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ABSTRACT

Learned joint representations of images and text form the backbone of several im-
portant cross-domain tasks such as image captioning. Prior work mostly maps
both domains into a common latent representation in a purely supervised fash-
ion. This is rather restrictive, however, as the two domains follow distinct gen-
erative processes. Therefore, we propose a novel semi-supervised framework,
which models shared information between domains and domain-specific informa-
tion separately. The information shared between the domains is aligned with an
invertible neural network. Our model integrates normalising flow-based priors for
the domain-specific information, which allows us to learn diverse many-to-many
mappings between the two domains. We demonstrate the effectiveness of our
model on diverse tasks, including image captioning and text-to-image synthesis.

1 INTRODUCTION

Figure 1. Joint multimodal latent representation of images and
texts of our LNFMM model for diverse many-to-many mappings.

Joint image-text representations find
application in cross-domain tasks
such as image-conditioned text gen-
eration (captioning; Mao et al.,
2015; Karpathy & Fei-Fei, 2017; Xu
et al., 2018) and text-conditioned im-
age synthesis (Reed et al., 2016). Yet,
image and text distributions follow
different generative processes mak-
ing joint generative modeling of the
two distributions challenging.

Current state-of-the-art models for
learning joint image-text distributions encode the distributions in a common shared latent space
in a fully supervised setup (Wang et al., 2019; Gu et al., 2018). While such approaches can model
supervised information in the shared latent space, they do not preserve domain-specific information.
However, as the domains under consideration, e.g. images and texts, follow different generative pro-
cesses, many-to-many mappings naturally emerge – there are many likely captions for a given image
and vice versa. Therefore, it is crucial to also encode domain-specific variations in the latent space
to enable many-to-many mappings.

State-of-the-art models for cross-domain synthesis leverage conditional variational autoencoders
(VAEs, cVAEs; Kingma & Welling, 2014) or generative adversarial networks (GANs; Goodfellow
et al., 2014) for learning conditional distributions. However, such generative models (e.g., Wang
et al., 2017; Aneja et al., 2019) enforce a Gaussian prior in the latent space. Gaussian priors can
result in strong regularization or posterior collapse as they impose strong constraints while model-
ing complex distributions in the latent space (Tomczak & Welling, 2018). This severely limits the
accuracy and diversity of the cross-domain generative model.

Recents works (Ziegler & Rush, 2019; Bhattacharyya et al., 2019) have found normalizing flows
(Dinh et al., 2015) advantageous for modeling complex distributions in the latent space. Normaliz-
ing flows can capture a high degree of multimodality in the latent space through a series of trans-
formations from a simple distribution to a complex data dependent prior. Ziegler & Rush (2019)
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apply normalizing flow-based priors in the latent space of unconditional variational autoencoders
for discrete distributions and character-level modeling.

We propose to leverage normalizing flows to overcome the limitations of existing cross-domain
generative models in capturing heterogeneous distributions and introduce a novel semi-supervised
Latent Normalizing Flows for Many-to-Many Mappings (LNFMM) framework. We exploit normal-
izing flows (Dinh et al., 2015) to model complex joint distributions in the latent space of our model
(Fig. 1). Moreover, since the domains under consideration, e.g. images and texts, have different gen-
erative processes, the latent representation for each distribution is modeled such that it contains both
shared cross-domain information as well as domain-specific information. The latent dimensions
constrained by supervised information model the common (semantic) information across images
and texts. The diversity within the image and text distributions, e.g. different visual or textual styles,
are encoded in the residual latent dimensions, thus preserving domain-specific variation. We can
thus synthesize diverse samples from a distribution given a reference point in the other domain in a
many-to-many setup. We show the benefits of our learnt many-to-many latent spaces for real-world
image captioning and text-to-image synthesis tasks on the COCO dataset (Lin et al., 2014). Our
model outperforms the current state of the art for image captioning w.r.t. the Bleu and CIDEr met-
rics for accuracy as well as various diversity metrics. Additionally, we also show improvements in
diversity metrics over the state of the art in text-to-image generation.

2 RELATED WORK

Diverse image captioning. Recent work on image captioning introduces stochastic behaviour in
captioning and thus encourages diversity by mapping an image to many captions. Vijayakumar et al.
(2018) sample captions from a very high-dimensional space based on word-to-word Hamming dis-
tance and parts-of-speech information, respectively. To overcome the limitation of sampling from
a high-dimensional space, Shetty et al. (2017); Dai et al. (2017); Li et al. (2018) build on Gener-
ative Adverserial Networks (GANs) and modify the training objective of the generator, matching
generating captions to human captions. While GAN-based models can generate diverse captions
by sampling from a noise distribution, they suffer on accuracy due to the inability of the model to
capture the true underlying distribution. Wang et al. (2017); Aneja et al. (2019) therefore leverage
conditional Variational Autoencoders (cVAEs) to learn latent representations conditioned on images
based on supervised information and sequential latent spaces, respectively, to improve accuracy and
diversity. Without supervision, cVAEs with conditional Gaussian priors suffer from posterior col-
lapse. This results in a strong trade-off between accuracy and diversity; e.g. Aneja et al. (2019)
learn sequential latent spaces with a Gaussian prior to improve diversity, but suffer on perceptual
metrics. Moreover, sampling captions based only on supervised information limits the diversity in
the captions. In this work we show that by learning complex multimodal priors, we can model text
distributions efficiently in the latent space without specific supervised clustering information and
generate captions that are more diverse and accurate.

Diverse text-to-image synthesis. State-of-the-art methods for text-to-image synthesis are based on
conditional GANs (Reed et al., 2016). Much of the research for text-conditioned image generation
has focused on generating high-resolution images similar to the ground truth. Zhang et al. (2017;
2019b) introduce a series of generators in different stages for high-resolution images. AttnGAN (Xu
et al., 2018) and MirrorGAN (Qiao et al., 2019) aim at synthesizing fine-grained image features by
attending to different words in the text description. Dash et al. (2017) condition image generation
on class information in addition to texts. Yin et al. (2019) use a Siamese architecture to generate
images with similar high-level semantics but different low-level semantics based on different cap-
tions. In this work, we instead focus on generating diverse images for a given text with powerful
latent semantic spaces, unlike GANs with Gaussian priors, which fail to capture the true underlying
distributions and result in mode collapse.

Normalizing flows & Variational Autoencoders. Normalizing flows (NF) are a class of density
estimation methods that allow exact inference by transforming a complex distribution to a sim-
ple distribution using the change-of-variables rule. Dinh et al. (2015) develop flow-based genera-
tive models with affine transformations to make the computation of the Jacobian efficient. Recent
works (Dinh et al., 2017; Kingma & Dhariwal, 2018; Ardizzone et al., 2019; Behrmann et al., 2019)
extend flow-based generative models to multi-scale architectures to model complex dependencies
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across dimensions. Vanilla Variational Autoencoders (VAEs; Kingma & Welling, 2014) consider
simple Gaussian priors in the latent space. Simple priors can provide very strong constraints, re-
sulting in poor latent representations (Hoffman & Johnson). Recent work has, therefore, considered
modeling complex priors in VAEs. Particularly, Wang et al. (2017); Tomczak & Welling (2018)
propose mixtures of Gaussians with predefined clusters and Chen et al. (2017) use neural autore-
gressive model-based priors in the latent space, which improves results for image synthesis. Ziegler
& Rush (2019) learn a prior based on normalizing flows to model multimodal discrete distributions
of character-level texts in the latent spaces with nonlinear flow layers. However, this invertible layer
is difficult to be optimized in both directions. Bhattacharyya et al. (2019) learn conditional priors
based on normalizing flows to model conditional distributions in the latent space of cVAEs. In this
work, we learn a conditional prior using normalizing flows in the latent space of our variational
inference-based model, which can capture joint complex distributions in the latent space, particu-
larly of images and texts for diverse cross-domain many-to-many mappings.

3 METHOD

To learn joint distributions p(xv, xt) of images and texts that follow different generative processes,
pv(xv) and pt(xt), respectively in a semi-supervised setting, we formulate a novel joint genera-
tive model based on variational inference: Latent Normalizing Flows for Many-to-Many Mappings
(LNFMM). Our model defines a joint probability distribution model over the data {xv, xt} and latent
variables z with a parametric distribution pµ(xv, xt, z) = pµ(xv, xt|z)p(z). We maximize the likeli-
hood of pµ(xv, xt) using a variational posterior qθ(z|xv, xt) parameterized by variables θ. As we are
interested in jointly modelling distributions with different generative processes, e.g. images and text,
the choice of the latent distribution is crucial. Mapping to a shared latent distribution can be very
restrictive (Xu et al., 2018). We begin with a discussion of our variational posterior qθ(z|xv, xt) and
its the factorization in our LNFMM model, followed by our normalizing flow-based priors, which
enable qθ(z|xv, xt) to be complex and mutimodal, allowing for diverse many-to-many mappings.

Factorizing the latent posterior. We choose a novel factorized posterior distribution with both
shared and domain-specific components. The shared component zs is learned with supervision and
encodes information common to both domains. The domain-specific components encode informa-
tion that is unique to each domain, thus preserving the heterogeneous structure of the data in the
latent space. Specifically, consider zv and zt as the latent variables to model image and text distribu-
tions. Further, denote by zs the latent variable for supervised learning, which encodes information
shared between the data points xv and xt. Given this supervised information, the residual infor-
mation specific to each distribution is encoded in z′t and z′v . This leads to the factorization of the
variational posterior of our LNFMM model with zv = [zs z

′
v] and zt = [zs z

′
t],

log qθ(z
′
t, zs, z

′
v|xt, xv) = log qθ1(zs|xt, xv) + log qθ2(z

′
t|xt, zs) + log qθ3(z

′
v|xv, zs). (1)

Next, we discuss the training of our LNFMM model in detail. Since directly maximizing the log-
likelihood of pµ(xv, xt) with the variational posterior is intractable, we derive the log-evidence
lower bound for learning the posterior distributions of the latent variables z = {zs, z′v, z′t}.

3.1 DERIVING THE LOG-EVIDENCE LOWER BOUND

Maximizing the marginal likelihood pµ (xt, xv) given a set of observation points {xt, xv} is gen-
erally intractable. Therefore, we develop a variational inference framework that minimizes a vari-
ational lower bound on the data log-likelihood – the log-evidence lower bound (ELBO) with the
proposed factorization in Eq. (1),

log pµ(xt, xv) ≥ Eqθ(z|xt,xv) [log p(xt, xv|z)] + Eqθ(z|xt,xv) [log pφ(z)− log qθ(z|xt, xv)] , (2)

where z = {zs, z′v, z′t} are the latent variables. The first expectation term is the reconstruction
error. The second expectation term minimises the KL-divergence between the variational posterior
qθ(z|xt, xv) and a prior pφ(z). Taking into account the factorization in Eq. (1), we now derive the
ELBO for our LNFMM model. We can rewrite the data log-likelihood term as

Eqθ(zs,z′v,z′t|xt,xv)
[
log pµ(xt|zs, z′v, z′t) + log p(xv|zs, z′v, z′t)

]
. (3)

3



Under review as a conference paper at ICLR 2020

This assumes conditional independence given the domain-specific latent dimensions z′v, z
′
t and the

shared latent dimensions zs. Thus, the reconstruction term can be further simplified as
Eqθ1 (zs|xt,xv)qθ2 (z′t|xt,zs)

[
log pµ(xt|zs, z′t)

]
+ Eqθ1 (zs|xt,xv)qθ3 (z′v|xv,zs)

[
log pµ(xv|zs, z′v)

]
. (4)

Next, we simplify the K- divergence term on the right of Eq. (2). We use the chain rule along with
Eq. (1),
DKL(qθ(zs, z

′
v, z
′
t|xt, xv) || pφ(zs, z′v, z′t)) = DKL(qθ2(z

′
t|xt, zs) || pφt(z′t|zs))+

DKL(qθ3(z
′
v|xv, zs) || pφs(z′v|zs)) +DKL(qθ1(zs|xt, xv) || p(zs)).

(5)

This assumes a factorized prior of the form p(zs, z
′
v, z
′
t) = p(z′t|zs)p(z′v|zs)p(zs), consistent with

our conditional independence assumptions, given that information specific to each distribution is
encoded in {z′t, z′v}. The final ELBO can be expressed as
log pµ(xt, xv) ≥ Eqθ1 (zs|xt,xv)qθ2 (z′t|xt,zs)

[
log pµ(xt|zs, z′t)

]
+Eqθ1 (zs|xt,xv)qθ3 (z′v|xv,zs)

[
log pµ(xv|zs, z′v)

]
−DKL(qθ2(z

′
t|xt, zs) || p(z′t|zs))

−DKL(qθ3(z
′
v|xv, zs) || p(z′v|zs))−DKL(qθ1(zs|xt, xv) || p(zs)).

(6)

In the standard VAE formulation (Kingma & Welling, 2014), the conditional priors p(z′t|zs) and
p(z′v|zs) are modeled as standard normal distributions. However, Gaussian priors limit the expres-
siveness of the model in the latent space since they result in strong constraints on the posterior
(Tomczak & Welling, 2018; Razavi et al., 2019; Ziegler & Rush, 2019). Specifically, optimizing
with Gaussian prior pushes the posterior distribution towards the mean, limiting diversity and hence
generative power (Tomczak & Welling, 2018). This is especially true for complex multimodal image
and text distributions. Furthermore, alternatives like Gaussian mixture model-based priors (Wang
et al., 2017) also suffer from similar drawbacks and additionally depend on predefined heuristics
like the number of modes in the mixture model. Analogously, the VampPrior (Tomczak & Welling,
2018) depends on a predefined number of pseudo inputs to learn the prior in the latent space. Similar
to Ziegler & Rush (2019); Bhattacharyya et al. (2019), which learn priors based on exact inference
models, we propose to learn the conditional priors p(z′t|zs) and p(z′v|zs) jointly with the variational
posterior in Eq. (1) using normalizing flows.

3.2 VARIATIONAL INFERENCE WITH NORMALIZING FLOW BASED PRIORS

Normalizing flows are exact inference models, which can map simple distributions to complex den-
sities through a series of K invertible mappings,

fφ = f1φ ◦ f2φ ◦ · · · ◦ fKφ .
This allows us to transform a simple base density ε ∼ p(ε) to a complex multimodal conditional prior
pφt(z

′
t|zs) (and correspondingly to pφv (z

′
v|zs)). The likelihood of latent variables under the base

density can be easily obtained using the change-of-variables formula. A composition of invertible
mappings f , parameterized by parameters φt, is learnt such that ε = f−1φt (z). The log-likelihood
with Jacobian Ji = ∂fiφt/∂fi−1

φt
can be expressed as

log p(ε) = log p
(
f−1φt (z

′
t|zs)

)
+ log

∣∣det ∂z∂ε ∣∣
= log p

(
f−1φt (z

′
t|zs)

)
+

K∑
i=1

log |det Ji| .
(7)

Using data-dependent and non-volume preserving transformations, multimodal priors can be jointly
learnt in the latent space, allowing for more complex posteriors and better solutions of the evidence
lower bound. Using Eqs. (2) and (7), the ELBO with normalizing flow-based priors can be expressed
by rewriting the KL divergence terms in Eq. (6) as

DKL(qθ2(z
′
t|xt, zs) || p(z′t|zs)) =Eqθ2 (z′t|xt,zs)

[
log p

(
f−1φt (z

′
t|zs)

)
+

K∑
i=1

log |det Ji|

]
− Eqθ2 (z′t|xt,zs)

[
log qθ2(z

′
t|xt, zs)

]
.

(8)

Next, we describe our complete model for learning joint distributions with latent normalizing flows
using Eqs. (6) and (8), which enables many-to-many mappings between domains.

4



Under review as a conference paper at ICLR 2020

3.3 LATENT NORMALIZING FLOW MODEL FOR MANY TO MANY MAPPINGS

We illustrate our complete model in Fig. 2. It consists of two domain-specific encoders to
learn the domain-specific latent posterior distributions qθ2(z

′
t|xt, zs) and qθ3(z

′
v|xt, zs). As

the shared latent variable zs encodes information common to both domains, it holds that
qθ1(zs|xt, xv) = qθ1(zs|xt) = qθ1(zs|xv) for a matching pair of data points (xt, xv).

fϕs

K 
flow 

layers

Image 
 Encoder

Image 
Decoder

p(ϵ)

fϕt

Kt 
flow 

layers p(ϵ)

fϕv

Kv 
flow 
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Figure 2. Our LNFMM Architecture

Therefore, each encoder must be able to model the
common supervised information independently for every
matching pair (xt, xv). We enforce this by splitting the
output dimensions of each encoder into zv = [zs z

′
v] and

zt = [zs z
′
t], respectively, and constraining the supervised

latent dimensions to encode the same information.

We propose to learn the posterior distribution
qφ1

(zs|xv, xt) as the shared latent space between
two domain-specific autoencoders that learn priors. One
simple method to induce sharing is by minimising the
mean-squared error between the encodings. However,
this is not ideal given that xt and xv follow different
highly multimodal generative processes. We, therefore,
learn an invertible mapping fφs : Rd′ → Rd′ with
invertible neural networks such that the d′ dimensional
latent code zs can be transformed between the domains v
and t. Let zv with d ≥ d′ be the encoded latent variable
for distribution pv(xv). A bijective mapping fφs : (zv)d′ 7→ (zt)d′ is learnt with an invertible
mapping using Eq. (7) as

log qθ1(zs|xt, xv) = log qθ1((zt)d′ |xt, xv) = log qθ1 (fφs(zv)d′) +
∑
i

log |det(Jφs)i| . (9)

Here, fφs is an invertible neural network with affine coupling layers (Dinh et al., 2015), making it
easy to compute Jacobians (JφS )i formulated as triangular matrices.

The number of unsupervised dimensions can be different for the two domains, depending on the
complexity of each distribution. Note that by conditioning on the supervised dimensions, we min-
imize the redundancy in the unsupervised dimensions without disentangling the dimensions. The
multimodal prior in qθ2(z

′
t|zs, xt) and qθ3(z

′
v|zs, xv) is modeled with non-volume preserving nor-

malizing flow models (Dinh et al., 2015), parameterized by φt and φv respectively. With the factor-
ization as in Eq. (1) and the formulation of the learnt latent priors in Eq. (8), the overall objective of
our semi-supervised generative model framework is given by
L(xt,xv,θ,φs,φv,φt) = λ1DKL(qθ2(z

′
t|xt, zs) || p(z′t|zs)) + λ2DKL(qθ3(z

′
v|xv, zs) || p(z′v|zs))

− λ3
∑
i

log |det(Jφs)i|+ ‖fφs((zv)d′)− (zt)d′‖2 + λ4‖xt − x′t‖2 + λ5‖xv − x′v‖2. (10)

Here, x′t and x′v are decoded text and image samples, respectively. λi, i = {1, . . . , 5} are regular-
ization parameters.

Our model allows for bidirectional many-to-many mappings. In detail, given a data point xv from
the image domain with latent encoding zv , we first map it to the text domain through the invertible
transformation zs = fφs((zv)d′). We can now generate diverse texts by sampling from the learnt
latent prior pφt(z

′
t|zs). A similar procedure is followed for sampling images given text through the

learnt prior pφv (z
′
v|zs). For conditional generation tasks, as we do not have to sample from the

supervised latent space, we find a “uniform” prior p(zs) to be advantageous in practice as it loosens
the constrains on the decoders. Although a more complex flow based prior can also be used here
to enable sampling. We now show the effectiveness of our joint semi-supervised latent normalizing
flow-based priors on real-world tasks, diverse image captioning and text-to-image synthesis.

4 EXPERIMENTS

To validate our method for learning many-to-many mappings to provide latent joint distributions,
one of the important real-world tasks is that of image-to-text or text-to-image synthesis. To that end,
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Method B-4 B-3 B-2 B-1 C R M S

CVAE (baseline) 0.309 0.376 0.527 0.696 0.950 0.538 0.252 0.176
Div-BS (Vijayakumar et al., 2018) 0.402 0.555 0.698 0.846 1.448 0.666 0.372 0.290
POS (Deshpande et al., 2019) 0.550 0.672 0.787 0.909 1.661 0.725 0.409 0.311
AG-CVAE (Wang et al., 2017) 0.557 0.654 0.767 0.883 1.517 0.690 0.345 0.277
Seq-CVAE (Aneja et al., 2019) 0.575 0.691 0.803 0.922 1.695 0.733 0.410 0.320

LNFMM-MSE (pre-trained) 0.606 0.686 0.798 0.915 1.682 0.723 0.400 0.306
LNFMM (pre-trained) 0.600 0.695 0.804 0.917 1.697 0.729 0.400 0.311
LNFMM 0.597 0.695 0.802 0.920 1.705 0.729 0.402 0.316

Table 1. Oracle performance for captioning on the COCO dataset with different metrics

Method B-4 B-3 B-2 B-1 C R M S

Div-BS (Vijayakumar et al., 2018) 0.325 0.430 0.569 0.734 1.034 0.538 0.255 0.187
POS (Deshpande et al., 2019) 0.316 0.425 0.569 0.739 1.045 0.532 0.255 0.188
AG-CVAE (Wang et al., 2017) 0.311 0.417 0.559 0.732 1.001 0.528 0.245 0.179

LNFMM 0.318 0.433 0.582 0.747 1.055 0.538 0.247 0.188

LNFMM-TXT (semi-supervised, 30% labeled) 0.276 0.384 0.529 0.706 0.973 0.511 0.241 0.171
LNFMM (semi-supervised, 30% labeled) 0.300 0.413 0.559 0.729 0.984 0.538 0.242 0.172

Table 2. Consensus re-ranking for captioning on the COCO dataset using CIDEr

Method Unique ↑ Novel ↑ mBLEU ↓ Div-1 ↑ Div-2 ↑

Div-BS 100 3421 0.82 0.20 0.25
POS 91.5 3446 0.67 0.23 0.33
AG-CVAE 47.4 3069 0.70 0.23 0.32
Seq-CVAE 84.2 4215 0.64 0.33 0.48

LNFMM 97.0 4741 0.60 0.37 0.51

Table 3. Diversity evaluation on at most the best-5 sentences after
consensus re-ranking

Method B-1 B-4 CIDEr

M3D-GAN 0.652 0.238 -
GXN 0.571 0.149 0.611

LNFMM 0.747 0.315 1.055

Table 4. Comparison to the state of the
art for bidirectional generation

we perform experiments on the COCO dataset (Lin et al., 2014). It contains 82,783 training and
40,504 validation images, each with five captions. Following Wang et al. (2016); Mao et al. (2015)
for image captioning, we use 118,287 data points for training and evaluate on 1,000 test images. For
text-to-image synthesis, the training set contains 82,783 images and 40,504 validation data points
are included at test time (Reed et al., 2016; Huang et al., 2017). The details of the architecture can
be found in the Appendix.

4.1 IMAGE CAPTIONING

We evaluate our approach against methods that generate diverse captions for a given image. We
compare against AG-CVAE (Wang et al., 2016) and Seq-CVAE (Aneja et al., 2019) based on (condi-
tional) variational autoencoders. We also include Div-BS (Vijayakumar et al., 2018) based on beam
search and POS (Aneja et al., 2018), which uses additional supervision from images. Additionally,
we include different ablations to show the effectiveness of various components of our approach.
LNFMM-MSE does not contain the flow fφs . We fix the image encodings of a VGG-16 encoder
in LNFMM (pre-trained) for comparison to the image captioning methods with input pre-trained
image features. LNFMM-TXT contains unsupervised dimensions only for the text distribution and
all encoded image features are used for supervision, i.e.without fφv .

Evaluation. We evaluate the accuracy with Bleu (B) 1-4 (Papineni et al., 2002), CIDEr (C) (Vedan-
tam et al., 2015), ROUGE (R) (Lin, 2004), METEOR (M) (Denkowski & Lavie, 2014), and SPICE
(S) (Anderson et al., 2016). For evaluating diversity, we consider the metrics of Wang et al. (2017);
Aneja et al. (2019). Uniqueness is the percentage of unique captions generated on the test set. Novel
sentences are the captions that were never observed in the training data. m-Bleu-4 computes Bleu-4
for each diverse caption with respect to remaining diverse captions per image. The Bleu-4 obtained
is averaged across all images. Div-n is the ratio of distinct n-grams to the total number of words
generated per set of diverse captions.
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Image Caption Image Caption

• Two elephants standing next
to each other in a river.

• A herd of elephants in a
grassy area of water.

• Two elephants walking
through a river while stand-
ing in the water.

• Two elephants are walking
and baby in the water.

• A group of elephants walk-
ing around a watering hole.

• A living room filled with fur-
niture and a large window.

• A room with a couch and a
large wooden table.

• A living room filled area with
furniture and a couch and
chair.

• A room with a couch , chair ,
and a lamp.

• This is a room with furniture
on the floor.

Table 5. Example captions generated by our model

Results. In Table 1 we show the caption evaluation metrics in the oracle setting, i.e. taking the
maximum score for each accuracy metric over all the candidate captions. We consider 100 samples
z, consistent with previous methods. The cVAE baseline with an image-conditioned Gaussian prior
does not perform well on all metrics, showing the inability of the Gaussian prior to model meaningful
latent spaces representative of the multimodal nature the underlying data distribution. The overall
trend across metrics is that our LNFMM model improves the upper bound on Bleu and CIDEr while
being comparable on the Rouge and Spice metrics.

Comparing the accuracy of baseline LNFMM-MSE with LNFMM, we can conclude that learning
the shared posterior distribution of zs with our invertible mapping is better than directly minimizing
the mean squared error in the latent space due to differences in the complexity of the distributions.
Also note that LNFMM (pre-trained) with fixed image encoded representations has better perfor-
mance compared to AG-CVAE and Seq-CVAE, in particular. This highlights that the LNFMM
learns representations in the latent space that are representative of the underlying data distribution.

Table 2 considers a more realistic setting (as groudtruth captions are not always available) where, in-
stead of comparing against the reference captions of the test set, reference captions for images from
the training set most similar to the test image are retrieved. The generated captions are then ranked
with the CIDEr score (Mao et al., 2015). While Div-BS has very good accuracy across metrics due
to the wide search space, our LNFMM model gives state-of-the-art accuracy on various Bleu metrics
and especially the CIDEr score, which is known to correlate well with human evaluations. More in-
terestingly, compared to AG-CVAE with conditional Gaussian mixture priors based on object (class)
information, our LNFMM model, which does not encode any additional supervised information in
the latent space, outperforms the former on all accuracy metrics by a large margin. Moreover, the
recent GXN (Gu et al., 2018) and M3DGAN (Ma et al., 2019) also study bi-directional synthesis
with joint models in Gaussian latent spaces. Ma et al. (2019) additionally model attention in the la-
tent space. From Table 4, we see that our method considerably outperforms the competing methods,
validating the importance of complex priors in the latent space for image-text distributions. This
again highlights that the complex joint distribution of images and texts captured by our LNFMM
model is more representative of the groudtruth data distribution. We additionally experiment with
limited labelled training data. We compare LMFMM against LNFMM-TXT to show the importance
of joint learning of image and text generative models. With a generative model only for texts, the
joint distribution cannot be captured effectively in the latent space.

With diversity being an important goal of our model, we show in Table 3 that our LNFMM method
improves diversity across all metrics, with a 6.5% improvement in unique captions generated in the
test set and 4741/5000 captions not previously seen in the training set. Our generated captions for
a given image also show more diversity with low mutual overlap (mBLEU) compared to the state
of the art. Our generated captions also show high n-gram diversity for generated captions of each
image. Div-BS with high accuracy has limited diversity as it can repeat the n-grams in different
captions. The POS and AG-CVAE approaches, due to guided supervision in the latent space, offer
diversity but model only syntactic or semantic diversity, respectively (Wang & Chan, 2019). Cap-
tions generated by our LNFMM model in Table 5 show a range of diverse captions with different
semantics and syntactic structure. Therefore, we can conclude that the proposed LNFMM model
can effectively model semantically meaningful joint latent representations without any additional
object or text-guided supervision signal. The data-dependent learnt priors are therefore promising
for synthesizing captions with high human correlated accuracy as well as diversity.
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Text Sample #1 Sample #2 Sample #3 Sample #4

A close up of
a pizza with

toppings

A baseball
player

swinging a
bat during a

game

Figure 3. Example images generated by our LNFMM model high-
lighting diversity

Groundtruth AttnGAN Our LNFMM

Figure 4. Text conditioned samples clos-
est test image with IoVM by AttnGAN
and our LNFMM.

4.2 TEXT TO IMAGE SYNTHESIS

Given a text description, we are now interested in generating diverse images representative of the
domain-specific structure of images. To that end we include a discriminator on our image decoder
to improve image quality. Note that this does not affect the joint latent space of the LNFMM model.
We evaluate our method against state-of-the-art approaches such as AttnGAN (Xu et al., 2018), HD-
GAN (Zhang et al., 2018b), StackGAN (Zhang et al., 2017), and GAN-INT-CLS (Reed et al., 2016).
While the main goal of our approach is to encourage text-conditioned diversity in the generated
samples, the current state-of-the-art for text-to-image generation aims at improving the realism of
the generated images. Note that various GAN models can be integrated with the image decoder of
our framework as desired.

Evaluation. As we are interested in modeling diversity, we study the diversity in generated images
using the Inference via Optimization (IvOM) (Srivastava et al., 2017) and LPIPS (Zhang et al.,
2018a) metrics against the state-of-the-art AttnGAN. Given the text, for each matching image, IvOM
finds the closet image the model is capable of generating. Thus, it shows whether the model can
match the diversity of the groundtruth distribution. LPIPS (Zhang et al., 2018a) evaluates diversity
by computing pairwise perceptual similarities using a deep neural network. Additionally, we also
report the Inception score (Salimans et al., 2016).

Method IS ↑ IvOM ↓ LPIPS ↑

AttnGAN 25.89±0.47 1.101 0.472
GAN-INT-CLS 7.88± 0.07 - -
Stack-GAN 8.45±0.03 - -
HD-GAN 11.86±0.18 - -

LNFMM 12.10±0.18 0.430 0.481

Table 6. Evaluation on text-to-image synthesis

Results. In Table 6, our method improves over At-
tnGAN for both IvOM and LPIPS scores, showing
that our method can effectively model the image se-
mantics conditioned on the texts in the latent space,
as well as generate diverse images for a given cap-
tion. Note that AttnGAN uses extra supervision to
improve the inception score. However, it is unclear
if this improves the visual quality of the generated
images as pointed out by Zhang et al. (2018b). We
improve the IS over HD-GAN which does not use additional supervision. Qualitative examples in
Fig. 3 shows that our LNFMM model generates diverse images, e.g., close-up images of food items
as well as different orientations of the baseball player in the field. In Fig. 4 we additionally see
that given a caption, images generated by our LNFMM model capture detailed semantics of the test
images compared to that of AttnGAN, showing the representative power of our latent space.

5 CONCLUSION

We present a novel and effective semi-supervised LNFMM framework for diverse bidirectional
many-to-many mappings with learnt priors in the latent space in order to model joint image-text
distributions. Particularly, we model domain-specific information conditioned on the shared infor-
mation between the two domains with normalizing flows, thus preserving the heterogeneous struc-
ture of the data in the latent space. Our extensive experiments with bi-directional synthesis show
that our latent space can effectively model data-dependent priors, which enable highly accurate and
diverse generated samples of images or texts.
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Figure 5. Inference model of our approach in comparison to conditional variational autoencoder of AG-CVAE
(Wang et al. (2017)). AG-CVAE models only supervised information in the latent dimensions. Our model
encodes domain-specific variations in the conditional priors z′v and z′t.

A APPENDIX

A.1 NETWORK ARCHITECTURE

We provide the details of the network architecture of Fig. 2.

Image Pipeline. The network consists of an image encoder built upon VGG-16. 4096 dimensional
activations of input images are extracted from the fully connected layer of VGG-16. This is followed
by a 2048 dimensional fully connected layer with ReLU activations. We then project it to the latent
space with a 1056 dimensional fully connected layer. The image pipeline has zs = 992 and z′v = 64.
In image decoder, we leverage the architecture of Zhang et al. (2019a) to synthesize images of
64× 64 or 256× 256 dimensions. The input to the decoder has dimensionality 1056. For the image
generation experiments, we additionally apply the discriminator of Zhang et al. (2019b) to the output
of the image decoder.

Text Pipeline. We use a bidirectional GRU with two layers and a hidden size of 1024 as text
encoder. This outputs 1024 dimensional latent representations for sentences. For text, z′t = 32. The
text decoder is a LSTM with one layer and hidden size of 512.

Flow modules. Our network consists for two flow modules for conditional priors on image and text
domains and an invertible neural network to exchange supervised information. Invertible Neural
Network for Supervision (fφs ): It consists of 12 flow layers and input dimension of 992. Each flow
consists of conditional affine coupling layers followed by a switch layer (Dinh et al., 2017).

Latent Flow for Conditional Prior on Image Distribution (fφv ): We map the 64 dimensions of the
image encodings from the image encoder to a Gaussian with normalizing flows with 16 layers of
flow and 512 hidden channels. Each flow consists of conditional affine coupling layers followed by
a switch layer (Dinh et al., 2017).

Latent Flow for Conditonal Prior on Text Distribution (fφt ): We map the 32 dimensions of the text
encodings from the image encoder to a Gaussian with normalizing flows with 16 layers of flow and
1024 hidden channels. Each flow consists of a conditional activation normalization layer followed
by conditional affine coupling layers. Invertible 1 × 1 convolutions are applied to the output of the
affine coupling layers, which is followed by a switch layer (Kingma & Dhariwal, 2018).

A.2 DIVERSITY IN IMAGE CAPTIONING

We show more qualitative examples of the captions generated by our LNFMM model in Table 7.
The example captions show syntactic as well as semantic diversity.

A.3 TEXT-TO-IMAGE SYNTHESIS

We additionally show diverse images generated by our LNFMM model in Fig. 6. Our generated
images can successfully capture the text semantics and also xhibit image specific diversity e.g.,
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Image Caption Image Caption

• A woman holding an um-
brella while standing in the
rain.

• A woman is holding um-
brella on the street

• A woman walking a street
with a umbrella in the rain.

• A woman is holding an um-
brella while walking in the
rain

• A woman walking down a
street while holding an um-
brella

• A woman standing in front of
a refrigerator

• Two people standing to-
gether in a large kitchen

• Two people are standing in a
kitchen counter.

• A family is preparing food in
a kitchen.

• A few people standing in the
kitchen at a table.

• A man is holding a tennis
racket on the tennis court.

• A tennis player about to hit a
tennis ball

• A man is playing tennis with
a racket on the tennis court.

• A man standing on a tennis
court is holding a racket

• A man prepares to hit a ball
with tennis racket.

• A large clock tower is in the
middle of a building.

• A tall building with a clock
tower in front of a building.
A clock tower in the sky with
a clock on top.

• A tall building with a clock
on top.

• A tall clock tower with a
clock tower on it.

Table 7. Example captions generated by our LNFMM model.

Text Sample #1 Sample #2 Sample #3 Sample #4

A person is
surfing in the

ocean.

A skier is
skiing down a
snow slope.

A elephant is
shown

walking on the
grass.

Figure 6. Example images generated by our LNFMM model high-
lighting diversity.

Groundtruth LNFMM (Ours)

Figure 7. Text conditioned samples
closet to test image with IoVM by our
LNFMM.

in style and orientation of objects. Furthermore, to show that the latent space captures the joint
distribution, we show the images generated by our model with IOVM by finding a zv conditioned
on input text that is most likely to have generated the test image. We show the images generated for
the z most likely to have generated the image. Our generated samples in Fig. 7 capture the details in
the images showing that our LNFMM model learns powerful latent representations.
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