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ABSTRACT

Deep networks face challenges of ensuring their robustness against inputs that
cannot be effectively represented by information learned from training data. We
attribute this vulnerability to the limitations inherent to activation-based repre-
sentation. To complement the learned information from activation-based repre-
sentation, we propose utilizing a gradient-based representation that explicitly fo-
cuses on missing information. In addition, we propose a directional constraint
on the gradients as an objective during training to improve the characterization
of missing information. To validate the effectiveness of the proposed approach,
we compare the anomaly detection performance of gradient-based and activation-
based representations. We show that the gradient-based representation outper-
forms the activation-based representation by 0.093 in CIFAR-10 and 0.361 in
CURE-TSR datasets in terms of AUROC averaged over all classes. Also, we
propose an anomaly detection algorithm that uses the gradient-based representa-
tion, denoted as GradCon, and validate its performance on three benchmarking
datasets. The proposed method outperforms the majority of the state-of-the-art
algorithms in CIFAR-10, MNIST, and fMNIST datasets with an average AUROC
of 0.664, 0.973, and 0.934, respectively.

1 INTRODUCTION

The generalizable representation of data from deep network has largely contributed to the success of
deep learning in diverse applications (Bengio et al., 2013). The representation from deep networks is
often obtained in the form of activation. The activation is constructed by the weights which contain
specific knowledge learned from training samples. Recent studies reveal that deep networks still face
robustness issues when input that cannot be properly represented by learned knowledge is given to
the networks (Goodfellow et al., 2014; Hendrycks & Dietterich, 2018; Liang et al., 2017). One of the
reasons for the vulnerability of deep networks is the limitation in the activation-based representation,
which inherently focused on the learned knowledge. However, the part of the input that causes
problems in deep networks is mainly from the information that deep networks were not able to learn
from the training data. Therefore, it is more appropriate to complement the representation of input
data from the perspective of information that has not been learned for enhancing the robustness of
machine learning algorithms.

The gradient is another fundamental element in deep networks that is utilized to learn new informa-
tion from given inputs by updating model weights (Goodfellow et al., 2016). It is generated through
backpropagation to train deep networks by minimizing designed loss functions (Rumelhart et al.,
1986). During the training of network, the gradient with respect to the weights provides directional
information to update the deep network and learn a better representation for the inputs. In other
words, gradients guide the network to learn new information that was not learned from data that it
has seen so far but is presented in the current input. Considering this role during training, gradi-
ents can provide a complementary perspective with respect to activation and characterize missing
information that the network has not learned for each unseen image.

We demonstrate the role of gradients with an example in Fig. 1. Assume that a deep network has
only learned curved edge features from training images of the digit ‘0’. During testing, the digit
‘6’ is given to the network. The digit ‘6’ consists of both learned information (curved edges) and
missing information (straight edges on top). Since the activation-based representation is constructed
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based on the information that the network has already learned, the curved part of the digit ‘6’ will
be characterized effectively by the activation. However, the network still has to learn the straight
edge features to perform successfully on the digit ‘6’. Therefore, the gradients which guide updates
in the deep network can characterize straight edge information that has not been learned.
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Figure 1: Gradient-based representation for characterizing
information that has not been learned for the deep network.

We propose analyzing the representa-
tion capability of gradients in charac-
terizing missing information for deep
networks. Gradients have been uti-
lized in diverse applications such as
adversarial attack generation and vi-
sualization (Zeiler & Fergus, 2014;
Goodfellow et al., 2014). How-
ever, using gradients with respect to
weight as the representation of data
has not been actively explored yet.
Through the comprehensive analy-
sis with activation-based representa-
tions, we show the effectiveness of
gradient representation in characterizing the information that has not been learned for deep net-
work. Furthermore, we show that gradient representation can achieve state-of-the-art performance
in detecting potentially invalid data for the network. The main contributions of this paper are three
folds:

i We propose utilizing gradients as a representation to characterize information that has not been
learned from the training data but is currently presented in the input data.

ii We analyze the representation capability of gradient compared to activation for detecting sam-
ples which possess features that have not been learned for the network.

iii We propose a gradient-based anomaly detection algorithm that outperforms state-of-the-art al-
gorithms based on activation representations.

2 RELATED WORKS

Existing works have focused on achieving reliable activation-based representations to properly han-
dle inputs that can cause significant performance degradation to deep networks. One of the most
intuitive ways is to enhance the representation capability of activation by finetuning trained models
and learning more from augmented data. Goodfellow et al. (2014); Vasiljevic et al. (2016); Temel
et al. (2017) utilize adversarial images, blurred images, and distorted virtual images, respectively, to
finetune networks to improve the classification performance based on the activation features. Also,
several pre-processing techniques have been developed to make the representation of data similar
to that of training data to achieve the robustness of algorithms. Discrete cosine transform (DCT)
has been explored as a simple pre-processing technique to eliminate the effect of distortion and ad-
versarial attacks (Hossain et al., 2018; Das et al., 2018). On the other hand, methods developed
for detecting and filtering out problematic samples have focused on making the representation of
such samples as distinguishable as possible from that of training images in the activation space.
Liang et al. (2017) propose a gradient-based pre-processing technique to make the activation-based
representation of adversarial images and out-of-distribution images dissimilar to that of training im-
ages. Furthermore, constrained activation representations have been actively utilized to make normal
and abnormal images statistically separable in the activation space for abnormal data detection (Pid-
horskyi et al., 2018; Perera et al., 2019; Abati et al., 2018). Aforementioned works exclusively focus
on activation-based representations which are based on learned information to handle the informa-
tion that has not been learned. We complement these by proposing backpropagated gradients-based
representation of data which particularly focuses on what has not been learned in the trained net-
work.

The backpropagated gradients have been utilized in diverse applications including but not limited
to visualization, adversarial attacks, and image classification. The backpropagated gradients have
been widely used for the visualization of deep networks. In Zeiler & Fergus (2014); Springenberg
et al. (2014), information that networks have learned for a specific target class is mapped back
to the pixel space through the backpropagation and visualized. Selvaraju et al. (2017) utilize the
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(a) General scheme of autoencoder. (b) Geometric interpretation of gradients.

Figure 2: Geometric visualization for weight gradients from test images.

gradient with respect to activation to weight the activation and visualize the reasoning for prediction
that deep networks have made. Adversarial attack is another application of gradients. Goodfellow
et al. (2014); Kurakin et al. (2016) show that adversarial attacks can be generated by adding an
imperceptibly small vector which is the signum of input gradients. In Kwon et al. (2019), the
backpropagated gradients are utilized to classify and objectively estimate the quality of distorted
images. Several works have incorporated gradients with respect to input in the form of regularization
during the training of deep networks to improve the robustness (Drucker & Le Cun, 1991; Ross &
Doshi-Velez, 2018; Sokolić et al., 2017). Although existing works have shown that gradients with
respect to input or activation can be useful for diverse applications, gradients with respect to weight
remain almost unexplored aside from its role in training deep networks. In the following section, we
demonstrate the interpretation of weight gradients to further elaborate the role of weight gradients
as data representation.

3 GEOMETRIC INTERPRETATION OF GRADIENTS

We use an autoencoder which is an unsupervised representation learning framework to explain the
geometric interpretation of gradients. An autoencoder consists of an encoder, fθ, and a decoder, gφ
as shown in Fig. 2 (a). From an input image, x, the latent variable, z, is generated as z = fθ(x) and
the reconstructed image is obtained by feeding the latent variable into the decoder, gφ(fθ(x)). The
training is performed by minimizing the loss function, J(x; θ, φ), defined as follows:

J(x; θ, φ) = L(x, gφ(fθ(x))) + Ω(z; θ, φ), (1)

where L is a reconstruction error which measures the dissimilarity between the input and the recon-
structed image and Ω is a regularization term for the latent variable.

We visualize the geometric interpretation of backpropagated gradients in Fig. 2 (b). The autoencoder
is trained to accurately reconstruct training images and the reconstructed training images form a
manifold. We assume that the structure of the manifold is a linear plane which is spanned by the
weights of the encoder and the decoder as shown in the figure for the simplicity of explanation. Also,
we explains the generalization of this concept in the following section. During test time, any given
input to the autoencoder is projected onto the reconstructed image manifold through the projection,
gφ(fθ(·)). The closer test images are to the reconstructed image manifold, the more accurately
reconstructed they are. Let us assume that test data distribution is outside of the reconstructed
image manifold. When the test image, xout, sampled from the test data distribution is given to the
autoencoder, it will be reconstructed as x̂out by the projection, gφ(fθ(xout)). Since test images
from the test data distribution have not been utilized for training, they will be poorly reconstructed.
Given that the reconstructed image manifold contains data reconstructed by learned knowledge, the
orthogonal gap between xout and x̂out measures the missing knowledge that the autoencoder has
not learned and cannot reconstruct. Using the error defined in (1), the gradient of weights, ∂J∂θ ,

∂J
∂φ ,

can be calculated through the backpropagation. These gradients represent required changes in the
reconstructed image manifold to incorporate the test images and reconstruct them accurately. In
other words, these gradients characterize orthogonal variations of the test distribution with respect
to the reconstructed image manifold, which is missing information in the trained networks.

The gradients complement activation-based representation in characterizing missing information. In
this setup of the autoencoder, missing information is characterized by the reconstruction error using
activation. It provides distance information between test images and reconstructed images and is
utilized as a primal loss to generate gradients. However, it does not provide any directional informa-
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Figure 3: Analysis on the discriminant capability of gradients for learned and missing information.

tion about the deviation of test data distribution. The gradients focus on the directional information
to characterize information that has not be learned. Considering that weights contain learned knowl-
edge from training samples, the weight gradients indicate the directional changes required to obtain
new knowledge with respect to current knowledge of networks. Therefore, the gradients can provide
a comprehensive perspective to represent missing knowledge in trained networks by complementing
distance information from activation-based representations with the directional information.

4 GENERALIZATION OF THE GEOMETRIC INTERPRETATION FOR GRADIENTS

The gradients require a discriminant capability in high dimensional space to be an effective repre-
sentation for missing information in practical scenarios of deep networks. As a representation for
the information that has not been learned, the representation is expected to clearly differentiate in-
formation that has been learned and has not been learned from the input. Therefore, gradients from
images with learned information should be distinguishable in terms of direction from those gener-
ated by images with new information. For instance, the gradient generated from xout in Fig. 2 is
orthogonal to the reconstructed image manifold. However, test images with learned information do
not result in high reconstruction errors and do not require significant changes in the reconstructed
image manifold. In this case, gradients from these test images will be more tangential to the mani-
fold and distinguishable from the gradient of xout. This separation between gradients from learned
and not learned information is required to effectively characterize what is missing and not in deep
networks.

In addition, gradients from the learned information should be constrained to make the direction of
gradients for missing information more distinctive. In Fig. 2, the reconstructed image manifold is
a two dimensional plane in three dimensional space. The gradients generated by test images with
learned information are tangential to the manifold and constrained to the two dimensional space.
These constrained gradients for test images with learned information allow gradients from xout to
be more distinctive and characterize missing information in the network.

We design two experiments to analyze the separation between gradients from learned and miss-
ing information in the deep network. We train a convolutional autoencoder (CAE) which consists
of 4-layer encoder and decoder, respectively. We use training images from Airplane class in
CIFAR-10 dataset (Krizhevsky & Hinton, 2009) to train the CAE. A test set contains 1000 im-
ages from Airplane class and the same number of images randomly sampled from all other 9
classes in test split. The test Airplane class images contain learned knowledge and images from
other classes contain information that has not been learned. In the first experiment, we extract the
backpropagated gradients for all test images and measure the average alignment of gradients using
cosine similarity (cosSIM). In Fig. 3 (a), we visualize the distribution of the average cosine sim-
ilarity calculated between the gradient from each Airplane class image and that from all other
remaining Airplane class images (Learned), and between each Airplane class image and test
images from all other classes (Missing). We calculate the average cosine similarity over all 4 layers
in decoder. Ideally for gradients to be an effective representation, cosine similarity between images
with learned information should be clearly separable to that calculated between images with learned
and missing information. We also calculated the number of samples in the overlapped region of
histograms. A large overlapped region (793 samples out of 1000 samples) between cosine similarity
from ‘Learned’ and ’Missing’ indicates that gradients in general cannot be distinguishable in high
dimensional space. However, with our proposed method which will be described in the following
section, the number of overlapped samples significantly decreases from 793 to 296 as shown in
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Model Loss Plane Car Bird Cat Deer Dog Frog Horse Ship Truck Average
CAE Recon 0.689 0.356 0.639 0.592 0.676 0.621 0.504 0.499 0.716 0.390 0.568

CAE
+ Grad

Recon 0.659 0.356 0.640 0.555 0.695 0.554 0.549 0.478 0.695 0.357 0.554
Grad 0.752 0.619 0.622 0.580 0.705 0.591 0.683 0.576 0.774 0.709 0.661

VAE Recon 0.553 0.608 0.437 0.546 0.393 0.531 0.489 0.515 0.552 0.631 0.526
Latent 0.634 0.442 0.640 0.497 0.743 0.515 0.745 0.527 0.674 0.416 0.583

VAE
+ Grad

Recon 0.556 0.606 0.438 0.548 0.392 0.543 0.496 0.518 0.552 0.631 0.528
Latent 0.586 0.396 0.618 0.476 0.719 0.474 0.698 0.537 0.586 0.413 0.550
Grad 0.736 0.625 0.591 0.596 0.707 0.570 0.740 0.543 0.738 0.629 0.647

Table 1: Anomaly detection results based on activations and gradients in CIFAR-10.

Fig. 3 (b). In addition, gradients become more aligned for learned information by achieving high
cosine similarity and become orthogonal for missing information. This shows that gradients become
more separable for learned and missing information with the proposed approach.

In the second experiment, we analyze the constraint on gradients by measuring the alignment of
them generated while the training of CAE. We train the same architecture of the CAE described in
the first experiment using Airplane class images. To measure the alignment of training gradients,
we calculate the cosine similarity between the gradients of a certain layer i at the k th iteration of
training, ∂L

∂Wi

k
, and the average of training gradients of layer i obtained until the k − 1 th iteration,

∂L
∂Wi

k−1
avg

, defined as follows:

cosSIM

(
∂L
∂Wi

k−1

avg

,
∂L
∂Wi

k
)

where
∂L
∂Wi

k−1

avg

=
1

(k − 1)

k−1∑
t=1

∂L
∂Wi

t

, (2)

W is the weight of autoencoder, i is the layer index, and superscripts are used to indicate the iteration
number. We visualize the progress of the cosine similarity while training over 1000 epochs in Fig. 3
(c). We particularly focus on the cosine similarity in the 4 layers of decoder. To enhance the
distinction between gradients from learned information and missing information, training gradients
are expected to be constrained and aligned at the end of training by achieving high cosine similarity.
However, we observe that the cosine similarity converges to 0 at the end of training. This indicates
that even when most of information in training images is learned, the gradients is orthogonal to the
average training gradients and remain unconstrained. On the other hand, we show our proposed
method effectively constrains the gradients while training and obtain around 0.55 ∼ 0.85 cosine
similarity in Fig. 3 (d). This constraint leads to the clear separability observed in Fig. 3 (b). In
following section, we explain the details of our proposed method.

5 DIRECTIONAL CONSTRAINT FOR GRADIENTS

We propose a directional constraint that enables gradients to characterize missing information in
deep networks. In particular, we use the cosine similarity as a measure of the gradient alignment
and constrain the direction of gradients in the form of regularization term in a loss function. At k th
iteration of training, the entire loss function is defined as follows:

J(x;W ) = L (x;W )− αE
i

[
cosSIM

(
∂L
∂Wi

k−1

avg

,
∂L
∂Wi

k
)]

, (3)

where L (x;W ) is the primal loss for a given task and α is the weight for the gradient constraint,
which is the average of cosine similarity calculated for each layer. We apply this constraint on a
subset of all layers. Also, we set sufficiently small α value to ensure that gradients actively explore
the optimal weights until the primal loss becomes small enough. During the training, L (x;W )

is first calculated from the forward propagation. Through the backpropagation, ∂L
∂Wi

k
is obtained

without updating the weights. Based on the obtained gradient, the entire loss J is calculated and
finally the weights are updated using backpropagated gradients from the loss J .

We apply this gradient constraint to the autoencoders to evaluate its performance in characterizing
information that has not been learned. We only constrain the gradients from 4 layers in decoder and
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Figure 4: Anomaly detection results based on activations and gradients in CURE-TSR.
encoder layers remain unconstrained. In the setup of autoencoder, the loss can be defined as,

J(x; θ, φ) = L(x, gφ(fθ(x))) + Ω(z; θ, φ)− α E
i∈decoder

[
cosSIM

(
∂L
∂φi

k−1

avg

,
∂L
∂φi

k
)]

. (4)

The first and the second terms are the reconstruction error and the latent loss, respectively, and the
last term is the gradient constraint.

We utilize anomaly detection as a validation framework to both qualitatively and quantitatively eval-
uate the performance of activation-based and gradient-based representations. In machine learning,
the abnormal data is defined as data whose classes or attributes have not been learned during training.
In the anomaly detection framework, images from one class of a dataset is considered as inliers and
used for the training. Images from other classes are considered as outliers and both inliers and out-
liers are given to the network during the test time. The anomaly detection algorithms are expected
to correctly classify both inliers and outliers by effectively distinguishing learned knowledge and
not learned knowledge. Most of existing works for anomaly detection are based on the activation-
based representations. In particular, they utilize reconstruction error or latent loss as measures for
missing information and train probabilistic models on reconstructed image space or latent space to
characterize anomalies (Zong et al., 2018; Pidhorskyi et al., 2018; Abati et al., 2018).

We perform two sets of experiments to thoroughly validate the effectiveness of the gradient-based
representation. In the first experiment, we analyze the capability of activation-based and gradient-
based representations in characterizing missing information. To be specific, we evaluate the anomaly
detection performance of the proposed gradient loss defined by the gradient constraint along with the
reconstruction error and the latent loss to show the potential in each representations for characteriz-
ing missing information. We use an autoencoder with 4-layer encoder and decoder throughout whole
experiments. We train CAEs using mean squared error as the reconstruction error. Also, we train
variational autoencoders (VAEs) using binary cross entropy as the reconstruction error and Kullback
Leibler (KL) divergence as the latent loss (Kingma & Welling, 2013). For the gradient loss, we train
both CAEs and VAEs with the gradient constraint defined as the last term in (4). Finally, we utilize
these losses as abnormality scores and report the anomaly detection performance. In the second ex-
periment, we develop an anomaly detection algorithm using Gradient Constraint (GradCon) which
detects anomalies by using the combination of reconstruction error and gradient loss as an abnor-
mality score. We compare the performance of the proposed method with other benchmarking and
state-of-the-art algorithms and show that GradCon outperforms all compared algorithms at least in
one dataset.

We utilize four benchmarking datasets, which are CIFAR-10 (Krizhevsky & Hinton, 2009) , CURE-
TSR (Temel et al., 2017), MNIST (LeCun et al., 1998), and fashion MNIST (fMNIST) (Xiao et al.,
2017), to evaluate the performance of the proposed algorithm. CIFAR-10 dataset consists of 60,000
color images with 10 classes. CURE-TSR dataset has 637, 560 color traffic sign images which
consist of 14 traffic sign types under 5 levels of 12 different challenging conditions. MNIST dataset
contains 70,000 handwritten digit images from 0 to 9 and fMNIST dataset also has 10 classes of
fashion products and there are 7,000 images per class. For CIFAR-10, CURE-TSR, and MNIST,
we follow the protocol described in Perera et al. (2019) . We utilize the training and testing split
of each dataset to conduct experiments and 10% of training images are held out for validation. For
fMNIST, we follow the protocol described in Pidhorskyi et al. (2018). The dataset is split into 5
folds and 60% of each class is used for training, 20% is used for validation, the remaining 20%
is used for testing. In experiments with CIFAR-10, MNIST, and fMNIST, we use images from
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Plane Car Bird Cat Deer Dog Frog Horse Ship Truck Average
OCSVM 0.630 0.440 0.649 0.487 0.735 0.500 0.725 0.533 0.649 0.508 0.586

KDE 0.658 0.520 0.657 0.497 0.727 0.496 0.758 0.564 0.680 0.540 0.610
DAE 0.411 0.478 0.616 0.562 0.728 0.513 0.688 0.497 0.487 0.378 0.536
VAE 0.634 0.442 0.640 0.497 0.743 0.515 0.745 0.527 0.674 0.416 0.583

PixelCNN 0.788 0.428 0.617 0.574 0.511 0.571 0.422 0.454 0.715 0.426 0.551
GAN 0.708 0.458 0.664 0.510 0.722 0.505 0.707 0.471 0.713 0.458 0.592
AND 0.735 0.580 0.690 0.542 0.761 0.546 0.751 0.535 0.717 0.548 0.641

AnoGAN 0.671 0.547 0.529 0.545 0.651 0.603 0.585 0.625 0.758 0.665 0.618
DSVDD 0.617 0.659 0.508 0.591 0.609 0.657 0.677 0.673 0.759 0.731 0.648
OCGAN 0.757 0.531 0.640 0.620 0.723 0.620 0.723 0.575 0.820 0.554 0.657

GradCon 0.760 0.598 0.648 0.586 0.733 0.603 0.684 0.567 0.784 0.678 0.664

Table 2: Anomaly detection results on CIFAR-10.

0 1 2 3 4 5 6 7 8 9 Average
OCSVM 0.988 0.999 0.902 0.950 0.955 0.968 0.978 0.965 0.853 0.955 0.951

KDE 0.885 0.996 0.710 0.693 0.844 0.776 0.861 0.884 0.669 0.825 0.814
DAE 0.894 0.999 0.792 0.851 0.888 0.819 0.944 0.922 0.740 0.917 0.877
VAE 0.997 0.999 0.936 0.959 0.973 0.964 0.993 0.976 0.923 0.976 0.970

PixelCNN 0.531 0.995 0.476 0.517 0.739 0.542 0.592 0.789 0.340 0.662 0.618
GAN 0.926 0.995 0.805 0.818 0.823 0.803 0.890 0.898 0.817 0.887 0.866
AND 0.993 0.999 0.959 0.966 0.956 0.964 0.994 0.980 0.953 0.981 0.975

AnoGAN 0.966 0.992 0.850 0.887 0.894 0.883 0.947 0.935 0.849 0.924 0.913
DSVDD 0.980 0.997 0.917 0.919 0.949 0.885 0.983 0.946 0.939 0.965 0.948
OCGAN 0.998 0.999 0.942 0.963 0.975 0.980 0.991 0.981 0.939 0.981 0.975

GradCon 0.995 0.999 0.952 0.973 0.969 0.977 0.994 0.979 0.919 0.973 0.973

Table 3: Anomaly detection results on MNIST.

one class as inliers to train the network. During test, inlier images and the same number of oulier
images randomly sampled from other classes are utilized. For CURE-TSR, challenge-free images
are utilized as inliers to train the network. During test, challenge-free images are utilized as inliers
and challenging version of these images are utilized as outliers. All the results are obtained using
area under receiver operation characteristic curve (AUROC) and we also report F1 score in fMNIST
dataset for the fair comparison with the state-of-the-art method (Pidhorskyi et al., 2018).

6 RESULTS

Comparison between activation-based and gradient-based representations We report the
anomaly detection performance based on the gradient loss (Grad) along with reconstruction error
(Recon) and the latent loss (Latent) using CIFAR-10 in Table 1. From this table, we can analyze
three aspects of activation and gradient representations. First, by comparing the performance of
CAE and CAE trained with gradient constraint (CAE + Grad), we analyze the effect of gradient
constraint in characterizing missing information. The gradient constraint leads to a comparable av-
erage AUROC from reconstruction error and achieves the best performance from the gradient loss
with an average AUROC of 0.661. Second, we evaluate the effect of latent constraint by comparing
CAE and VAE. The latent loss achieves improved performance compared to the reconstruction error
of CAE. However, the latent constraint imposed in the VAE sacrifices the average AUROC of recon-
struction error by 0.042. Finally, comparison between VAE and VAE with gradient constraint (VAE
+ Grad) analyzes the effect of the gradient constraint with the activation constraint. The gradient loss
in VAE + Grad achieves the second best performance by marginally sacrificing the average AUROC
of reconstruction error and latent loss. From this experiment, we observe that imposing constraints
on activation can degrade the performance of other activation-based representation in characterizing
missing information. However, since gradients are obtained in parallel with activations, gradient
constraint enables to achieve better performance in anomaly characterization by complementing the
activation-based representations.

We perform anomaly detection in CURE-TSR to highlight the discriminant capability of gradient
representation for diverse challenging conditions and levels. We compare the performance of CAE
and CAE + Grad using the reconstruction error and the gradient loss. The goal of this task is to
successfully detect whether given test image is affected by challenge condition or not. We report
the performance for 8 challenging conditions and 5 levels in Fig. 4. Those challenge conditions are
decolorization, lens blur, dirty lens, exposure, Gaussian blur, rain, snow, and haze as visualized in
Fig. 4. For all challenging conditions and levels, CAE + Grad achieves the best performance. In
particular, except for snow level 1∼3, the gradient loss achieves the best performance and for snow
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level 1∼3, the reconstruction error achieves the best performance. In terms of the average AUROC
over challenge levels, the gradient loss of CAE + Grad outperforms the reconstruction error of
CAE by the largest margin of 0.612 in rain and the smallest margin of 0.089 in snow. Overall, the
gradient representation effectively characterizes challenge information that has not been learned and
outperforms the activation-based representation.

CIFAR-10

MNIST
Overlap=2634

Overlap=8893

Overlap=3710

Overlap=9454

Overlap=2059

Overlap=7648

Reconstruction Error Latent Loss Gradient Loss

Figure 5: Histogram analysis on activation losses and
gradient loss in MNIST and CIFAR-10.

% of outlier 10 20 30 40 50

F1 GPND 0.968 0.945 0.917 0.891 0.864
GradCon 0.967 0.945 0.924 0.905 0.871

AUC GPND 0.928 0.932 0.933 0.933 0.933
GradCon 0.938 0.933 0.935 0.936 0.934

Table 4: Anomaly detection results on fMNIST.

Comparison with the state-of-the-art
methods GradCon is the combination of
the reconstruction error and the gradient
loss from a CAE trained with the gradi-
ent constraint. We train CAEs by setting
α = 0.03 and Ω(z; θ, φ) = 0 in (4).
This loss utilized for training is utilized as
an anomaly score during testing but with
the increased α of 0.12. We compare the
proposed method with other algorithms in-
cluding OCSVM (Schölkopf et al., 2001),
KDE (Bishop, 2006), DAE (Hadsell et al.,
2006), VAE (Kingma & Welling, 2013),
PixelCNN (Van den Oord et al., 2016),
GAN (Schlegl et al., 2017), AND (Abati
et al., 2018), AnoGAN (Schlegl et al.,
2017), DSVDD (Ruff et al., 2018), OC-
GAN (Perera et al., 2019). The AUROC
results on CIFAR-10 and MNIST are re-
ported in Table 2 and Table 3, respec-
tively. GradCon achieves the best average
AUROC performance in CIFAR-10 while
achieving comparable performance to the
best algorithms in MNIST. We note that while other state-of-the-art methods train additional deep
networks on top of latent space or reconstructed image space to detect anomalies, GradCon is solely
based on the gradient loss without training additional networks for anomaly detection. Therefore,
the proposed method is computationally efficient compared to other methods. In Fig. 5, we visualize
the distribution of reconstruction error, latent loss, and gradient loss for inliers and outliers to fur-
ther elaborate the reasoning for state-of-the-art performance of the proposed method. We visualize
each loss for all inliers and outliers from 10 classes in MNIST and CIFAR-10. In CIFAR-10, which
contains color images with more complicated structure than MNIST, activation-based losses fail to
effectively separate inliers and outliers. On the the other hand, the gradient loss still maintains the
separation in CIFAR-10. The gradient loss achieves the least number of samples overlapped in both
MNIST and CIFAR-10, which explains the state-of-the art performance achieved by GradCon in
both datasets. We also evaluate the performance of GradCon in comparison with another state-of-
the-art algorithm denoted as GPND (Pidhorskyi et al., 2018) in fMNIST. In this fMNIST experiment,
we change the ratio of outliers in the test set from 10% to 50% and analyze the performance in terms
of AUROC and F1 scores. The results in fMNIST are reported in Table 4. The proposed method
outperforms GPND in all outlier ratios in terms of AUROC. Except for the 10% of outlier ratio test
set, the proposed method achieves higher F1 scores than GPND.

7 CONCLUSION

We propose a gradient-based representation for characterizing information that deep networks have
not learned. We introduce our geometric interpretation of gradients and generalize it to high di-
mensional scenarios of deep learning through the proposed directional constraint on gradients. We
also thoroughly evaluate the representation capability of gradients compared to that of activations.
We validate the effectiveness of gradients in the context of anomaly detection and show that pro-
posed method based on the gradient representation achieves the state-of-the-art performance in four
benchmarking datasets. The experimental results show that the directional information of gradi-
ents effectively characterizes diverse missing information by complementing distance information
from activations. Also, the gradient-based representation can provide a comprehensive perspective
to handle data that cannot be represented by training data in diverse applications aiming to ensure
the robustness of deep networks.
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