm
to infer the “action grammar” of an agent midway through training, leading to
a higher-level action representation. The agent’s action space is then augmented
with macro-actions identified by the grammar. We apply this framework to Double
Deep Q-Learning (AG-DDQN) and a discrete action version of Soft Actor-Critic
(AG-SAC) and find that it improves performance in 8 out of 8 tested Atari games
(median +31%, max +668%) and 19 out of 20 tested Atari games (median +96%,
maximum +3,756%) respectively without substantive hyperparameter tuning. We
also show that AG-SAC beats the model-free state-of-the-art for sample efficiency
in 17 out of the 20 tested Atari games (median +62%, maximum +13,140%), again
without substantive hyperparameter tuning.

1 INTRODUCTION

Reinforcement Learning (RL) has famously made great progress in recent years, successfully being
applied to settings such as board games Silver et al. (2017), video games Mnih et al. (2015) and
robot tasks OpenAI et al. (2018). However, widespread adoption of RL in real-world domains has
remained slow primarily because of its poor sample efficiency which Wu et al. (2017) see as a
“dominant concern in RL”.

Hierarchical Reinforcement Learning (HRL) attempts to improve the sample efficiency of RL agents
by forcing their policies to be hierarchical rather than single level. Identifying the right hierarchical
policy structure is however “not a trivial task” (Osa et al., 2019) and so far progress in HRL has
been slow and incomplete - Vezhnevets et al. (2016) argued that: “no truly scalable and successful
[hierarchical] architectures exist” and even today’s state-of-the-art RL agents are rarely hierarchical.

Humans, however, heavily rely on hierarchical grammatical principles to combine words into larger
structures like phrases or sentences (Ding et al., 2012). For example, to construct a valid sentence
we generally combine a noun phrase with a verb phrase (Yule, 2015). Action grammars are the
parallel idea that there is an underlying set of rules for how we hierarchically combine actions over
time to produce new actions. There is growing biological evidence for this link between language
and action as explained in Pastra & Aloimonos (2012). Given this, we explore the idea that we can
use techniques from computational linguistics to infer a grammar of action in a similar way to how
we can infer a grammar of language. Furthermore, hierarchical approaches to RL can lead to higher
interpretability for a human observer: higher-level representations of an agent’s behaviour, can be
better understood by humans, as opposed to when only low-level actions are visible (Beyret et al.,
2019). We argue that basing the abstractions of an agent’s actions, and the definitions of hierarchies,
on the concept of action grammars, can further increase interpretability, as per the above described
biological link, making it more familiar for interacting humans.
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Action Grammar Reinforcement Learning (AG-RL) is a framework for incorporating the concept
of action grammars into RL agents. It works by pausing training after a fixed number of steps
and using the observed actions of the agent to infer an action grammar, obtaining a higher-level
action representation for the agent’s behaviour so far. Effectively, we compose primitive actions
(i.e. words) into temporal abstractions (i.e. sentences). The extracted action grammar then gets
appended to the agent’s action set in the form of macro-actions. The agent continues playing in the
environment but with a new action set that now includes macro-actions. We show that AG-RL is able
to consistently and significantly improve sample efficiency across a wide range of Atari settings.

2 RELATED WORK

We are not aware of other attempts to incorporate the concept of action grammars into RL but others
have created agents that use macro-actions. We review two of the most notable and relevant below
before commenting on the link with symbolic and connectionist RL research.

Vezhnevets et al. (2016) define a macro-action as a sequence of actions where the action sequence
(or distribution over them) is decided at the time the macro-action is initiated. They provide the
Strategic Attentive Writer (STRAW) algorithm which is a hierarchical RL agent that uses macro
actions. STRAW is a deep recurrent neural network with two modules. The first module takes in an
observation of the environment and produces an “action-plan” A ∈ R|A|×T where A is the discrete
action set and T is a pre-defined number of timesteps greater than one. Each column in the action-
plan gives the probability of the agent choosing each action at that timestep. As T > 1, creating an
action-plan involves making decisions that span multiple timesteps. The second module produces a
commitment-plan c ∈ R1×T which is used to determine the probabilities of terminating the macro-
action and re-calculating the action-plan at a particular timestep. Here, instead of allowing the agent
to choose amongst all possible macro-actions, AG-RL only allows the agent to pick macro-actions
identified by the grammar algorithm.

Sharma et al. (2017) provide another interesting agent that uses macro-actions called Fine Grained
Action Repetition (FiGAR). FiGAR agents maintain two policies: one policy which chooses a prim-
itive action (i.e. an action that only lasts for one timestep) as normal and another policy that chooses
how many times the chosen primitive action will be repeated. AG-RL differs to FiGAR by allowing
the agent to pick macro-actions that are not necessarily the repetition of single primitive actions and
instead could be complicated combinations of primitive actions.

Unlike recent advances in unifying symbolic and connectionist methods, we do not aim to discover
relationships between objects (Garnelo et al., 2016; Garnelo & Shanahan, 2019; Zambaldi et al.,
2018). Instead our proposed AG-RL framework achieves interpretability by extracting hierarchical
subroutines associated with sub-goal achievements.

3 METHODOLOGY

Action Grammar Reinforcement Learning works by having the agent repeatedly iterate through two
steps (as laid out in Figure 1):

(A) Gather Experience: the base off-policy RL agent interacts with the environment and stores
its experiences

(B) Identify Action Grammar: the experiences are used to identify the agent’s action gram-
mar which is then appended to the agent’s action set in the form of macro-actions

During the first Gather Experience step of the game the base RL agent plays normally in the
environment for some set number of episodes. The only difference is that during this time we
occasionally run an episode of the game with all random exploration turned off and store these
experiences separately. We do this because we will later use these experiences to identify the action
grammar and so we do not want them to be influenced by noise. See left part of Figure 1.

After some set number of episodes we pause the agent’s interaction with the environment and enter
the first Identify Action Grammar stage, see middle part of Figure 1. This firstly involves col-
lecting the actions used in the best performing of the no-exploration episodes mentioned above. We
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Figure 1: The high-level steps involved in the AG-RL algorithm. In the first Gather Experience step the base
agent interacts as normal with the environment for N1 episodes. Then we feed the experiences of the agent to a
grammar calculator which outputs macro-actions that get appended to the action set. The agent starts interacting
with the environment again with this updated action set. This process repeats as many times as required, as set
through hyperparameters.

then feed these actions into a grammar calculator which identifies the action grammar. A simple
choice for the grammar calculator is Sequitur (Nevill-Manning & Witten, 1997). Sequitur receives a
sequence of actions as input and then iteratively creates new symbols to replace any repeating sub-
sequences of actions. These newly created symbols then represent the macro-actions of the action
grammar. To minimise the influence of noise on grammar generation, however, we need to regularise
the process. A naive regulariser is k-Sequitur (Stout et al., 2018) which is a version of Sequitur that
only creates a new symbol if a sub-sequence repeats at least k times (instead of at least two times),
where higher k corresponds to stronger regularisation. Here we use a more principled approach and
regularise on the basis of an information theoretic criterion: we generate a new symbol if doing so
reduces the total amount of information needed to encode the sequence.

After we have identified the action grammar we enter our second Gather Experience step. This
firstly involves appending the macro-actions in the action grammar to the agent’s action set. To
do this without destroying what our q-network and/or policy has already learned we use transfer
learning. For every new macro-action we add a new node to the final layer of the network, leaving
all other nodes and weights unchanged. We also initialise the weights of each new node to the
weights of their first primitive action (as it is this action that is most likely to have a similar action
value to the macro-action). e.g. if the primitive actions are {a, b} and we are adding macro-action
abb then we initialise the weights of the new macro-action to those of a.

Then our agent begins interacting with the environment as normal but with an action set that now
includes macro-actions and four additional changes:

i) In order to maximise information efficiency, when storing experiences from this stage onwards we
use a new technique we call Hindsight Action Replay (HAR). It is related to Hindsight Experience
Replay which creates new experiences by reimagining the goals the agent was trying to achieve.
Instead of reimagining the goals, HAR creates new experiences by reimagining the actions. In
particular it reimagines them in two ways:

1. If we play a macro-action then we also store the experiences as if we had played the se-
quence of primitive actions individually

2. If we play a sequence of primitive actions that matches an existing macro-action then we
also store the experiences as if we had played the macro-action

See Appendix A for an example of how HAR is able to more than double the number of collected
experiences in some cases.

ii) To make sure that the longer macro-actions receive enough attention while learning, we sample
experiences from an action balanced replay buffer. This acts as a normal replay buffer except it
returns samples of experiences containing equal amounts of each action.
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iii) To reduce the variance involved in using long macro-actions we develop a new technique called
Abandon Ship. During every timestep of conducting a macro-action we calculate how much worse
it is for the agent to continue executing its macro-action compared to abandoning the macro-action
and picking the highest value primitive action instead. Formally we calculate this value as d =

1− exp(qm)
exp(qhighest)

where qm is the action value of the primitive action we are conducting as part of the
macro-action and qhighest is the action value of the primitive action with the highest action value.
We also store the moving average, m(d), and moving standard deviation, std(d), of d. Then each
timestep we compare d to threshold t = m(d)+std(d)z where z is the abandon ship hyperparameter
that determines how often we will abandon macro-actions. If d > t then we abandon our macro-
action and return control back to the policy, otherwise we continue executing the macro-action.

iv) When our agent is picking random exploration moves we bias its choices towards macro-actions.
For example, when a DQN agent picks a random move (which it does epsilon proportion of the time)
we set the probability that it will pick a macro-action, rather than a primitive action, to the higher
probability given by the hyperparameter “Macro Action Exploration Bonus”. In these cases, we do
not use Abandon Ship and instead let the macro-actions fully roll out.

The second Gather Experience step then continues until it is time to do another Identify Action
Grammar step or until the agent has been trained for long enough and the game ends. Algorithm 1
provides the full AG-RL algorithm.

Algorithm 1 AG-RL

1: Initialise environment env, base RL algorithm R, replay buffer D and action set A
2: for each iteration do
3: F ← GATHER EXPERIENCE(A)
4: A← IDENTIFY ACTION GRAMMAR(F )

5:
6: procedure GATHER EXPERIENCE(A)
7: transfer learning(A) . If action set changed do transfer learning
8: F ← ∅ . Initialise F to store no-exploration episode experiences
9: for each episode do

10: if no exploration time then turn off exploration . Periodically turn off exploration
11: E ← ∅ . Initialise E to store an episode’s experiences
12: while not done do
13: mat = R.pick action(st) . Pick next primitive action / macro-action
14: for at in mat do . Iterate through each primitive action in the macro-action
15: if abandon ship(st, at) then break . Abandon macro-action if required
16: st+1, rt+1, dt+1 = env.step(at) . Play action in environment
17: E ← E ∪ {(st, at, rt+1, st+1, dt+1)} . Store the episode’s experiences
18: R.learn(D) . Learning iteration for base RL algorithm
19: D ← D ∪ HAR(E) . Use HAR when updating replay buffer
20: if no exploration time then F ← F ∪ E . Store no-exploration experiences
21: return F
22:
23: procedure IDENTIFY ACTION GRAMMAR(F)
24: F ← extract best episodes(F) . Keep only the best performing no-exploration episodes
25: action grammar← grammar algorithm(F) . Infer action grammar using experiences
26: A← A ∪ action grammar . Update the action set with identified macro-actions
27: return A

4 SIMPLE EXAMPLE

We now highlight the core aspects of how AG-RL works using a simple example of the game Towers
of Hanoi. The game starts with a set of disks placed on a rod in decreasing size order. The objective
of the game is to move the entire stack to another rod while obeying the following rules: i) Only
one disk can be moved at a time; ii) Each move consists of taking the upper disk from one of the
stacks and placing it on top of another stack or on an empty rod; and iii) No larger disk may be
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Figure 2: Example of a solution to the Towers of Hanoi game. Letters a to f represent the 6 different possible
moves. After 7 moves the agent has solved the game and receives +100 reward.

placed on top of a smaller disk. The agent only receives a reward when the game is solved, meaning
rewards are sparse and that it is difficult for an RL agent to learn the solution. Figure 2 runs through
an example of how the game can be solved with the letters ‘a’ to ‘f ’ being used to represent the 6
possible moves in the game.

In this game, AG-RL proceeds by having the base agent (which can be any off-policy RL agent)
play the game as normal. After some period of time we pause the agent and collect some of the
actions taken by the agent, e.g. say the agent played the sequence of actions: “bafbcdbafecfbaf-
bcdbcfecdbafbcdb”. Then we use a grammar induction algorithm such as Sequitur to create new
symbols to represent repeating sub-sequences. In this example, Sequitur would create the 4 new
symbols: {G : bc,H : ec, I : baf, J : bafbcd}. We then append these symbols to the agent’s action
set as macro-actions, so that the action set goes from A = {a, b, c, d, e, f} to:

A = {a, b, c, d, e, f} ∪ {bc, ec, baf, bafbcd}

The agent then continues playing in the environment with this new action set which includes macro-
actions. Because the macro-actions are of length greater than one it means that their usage effectively
reduces the time dimensionality of the problem, making it an easier problem to solve in some cases.

We now demonstrate the ability of AG-RL to consistently improve sample efficiency on the much
more complicated Atari suite setting.

5 RESULTS

We first evaluate the AG-RL framework using DDQN as the base RL algorithm. We refer to this
as AG-DDQN. We compare the performance of AG-DDQN and DDQN after training for 350,000
steps on 8 Atari games chosen a priori to represent a broad range. To accelerate training times for
both we set their convolutional layer weights as equal to those of some pre-trained agents1 and then
only train the fully connected layers.

For the DDQN-specific hyperparameters of both networks we do no hyperparameter tuning and
instead use the hyperparmaeters from van Hasselt et al. (2015) or set them manually. For the AG-
specific hyperparameters we tried four options for the abandon ship hyperparameter (No Abandon
Ship, 1, 2, 3) for the game Qbert and chose the option with the highest score. No other hyperpa-
rameters were tuned and all games then used the same hyperparameters which can all be found in
Appendix B along with a more detailed description of the experimental setup.

We find that AG-DDQN outperforms DDQN in all 8 games with a median final improvement of 31%
and a maximum final improvement of 668% - Figure 3 summarises the results.

Next we further evaluate AG-RL by using SAC as the base RL algorithm, leading to AG-SAC. We
compare the performance of AG-SAC to SAC. We train both algorithms for 100,000 steps on 20
Atari games chosen a priori to represent a broad range games. As SAC is a much more efficient
algorithm than DDQN this time we train both agents from scratch and do not use pre-trained convo-
lutional layers.

For the SAC-specific hyperparameters of both networks we did no hyperparameter tuning and in-
stead used a mixture of the hyperparameters found in Haarnoja et al. (2018) and Kaiser et al. (2019).

1We used the pre-trained agents in the GitHub repository rl-baselines-zoo https://github.com/araffin/rl-
baselines-zoo/tree/master/trained agents/dqn
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Figure 3: Comparing AG-DDQN to DDQN for 8 Atari games. Graphs show the average evaluation score over
5 random seeds where an evaluation score is calculated every 25,000 steps and averaged over the previous 3
scores. For the evaluation methodology we used the same no-ops condition as in van Hasselt et al. (2015). The
shaded area shows ±1 standard deviation.
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Figure 4: Comparing AG-SAC to SAC for 20 Atari games. Graphs show the average evaluation score over 5
random seeds where an evaluation score is calculated at the end of 100,000 steps of training. For the evaluation
methodology we used the same no-ops condition as in van Hasselt et al. (2015).

For the AG-specific hyperparmaeters again the only tuning we did was amongst 4 options for the
abandon ship hyperparameter (No Abandon Ship, 1, 2, 3) on the game Qbert. No other hyperparam-
eters were tuned and all games then used the same hyperparameters, details of which can be found
in Appendix C.

Our results show AG-SAC outperforms SAC in 19 out of 20 games with a median improvement of
96% and a maximum improvement of 3,756% - Figure 4 summarises the results and Appendix D
provides them in more detail.

We also find that AG-SAC outperforms Rainbow, which is the model-free state-of-the-art for Atari
sample efficiency, in 17 out of 20 games with a median improvement of 62% and maximum improve-
ment of 13,140% - see Appendix D for more details. Also note that the Rainbow scores used were
taken from Kaiser et al. (2019) who explain they were the result of extensive hyperparameter tuning
compared to our AG-SAC scores which benefited from very little hyperparameter tuning.
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6 DISCUSSION

To better understand the results, we first explore what types of macro-actions get identified during
the Identify Action Grammar stage, whether the agents use them extensively or not, and to what
extent the Abandon Ship technique plays a role. We find that the length of macro-actions can vary
greatly from length 2 to over 100. An example of an inferred macro-action was 8888111188881111
from the game Beam Rider where 1 represents Shoot and 8 represents move Down-Right. This
macro-action seems particularly useful in this game as the game is about shooting enemies whilst
avoiding being hit by them.

Figure 5: Ablation study comparing DDQN to different versions of AG-DDQN for the game Qbert. The dark
line is the average of 5 random seeds, the shaded area shows ±1 standard deviation across the seeds.

We also found that the agents made extensive use of the macro-actions. Taking each game’s best
performing AG-SAC agent, the average attempted move length during evaluation was 20.0. Because
of Abandon Ship the average executed move length was significantly lower at 6.9 but still far above
the average of 1.0 we would get if the agents were not using their macro-actions. Appendix E gives
more details on the differences in move lengths between games.

We now conduct an ablation study to investigate the main drivers of AG-DDQN’s performance in the
game Qbert, with results in Figure 5 . Firstly we find that HAR was crucial for the improved perfor-
mance and without it AG-DDQN performed no better than DDQN. We suspect that this is because
without HAR there are much fewer experiences to learn from and so our action value estimates have
very high variance.

Next we find that using an action balanced replay buffer improved performance somewhat but by
a much smaller and potentially insignificant amount. This potentially implies that it may not be
necessary to use an action balanced replay and that the technique may work with an ordinary replay
buffer. We also see that with our chosen abandon ship hyperparameter of 1.0, performance was
higher than when abandon ship was not used. Performance was also similar for the choice of 2.0
which suggests performance was not too sensitive to this choice of hyperparameter. Finally we see
improved performance from using transfer learning when appending macro-actions to the agent’s
action set rather than creating a new network.
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Lastly, we note that the game in which AG-DDQN and AG-SAC both do relatively best in is Enduro.
Enduro is a game with sparse rewards and therefore one where exploration is very important. We
therefore speculate that AG-RL does best on this game because using long macro-actions increases
the variance of where an agent can end up and therefore helps exploration.

7 CONCLUSION

Motivated by the parallels between the hierarchical composition of language and that of actions, we
combine techniques from computational linguistics and RL to help develop the Action Grammars
Reinforcement Learning framework.

The framework expands on two key areas of RL research: Symbolic RL and Hierarchical RL. We ex-
tend the ideas of symbolic manipulation in RL (Garnelo et al., 2016; Garnelo & Shanahan, 2019) to
the dynamics of sequential action execution. Moreover, while Relational RL approaches (Zambaldi
et al., 2018) draw on the complex logic-based framework of inductive programming, we merely
observe successful behavioral sequences to induce higher order structures.

We provided two implementations of the framework: AG-DDQN and AG-SAC. We showed that
AG-DDQN improves on DDQN in 8 out of 8 tested Atari games (median +31%, max +668%) and
AG-SAC improves on SAC in 19 out of 20 tested Atari games (median +96%, max +3,756%) all
without substantive hyperparameter tuning. We also show that AG-SAC beats the model-free state-
of-the-art for 17 out of 20 Atari games (median +62%, max +13,140%) in terms of sample efficiency,
again even without substantive hyperparameter tuning.

As part of AG-RL we also provided two new and generally applicable techniques: Hindsight Action
Replay and Abandon Ship. Hindsight Action Replay can be used to drastically improve information
efficiency in any off-policy setting involving macro-actions. Abandon Ship reduces the variance
involved when training macro-actions, making it feasible to train algorithms with very long macro-
actions (over 100 steps in some cases).

Overall, we have demonstrated the power of action grammars to consistently improve the perfor-
mance of RL agents. We believe our work is just one of many possible ways of incorporating the
concept of action grammars into RL and we look forward to exploring other methods. By improving
sample efficiency we hope that action grammars can eventually help make RL a universally practical
and useful tool in modern society.
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APPENDIX

A HINDSIGHT ACTION REPLAY

Below we provide an example of how HAR stores the experiences of an agent after they played the
moves acab where a and b are primitive actions and c represents the macro-action ababa.

Figure 6: The Hindsight Action Replay (HAR) process with Action Set: {a, b, c:{abab}} meaning that there
are 2 primitive actions a and b, and one macro-action c which represents the sequence of primitive actions abab.
The example shows how using HAR leads to the original sequence of 4 actions acab producing 9 experiences
for the replay buffer instead of only 4.
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B AG-DDQN EXPERIMENT AND HYPERPARAMETERS

The hyperparameters used for the DDQN results are given by Table 1. The network architecture was
the same as in the original Deepmind Atari paper (Mnih et al., 2015).

Table 1: Hyperparameters used for DDQN and AG-DDQN results

Hyperparameter Value
Batch size 32

Replay buffer size 1,000,000
Discount rate 0.99

Steps per learning update 4
Learning iterations per round 1

Learning rate 0.0005
Optimizer Adam

Weight Initialiser He
Min Epsilon 0.1

Epsilon decay steps 1,000,000
Fixed network update frequency 10000

Loss Huber
Clip rewards Clip to [-1, +1]

Initial random steps 25,000

The architecture and hyperparameters used for the AG-DDQN results that are relevant to DDQN are
the same as for DDQN and then the rest of the hyperparameters are given by Table 2.

Table 2: Hyperparameters used for AG-DDQN results

Hyperparameter Value Description

Evaluation episodes 5
The number of no explo-
ration episodes we use to in-
fer the action grammar

Replay buffer type Action balanced The type of replay buffer we
use

Steps before inferring grammar 75,001
The number of steps we run
before inferring the action
grammar

Abandon ship 1.0
The threshold for the aban-
don ship algorithm

Macro-action exploration bonus 4.0
How much more likely we
are to pick a macro-action
than a primitive action when
acting randomly
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C AG-SAC HYPERPARAMETERS

The hyperparameters used for the discrete SAC results are given by Table 3. The network architec-
ture for both the actor and the critic was the same as in the original Deepmind Atari paper (Mnih
et al., 2015).

Table 3: Hyperparameters used for SAC and AG-SAC results

Hyperparameter Value
Batch size 64

Replay buffer size 1,000,000
Discount rate 0.99

Steps per learning update 4
Learning iterations per round 1

Learning rate 0.0003
Optimizer Adam

Weight Initialiser He
Fixed network update frequency 8000

Loss Mean squared error
Clip rewards Clip to [-1, +1]

Initial random steps 20,000

The architecture and hyperparameters used for the AG-SAC results that are relevant to SAC are the
same as for SAC and then the rest of the hyperparameters are given by Table 4.

Table 4: Hyperparameters used for AG-SAC results

Hyperparameter Value Description

Evaluation episodes 5
The number of no explo-
ration episodes we use to in-
fer the action grammar

Replay buffer type Action balanced The type of replay buffer we
use

Steps before inferring grammar 30,001
The number of steps we run
before inferring the action
grammar

Abandon ship 2.0
The threshold for the aban-
don ship algorithm

Macro-action exploration bonus 4.0
How much more likely we
are to pick a macro-action
than a primitive action when
acting randomly

Post inference random steps 5,000
The number of random steps
we run immediately after
updating the action set with
new macro-actions
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D SAC, AG-SAC AND RAINBOW ATARI RESULTS

Below we provide all SAC, AG-SAC and Rainbow results after running 100,000 iterations for 5
random seeds. We see that AG-SAC improves over SAC in 19 out of 20 games (median improvement
of 96%, maximum improvement of 3756%) and that AG-SAC improves over Rainbow in 17 out of
20 games (median improvement 62%, maximum improvement 13140%).

Table 5: SAC, AG-SAC and Rainbow results on 20 Atari games. The mean result of 5 random seeds is shown
with the standard deviation in brackets. As a benchmark we also provide a column indicating the score an agent
would get if it acted purely randomly.

Game Random Rainbow SAC AG-SAC
Enduro 0.0 0.53 0.8

(0.8)
30.1
(10.1)

Amidar 11.8 20.8 7.9
(5.1)

56.7
(15.4)

UpNDown 488.4 1346.3 250.7
(176.5)

1739.1
(835.8)

Road Runner 0.0 524.1 305.3
(557.4)

1868.7
(1658.3)

Frostbite 74.0 140.1 59.4
(16.3)

252.3
(79.8)

Freeway 0.0 0.1 4.4
(9.9)

13.2
(12.1)

Kangaroo 42.0 38.7 29.3
(55.1)

69.3
(80.4)

Pong -20.4 -19.5 −20.98
(0.0)

−20.95
(0.1)

Breakout 0.9 3.3 0.7
(0.5)

1.5
(1.4)

Crazy Climber 7339.5 12558.3 3668.7
(600.8)

7510.0
(3898.7)

Space Invaders 148.0 135.1 160.8
(17.3)

301.0
(75.1)

Asterix 248.8 285.7 272.0
(33.3)

459.0
(104.2)

Alien 184.8 290.6 216.9
(43.0)

349.7
(33.4)

Assault 233.7 300.3 350.0
(40.0)

490.6
(119.0)

Qbert 166.1 235.6 280.5
(124.9)

359.7
(172.8)

BattleZone 2895.0 3363.5 4386.7
(1163.0)

5486.7
(1461.7)

Seaquest 61.1 206.3 211.6
(59.1)

261.9
(56.3)

Beam Rider 372.1 365.6 432.1
(44.0)

463.0
(219.1)

MsPacman 235.2 364.3 690.9
(141.8)

712.9
(194.5)

JamesBond 29.2 61.7 68.3
(26.2)

66.3
(19.4)

Note that the scores for Pong are negative and so to calculate the proportional improvement for this
game we first convert the scores to their increment over the minimum possible score. In Pong the
minimum score is -21.0 and so we first add 21 to all scores before calculating relative performance.

Also note that for Pong both AG-SAC and SAC perform worse than random. The improvement of
AG-SAC over SAC for Pong therefore could be considered a somewhat spurious result and poten-
tially should be ignored. Note that there are no other games where AG-SAC performs worse than
random though and so this issue is contained to the game Pong.
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E MACRO-ACTIONS AND ABANDON SHIP

Table 6: The lengths of moves attempted and executed in the best performing AG-SAC seed for each game.
Executed move lengths being shorter than attempted move lengths indicates that the Abandon Ship technique
was used. The games are ordered in terms of the percentage improvement AG-SAC saw over SAC with the first
game being the game that saw the most improvement.

Game Attempted Move Lengths Executed Move Lengths Executed / Attempted
Enduro 14.8 12.0 81.1%
Amidar 3.4 2.8 82.4%

UpNDown 16.4 11.6 71.0%
Road Runner 8.2 6.8 82.9%

Frostbite 2.0 2.0 100.0%
Freeway 15.8 15.2 96.2%

Kangaroo 2.1 1.5 73.8%
Breakout 7.9 2.2 27.8%

Crazy Climber 7.1 4.4 62.0%
Space Invaders 8.7 6.3 72.4%

Asterix 58.3 9.8 16.8%
Alien 13.1 11.6 88.5%

Assault 126.9 8.1 6.4%
Qbert 8.2 8.0 97.6%

Battle Zone 63.4 6.0 9.5%
Seaquest 14.0 8.6 61.4%

Beam Rider 12.2 5.8 47.5%
MsPacman 8.2 7.5 91.5%

Pong 8.4 6.5 77.4%
James Bond 1.3 1.2 97.8%
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