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ABSTRACT

We study the problem of training machine learning models incrementally using
active learning with access to imperfect or noisy oracles. We specifically consider
the setting of batch active learning, in which multiple samples are selected as op-
posed to a single sample as in classical settings so as to reduce the training over-
head. Our approach bridges between uniform randomness and score based impor-
tance sampling of clusters when selecting a batch of new samples. Experiments on
benchmark image classification datasets (MNIST, SVHN, and CIFAR10) shows
improvement over existing active learning strategies. We introduce an extra de-
noising layer to deep networks to make active learning robust to label noises and
show significant improvements.

1 INTRODUCTION

Supervised learning is the most widely used machine learning method, but it requires labelled data
for training. It is time-consuming and labor-intensive to annotate a large dataset for complex super-
vised machine learning models. For example, ImageNet (Russakovsky et al., 2015) reported the time
taken to annotate one object to be roughly 55 seconds. Hence an active learning approach which
selects the most relevant samples for annotation to incrementally train machine learning models is
a very attractive avenue, especially for training deep networks for newer problems that have littel
annotated data.

Classical active learning appends the training dataset with a single sample-label pair at a time. Given
the increasing complexity of machine learning models, it is natural to expand active learning pro-
cedures to append a batch of samples at each iteration instead of just one. Keeping such training
overhead in mind, a few batch active learning procedures have been developed in the literature (Wei
et al., 2015; Sener & Savarese, 2018).

When initializing the model with a very small seed dataset, active learning suffers from the cold-
start problem: at the very beginning of active learning procedures, the model is far from being
accurate and hence the inferred output of the model is incorrect/uncertain. Since active learning
relies on output of the current model to select next samples, a poor initial model leads to uncertain
estimation of selection criteria and selection of wrong samples. Prior art on batch active learning
suffers performance degradation due to this cold-start problem.

Most active learning procedures assume the oracle to be perfect, i.e., it can always annotate samples
correctly. However, in real-world scenarios and given the increasing usage of crowd sourcing, for
example Amazon Mechanical Turk (AMT), for labelling data, most oracles are noisy. The noise
induced by the oracle in many scenarios is resolute. Having multiple annotations on the same sample
cannot guarantee noise-free labels due to the presence of systematic bias in the setup and leads to
consistent mistakes. To validate this point, we ran a crowd annotation experiment on ESC50 dataset
(Piczak, 2015): each sample is annotated by 5 crowdworkers on AMT and the majority vote of
the 5 annotations is considered the label. It turned out for some classes, 10% of the samples are
annotated wrong, even with 5 annotators. Details of the experiment can be found in Appendix A.
Under such noisy oracle scenarios, classical active learning algorithms such as (Chen et al., 2015a)
under-perform as shown in Figure 1. Motivating from these observations, we fashion a batch active
learning strategy to be robust to noisy oracles. The main contributions of this work are as follows: (1)
we propose a batch sample selection method based on importance sampling and clustering which
caters to drawing a batch which is simultaneously diverse and important to the model; (2) we
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Figure 1: Prior active learning methods in MNIST degrades with oracle noise. Noise channel is
assumed to be a 10-symmetric channel, where ε is the probability of label error.

incorporate model uncertainty into the sampling probability to compensate poor estimation of the
importance scores when the training data is too small to build a meaningful model; (3) we introduce
a denoising layer to deep networks to robustify active learning to noisy oracles. Main results, as
shown in Fig. 3 demonstrate that in noise-free scenario, our method performs as the best over the
whole active learning procedure, and in noisy scenario, our method outperforms significantly over
state-of-the-art methods.

2 RELATED WORK

Active Learning: Active learning (Tong, 2001) is a well-studied problem and has gain interest in
deep learning as well. A survey summarizes various existing approaches in (Settles, 2009). In a
nutshell, two key and diverse ways to tackle this problem in the literature are discrimination and
representation. The representation line of work focuses on selecting samples that can represent
the whole unlabelled training set while the discrimination line of work aims at selecting ‘tough’
examples from the pool set, for example, using information theoretic scores in (MacKay, 1992),
entropy as uncertainty in (Wang & Shang, 2014).

A recent work of discrimination-based active learning (Houlsby & Ghahramani, 2011) uses mutual
information, Bayesian Active Learning by Disagreement (BALD), as discriminating criteria. In (Gal
et al., 2017) the authors used dropout approximation to compute the BALD scores for modern Con-
volutional Neural Networks (CNNs). However, these approaches do not consider batch acquisition
and hence lack of diversity in selected batch samples causing performance lag.

Batch Active Learning: Active learning in the batch acquisition manner has been studied from
the perspective of set selection and using submodularity or its variants in a variety of works. The
authors in (Wei et al., 2015) utilize submodularity for naive Bayes and nearest neighbor. The con-
cept of adaptive submodularity is related to active learning as well. The problem solves adaptive
greedy optimization with sequential decision making(Golovin & Krause, 2011). Using this concept,
(Chen & Krause, 2013) considers pool-based Bayesian active learning with a finite set of candidate
hypotheses. A pool-based active learning is also discussed in (Ganti & Gray, 2011) which consid-
ered risk minimization under given hypothesis space. The work in (Wang & Ye, 2013) uses both
discriminative and representative samples to select a batch. Recently, authors in (Sener & Savarese,
2018) use coreset approach to select representative points of the pool set. We compare against this
approach in our experimental results.

Uncertainty: The uncertainty for deep learning models, especially CNNs, was first addressed in
(Gal & Ghahramani, 2016; Gal, 2016) using dropout as Bayesian approximation. Model uncertainty
approximation using Batch Normalization (BN) has been shown in (Teye et al., 2018). Both of these
approaches in some sense exploit the stochastic layers (Dropout, BN) to extract model uncertainty.
The importance of model uncertainty is also emphasized in the work of (Kendall & Gal, 2017). The
work witnesses model as well as label uncertainty which they termed as epistemic and aleatoric
uncertainty, respectively. We also address both of these uncertainties in this work.

Noisy Oracle: The importance of noisy labels from oracle has been realized in the works like
(Golovin et al., 2010; Chen et al., 2015b; Chen & Krause, 2013) which utilized the concept of adap-
tive submodularity for providing theoretical guarantees. (Chen et al., 2017) studies the same prob-
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lem but with correlated noisy tests. Active learning with noisy oracles is also studied in (Naghshvar
et al., 2012; Yan et al., 2016). However, these work do not consider deep learning setup. A binary
classification task with the noisy oracle is considered in (Du & Ling, 2010). The authors in (Khetan
et al., 2018) used a variation of Expectation Maximization algorithm to estimate the correct labels
as well as annotating workers quality.

The closest work to us in the noisy oracle setting for deep learning models are (Jindal et al., 2019;
2016). The authors also propose to augment the model with an extra full-connected dense layer.
However, the denoising layer does not follow any probability simplex constraint, and they use mod-
ified loss function for the noise accountability along with dropout regularization.

3 PROBLEM FORMULATION

In this section, we introduce the notations used throughout the paper. We then formally define the
problem of batch active learning with noisy oracles.

Notations: The ith (jth) row (column) of a matrix X is denoted as Xi,.(X.,j). ∆K−1 is the
probability simplex of dimension K, where ∆K−1 = {(p1, p2, . . . , pK) ∈ RK |∑K

i=1 pi =
1 ∧ pi ≥ 0 ∀i}. For a probability vector p ∈ ∆K−1, the Shannon entropy is defined as:
H(p) = −∑K

i=1 pi log(pi), and for p,q ∈ ∆K−1 the Kullback-Leibler (KL) divergence is de-
fined as KL(p||q) =

∑K
i=1 pi log(pi/qi). The KL-divergence is always non-negative and is 0 if

and only if p = q. The expectation operator is taken as E. We are concerned with a K class clas-
sification problem with a sample space X and label space Y = {1, 2, . . . ,K}. The classification
model M is taken to be gθ : X → Y parameterized with θ. The softmax output of the model is
given by p = softmax(gθ(x)) ∈ ∆K−1. The batch active learning setup starts with a set of labeled
samples Dtr = {(xi, yi)} and unlabeled samples P = {(xj)}. With a query budget of b, we select
a batch of unlabeled samples B as, B = ALG(Dtr,M, b,P), |B| ≤ b, where ALG is the selection
procedure conditioned on the current state of active learning (Dtr,M, b,P). ALG is designed with
the aim of maximizing the prediction accuracy EpX×Y [(hθ(x) = y)]. Henceforth, these samples
which can potentially maximize the prediction accuracy are termed as important samples. After
each acquisition iteration, the training dataset is updated as Dtr = Dtr ∪ {(B, yB)} where yB are
the labels of B from an oracle routine.

The oracle takes an input x ∈ X and outputs the ground truth label y ∈ Y . This is referred to as
‘Ideal Oracle’ and the mapping from x to y is deterministic. A ‘Noisy Oracle’ flips the true output
y to y′ which is what we receive upon querying x. Similar to (Chen et al., 2015a), we assume that
the label flipping is independent of the input x and thus can be characterized by the conditional
probability p(y′ = i|y = j), where i, j ∈ Y . We also refer this conditional distribution as the
noisy-channel, and hence the ideal oracle has noisy channel value of 1 for i = j and 0 otherwise.

For rest of the paper, we use the noise channel as aK-symmetric channel (SC), see Figure 2b, which
is a generalization of the binary symmetric channel. The K-SC is defined as follows

p(y′ = i|y = j) =

{
1− ε, i = j

ε/(K − 1), i 6= j
, (1)

where ε is the probability of a label flip, i.e., p(y′ 6= y) = ε. We resort to the usage ofK-SC because
of its simplicity, and in addition, it abstracts the oracle noise strength with a single parameter ε.
Therefore, in noisy active learning, after the selection of required subset B, the training dataset (and
then the model) is updated as Dtr = Dtr ∪ {(B, y′B)}. Next, in Section 4, we discuss the proposed
solution to noisy batch active learning.

4 METHOD

In this section we develop our algorithm to address batch active learning with access to noisy oracles.

4.1 BATCH ACTIVE LEARNING

An ideal batch selection procedure so as to be employed in an active learning setup, must address
the following issues, (i) select important samples from the available pool for the current model,
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and (ii) select a diverse batch to avoid repetitive samples. We note that, at each step, when active
learning acquires new samples, both of these issues are addressed by using the currently trained
model. However, in the event of an uncertain model, the quantification of diversity and importance
of a batch of samples will also be inaccurate resulting in loss of performance. This is often the case
with active learning because we start with less data in hand and consequently an uncertain model.
Therefore, we identify the next problem in the active learning as (iii) incorporation of the model
uncertainty across active learning iterations.

Batch selection: The construction of batch active learning algorithm by solving the aforementioned
first two problems begins with assignment of an importance score (ρ) to each sample in the pool. A
multitude of score functions exist in the literature which perform sample wise active learning. To list
a few, max-entropy, variation ratios, BALD (Gal et al., 2017), entropy of the predicted class proba-
bilities (Wang & Shang, 2014). We use BALD as an importance score which quantifies the amount
of reduction of uncertainty by incorporating a particular sample for the given model. In principle,
we wish to have high BALD score for a sample to be selected. For the sake of completeness, it is
defined as follows.

I(y;θ|x,Dtr) = H(y|x,Dtr)− Eθ|Dtr
H(y|θ,x), (2)

where H(.) is the Shannon entropy function and θ are the model parameters. We refer the reader to
(Gal et al., 2017) for details regarding the computation of BALD score in (2). To address diversity,
we first perform clustering of the pooled samples and then use importance sampling to select cluster
centroids. For clustering, the distance metric used is the square root of the Jensen-Shannon (JS)
divergence between softmax output of the samples. Formally, for our case, it is defined as d :

∆K−1 ×∆K−1 → [0, 1], where d(p,q) =
√

(KL(p||(p + q)/2) +KL(q||(p + q)/2))/2. With
little abuse of notation, we interchangeably use d(pi,pj) as di,j where i, j are the sample indices
and pi,pj are corresponding softmax outputs. The advantage of using JS-divergence is two folds;
first it captures similarity between probability distributions well, second, unlike KL-divergence it is
always bounded between 0 and 1. The boundedness helps in incorporating uncertainty which we will
discuss shortly. Using the distance metric as d we perform Agglomerative hierarchical clustering
(Rokach & Maimon, 2005) for a given number of clusters N . A cluster centroid is taken as the
median score sample of the cluster members. Finally, with all similar samples clustered together,
we perform importance sampling of the cluster centroids using their importance score, and a random
centroid c is selected as p(c = k) ∝ ρk. The clustering and importance sampling together not only
take care of selecting important samples but also ensure diversity among the selected samples.

Uncertainty Incorporation: The discussion we have so far is crucially dependent on the output of
the model in hand, i.e., importance score as well as the similarity distance. As noted in our third
identified issue with active learning, of model uncertainty, these estimations suffers from inaccuracy
in situations involving less training data or uncertain model. The uncertainty of a model, in very
general terms, represents the model’s confidence of its output. The uncertainty for deep learning
models has been approximated in Bayesian settings using dropout in (Gal & Ghahramani, 2016),
and batch normalization (BN) in (Teye et al., 2018). Both use stochastic layers (dropout, BN) to
undergo multiple forward passes and compute the model’s confidence in the outputs. For example,
confidence could be measured in terms of statistical dispersion of the softmax outputs. In particular,
variance of the softmax outputs, variation ratio of the model output decision, etc, are good candi-
dates. We denote the model uncertainty as σ ∈ [0, 1], such that σ is normalized between 0 and 1
with 0 being complete certainty and 1 for fully uncertain model. For rest of the work, we compute
the uncertainty measure σ as variation ratio of the output of model’s multiple stochastic forward
passes as mentioned in (Gal & Ghahramani, 2016).

In the event of an uncertain model (σ → 1), we randomly select samples from the pool initially.
However, as the model moves towards being more accurate (low σ) by acquiring more labeled sam-
ples through active learning, the selection of samples should be biased towards importance sampling
and clustering. To mathematically model this solution, we use the statistical mechanics approach of
deterministic annealing using the Boltzmann-Gibbs distribution (Rose et al., 1990). In Gibbs distri-
bution p(i) ∝ e−εi/kBT , i.e., probability of a system being in an ith state is high for low energy εi
states and influenced by the temperature T . For example, if T → ∞, then state energy is irrelevant
and all states are equally probable, while if T → 0, then probability of the system being in the lowest
energy state is almost surely 1.
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Algorithm 1 Batch Active Learning

Input: Initial training dataD(0)
tr , pool of unlabeled samplesP , model architectureM(0), uncertainty

inverse function f(.), batch size b, number of AL iterations T
Output: Selected batches B(t), final modelM(T )

1: for t = 1, 2, . . . , T do
2: Assign importance score to each x ∈ P as ρx = I(θ; y|x,D(t−1)

tr ) . Eq.2
3: Perform Agglomerative clustering of the pool samples with N(b) number of clusters using

square root of JS-divergence as distance metric to get D
4: for i = 1, 2, . . . , b do
5: Sample cluster centroid c from the categorical distribution p(c = k) ∝ ρk
6: Compute uncertainty estimate σ(t−1) of the modelM(t−1), and β(t−1) = f(σ(t−1))
7: Sample ζ from the Gibbs distribution p(ζ = s|B(t), c, β(t−1),D) . Eq. 3
8: B(t) ← B(t) ∪ {ζ}
9: end for

10: Query oracle for the labels of B(t) and update D(t)
tr ← D(t−1)

tr ∪ {(B(t), y)}
11: Update model asM(t) using D(t)

tr

12: Set P ← P \ B(t)

13: end for

We translate this into active learning as follows: For a given cluster centroid c, if the model uncer-
tainty is very high (σ → 1) then all points in the pool (including c) should be equally probable to get
selected (or uniform random sampling), and if the model is very certain (σ → 0), then the centroid c
itself should be selected. This is achieved by using the state energy analogue as distance d between
the cluster centroid c and any sample x in the pool, and temperature analogue as uncertainty estimate
σ of the model. The distance metric d used by us is always bounded between 0 and 1 and it provides
nice interpretation for the state energy. Since, in the event of low uncertainty, we wish to perform
importance sampling of cluster centroids, and we have dc,c = 0 (lowest possible value), therefore
by Gibbs distribution, cluster centroid c is selected almost surely.

To construct a batch, the samples have to be drawn from the pool using Gibbs distribution without
replacement. In the event of samples s1, . . . , sn already drawn, the probability of drawing a sam-
ple ζ given the cluster centroid c, distance matrix D = [di,j ] and inverse temperature (or inverse
uncertainty) β is written as

ζ|s1:n, c, β,D ∼ Categorical(
e−β dc,1∑

s′∈P′
e−β dc,s′

,
e−β dc,2∑

s′∈P′
e−β dc,s′

, . . . ,
e−β dc,|P ′|∑

s′∈P′
e−β dc,s′

), (3)

whereP ′ = P\s1:n. In theory, the inverse uncertainty β can be any f such that f : [0, 1]→ R+∪{0}
and f(σ) → ∞ as σ → 0 and f(σ) = 0 for σ = 1. For example, few possible choices for
β (= f(σ)) are − log(σ), e1/σ − 1. Different inverse functions will have different growth rate, and
the choice of functions is dependent on both the model and the data. Next, since we have drawn the
cluster centroid c according to p(c = k) ∝ ρk, the probability of drawing a sample s from the pool
P is written as

p(ζ = s|s1:n, β,D) =

N∑
c=1

ρc∑
c′ ρc′

.
e−β dc,s∑

s′∈P′ e
−β dc,s′

. (4)

We can readily see that upon setting β → 0 in (4), p(ζ = s|s1:n, β,D) reduces to 1/|P ′| which is
nothing but the uniform random distribution in the leftover pool. On setting β →∞, we have ζ = c
with probability ρc/

∑
c′ ρc′ and ζ 6= c with probability 0, i.e., selecting cluster centroids from the

pool with importance sampling. For all other 0 < β < ∞ we have a soft bridge between these
two asymptotic cases. The approach of uncertainty based batch active learning is summarized as
Algorithm 1. Next, we discuss the solution to address noisy oracles in the context of active learning.

4.2 NOISY ORACLE

The noisy oracle, as defined in Section 3, has non-zero probability for outputting a wrong label when
queried with an input sample. To make the model aware of possible noise in the dataset originating
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Algorithm 2 Noisy Oracle Active Learning

Input: Initial training data D(0)
tr , pool of unlabeled samples P , model architectureM(0), batch size

b, number of AL iterations T , active learning Algorithm ALG
Output: Selected batches B(t), final modelM(T )

1: for t = 1, 2, . . . , T do
2: B(t) ← ALG(D(t−1)

tr ,M(t−1), b,P)

3: Query noisy oracle for the labels of B(t) and update D(t)
tr ← D(t−1)

tr ∪ {(B(t), y′)}
4: GetM∗ (t) ←M(t) appended with noisy-channel layer at the end
5: Update noisy model asM∗ (t) using D(t)

tr

6: Detach required modelM(t) fromM∗ (t) by removing the final noisy-channel layer
7: Set P ← P \ B(t)

8: end for

from the noisy oracle, we append a denoising layer to the model. The inputs to this denoising layer
are the softmax outputs p of the original model. Figure 2a demonstrates the proposed solution for
deep learning classification models. The denoising layer is a fully-connectedK×K dense layer with
weights W = [wi,j ] such that its output p′ = Wp. The weights wi,j represent the noisy-channel
transition probabilities such that wi,j = p(y′ = i|y = j). Therefore, to be a valid noisy-channel, W
is constrained as

W ∈ {W |W.,j ∈ ∆K−1, ∀ 1 ≤ j ≤ K}. (5)
While training we use the model upto the denoising layer and train using p′, or label prediction y′
while for validation/testing we use the model output p or label prediction y. The active learning al-
gorithm in the presence of noisy oracle is summarized as Algorithm 2. We now proceed to Section 5
for demonstrating the efficacy of our proposed methods across different datasets.

5 EXPERIMENTS

In this section, we evaluate the performance of the proposed uncertainty based batch active learning
with noisy oracle, and differentiate against the existing works.

5.1 SETUP

We evaluate the algorithms for training CNNs on three datasets pertaining to image classification;
(i) MNIST (Lecun et al., 1998), (ii) CIFAR10 (Krizhevsky, 2009), and (iii) SVHN (Netzer et al.,
2011). We use the CNN architectures from (fchollet, 2015; Gal et al., 2017). For all the architectures
we use Adam (Kingma & Ba, 2014) with a learning rate of 1e − 3. The implementations are done
on PyTorch (Paszke et al., 2017), and we use the Scikit-learn (Pedregosa et al., 2011) package for
Agglomerative clustering.
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(a) MNIST
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Figure 3: Active learning results for various algorithms under different levels of noise strength in
the oracle decision (noise free, ε = 0.1 and 0.3) for MNIST, CIFAR10 and SVHN Image datasets.

For training the denoising layer, we initialize it with the identity matrix IK , i.e., assuming it to
be noiseless. The number of clusters N(b) is taken to be as b5bc. The uncertainty measure σ
is computed as the variation ratio of the output prediction across 100 stochastic forward passes, as
coined in (Gal & Ghahramani, 2016), through the model using a validation set which is fixed apriori.
The inverse uncertainty function β = f(σ) in Algorithm 1 is chosen from l (e1/σ − 1), −l log(σ),
where l is a scaling constant fixed using cross-validation. The cross-validation is performed only for
the noise-free setting, and all other results with different noise magnitude ε follow this choice. This
is done so as to verify the robustness of the choice of parameters against different noise magnitudes
which might not be known apriori.

5.2 RESULTS

We compare our approach with: (i) Random: A batch is selected by drawing samples from the
pool uniform at random without replacement. (ii) BALD: Using model uncertainty and the BALD
score, the authors in (Gal et al., 2017) do active learning with single sample acquisition. We use
the highest b scoring samples to select a batch. (iii) Coreset: The authors in (Sener & Savarese,
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2018) proposed a coreset based approach to select the representative core centroids of the pool set.
We use the 2 − OPT approximation greedy algorithm of the paper with similarity measure as l2
norm between the activations of the penultimate layer. (iv) Entropy: The approach of (Wang &
Shang, 2014) is implemented via selecting b samples with the highest Shannon entropy H(p) of the
softmax outputs p ∈ ∆K−1.

In all our experiments, we start with a small number of images 40− 50 and retrain the model from
scratch after every batch acquisition. In order to make a fair comparison, we provide the same
initial point for all active learning algorithms in an experiment. We perform a total of 20 random
initializations and plot the average performance along with the standard deviation vs number of
acquired samples by the algorithms.

Figure 3 shows that our proposed algorithm outperform all the existing algorithms. As an important
observation, we note that random selection always works better in the initial stages of all experi-
ments. This observation is explained by the fact that all models suffer from inaccurate predictions at
the initial stages. The proposed uncertainty based randomization makes a soft bridge between uni-
form random sampling and score based importance sampling of the cluster centroids. The proposed
approach uses randomness at the initial stages and then learns to switch to weigh the model based
inference scores as the model becomes increasingly certain of its output. Therefore, the proposed
algorithm always envelops the performance of all the other approaches across all three datasets of
MNIST, CIFAR10, and SVHN.

Figure 3 also shows the negative impact of noisy oracle on the active learning performance across
all three datasets. The degradation in the performance worsens with increasing oracle noise strength
ε. We see that doing denoisification by appending noisy-channel layer helps combating the noisy
oracle in Figure 3. The performance of the proposed noisy oracle active learning is significantly
better in all the cases. The prediction accuracy gap between algorithm with/without denoising layer
elevates with increase in the noise strength ε.
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Figure 4: Uncertainty σ across active learning ex-
periment for K-SC (ε = 0.3).

The uncertainty measure σ plays a key role
for the proposed algorithm. We have ob-
served that under strong noise influence from
the oracle, the model’s performance is com-
promised due to spurious training data as we
see in Figure3. This affects the estimation
of the uncertainty measure (variation ratio)
as well. We see in Figure 4 that the model
uncertainty does not drop as expected due to
the label noise. However, the aid provided by
the denoising layer to combat the oracle noise
solves this issue. We observe in Figure 4 that
uncertainty drops at a faster rate as the model
along with the denoising layer gets access to more training data. Hence, the proposed algorithm
along with the denoising layer make better judgment of soft switch between uniform randomness
and importance sampling using (4). The availability of better uncertainty estimates for modern deep
learning architectures is a promising future research, and the current work will also benefit from it.

6 CONCLUSION

In this paper we have proposed a batch sample selection mechanism for active learning with access
to noisy oracles. We use mutual information between model parameters and the predicted class
probabilities as importance score for each sample, and cluster the pool sample space with Jenson-
Shannon distance. We incorporate model uncertainty/confidence into Gibbs distribution over the
clusters and select samples from each cluster with importance sampling. We introduce an additional
layer at the output of deep networks to estimate label noise. Experiments on MNIST, SVHN, and
CIFAR10 show that the proposed method is more robust against noisy labels compared with the state
of the art. Even in noise-free scenarios, our method still performs the best for all three datasets. Our
contributions open avenues for exploring applicability of batch active learning in setups involving
imperfect data acquisition schemes either by construction or because of resource constraints.
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Figure 5: Annotation confusion matrix of 10 classes of ESC50

A ESC50 CROWD LABELING EXPERIMENT

We selected 10 categories of ESC50 and use Amazon Mechanical Turk for annotation. In each
annotation task, the crowd worker is asked to listen to the sound track and pick the class that the
sound belongs to, with confidence level. The crowd worker can also pick “Unsure” if he/she does
not think the sound track clearly belongs to one of the 10 categories. For quality control, we embed
sound tracks that clearly belong to one class (these are called gold standards) into the set of tasks an
annotator will do. If the annotator labels the gold standard sound tracks wrong, then labels from this
annotator will be discarded.

The confusion table of this crowd labeling experiment is shown in Figure 5: each row corresponds to
sound tracks with one ground truth class, and the columns are majority-voted crowd-sourced labels
of the sound tracks. We can see that for some classes, such as frog and helicopter, even with 5 crowd
workers, the majority vote of their annotation still cannot fully agree with the ground truth class.

B MORE EXPERIMENTS

We present rest of the experimental results supplementary to the ones presented in the main body of
Section 5.

B.1 MNIST

The active learning algorithm performance for oracle noise strength of ε = 0.2 and ε = 0.4 are
presented in Figure 6. Similarly to what discussed in Section 5, we observe that the performance of
proposed algorithm dominates all other existing works for ε = 0.2. We witnessed that the proposed
algorithm performance (without denoising layer) is not able to match other algorithms (BALD and
Entropy) when ε = 0.4, even with more training data. The reason for this behavior can be explained
using the uncertainty measure σ output in the Figure 7. We see that under strong noise influence
from the oracle, the model uncertainty doesn’t reduce along the active learning acquisition iterations.
Because of this behavior, the proposed uncertainty based algorithm sticks to put more weightage on
uniform random sampling, even with more training data. However, we see that using denoising
layer, we have better model uncertainty estimates under the influence of noisy oracle. Since the
uncertainty estimates improve, as we see in Figure 7, for ε = 0.4, the proposed algorithm along with
the denoising layer performs very well and has significant improvement in performance as compared
to other approaches.

B.2 CIFAR10

The results for CIFAR10 dataset with oracle noise strength of ε = 0.2 and 0.4 are provided in the
Figure 8. We see that the proposed algorithm without/with using the denoising layer outperforms
other benchmarks.

11



Under review as a conference paper at ICLR 2020

0 200 400 600 800 1000
Number of acquired samples

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

ur
ac

y

K SC, E = 0.2

Random

BALD

Coreset

Entropy

Proposed

Proposed+noise

0 200 400 600 800 1000
Number of acquired samples

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

ur
ac

y

K SC, E = 0.4

Random

BALD

Coreset

Entropy

Proposed

Proposed+noise

Figure 6: Active learning results for various algorithms under oracle noise strength ε = 0.2, 0.4 for
MNIST Image dataset.
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Figure 7: Uncertainty σ across active learning experiment for K-SC (ε = 0.2, 0.4) on MNIST
dataset.

B.3 SVHN

We provide the active learning accuracy results for SVHN dataset with oracle noise strength of ε =
0.2 and 0.4 in the Figure 8. Similar to other results, we see that the proposed algorithm without/with
using the denoising layer outperforms other benchmarks for ε = 0.2. For oracle noise strength
of ε = 0.4, we see a similar trend as MNIST regarding performance compromise to the proposed
uncertainty based batch selection. The reason is again found in the uncertainty estimates plot in
Figure 10 for ε = 0.4. With more mislabeled training examples, the model uncertainty estimate
doesn’t improve with active learning samples acquisition. Hence, the proposed algorithm makes the
judgment of staying close to uniform random sampling. However, unlike MNIST in Figure 7, the
uncertainty estimate is not that poor for SVHN, i.e., it still decays. Therefore, the performance loss
in proposed algorithm is not that significant. While, upon using the denoising layer, the uncertainty
estimates improve significantly, and therefore, the proposed algorithm along with the denoising layer
outperforms other approaches by big margin.
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Figure 8: Active learning results for various algorithms under oracle noise strength ε = 0.2, 0.4 for
CIFAR10 Image dataset.
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Figure 9: Active learning results for various algorithms under oracle noise strength ε = 0.2, 0.4 for
SVHN Image dataset.
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Figure 10: Uncertainty σ across active learning experiment for K-SC (ε = 0.2, 0.4) on SVHN
dataset.
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