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ABSTRACT

We introduce a sparse scattering deep convolutional neural network, which provides a
simple model to analyze properties of deep representation learning for classification. Learn-
ing a single dictionary matrix with a classifier yields a higher classification accuracy than
AlexNet over the ImageNet ILSVRC2012 dataset. The network first applies a scattering
transform which linearizes variabilities due to geometric transformations such as transla-
tions and small deformations. A sparse 1! dictionary coding reduces intra-class variability
while preserving class separation through projections over unions of linear spaces. It
is implemented in a deep convolutional network with a homotopy algorithm having an
exponential convergence. A convergence proof is given in a general framework including
ALISTA. Classification results are analyzed over ImageNet.

1 INTRODUCTION

Deep convolutional networks have spectacular applications to classification and regression (LeCun et al.}
2015)), but they are a black box which are hard to analyze mathematically because of their architecture
complexity. We introduce a simplified convolutional neural network illustrated in Figure I} whose learning
can be reduced to a single dictionary matrix and a classifier. Despite its simplicity, it applies to complex
image classification and reaches a higher accuracy than AlexNet (Krizhevsky et al.| 2012)) over ImageNet
ILSVRC2012. It is a cascade of well understood mathematical operators, and thus provides a simplified
mathematical framework to analyze classification performances.
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Figure 1: A sparse scattering network is composed of a scattering transform .S followed by an optional
linear operator L which reduces its dimensionality. A sparse code approximation of scattering coefficients
is computed in a dictionary D. The dictionary D and the classifier are jointly learned by minimizing the
classification loss with a stochastic gradient descent.

Intra-class variabilities due to geometric image transformations such as translations or small deformations
are linearized by a scattering transform (Bruna & Mallat, 2013)) which is invertible. Scattering transforms
include no learning. They are effective representations to classify relatively simple images such as digits in
MNIST, textures (Bruna & Mallat, |2013)) or small CIFAR images (Oyallon & Mallat, 2014). Learning deep
convolutional networks however gives a much higher accuracy over complex databases such as ImageNet. A
fundamental issue is to understand the source of this improvement. This paper shows that it can be captured
by a sparse 1! code in a dictionary D optimized by supervised learning. It is implemented with a deep
convolutional network architecture. The sparse code eliminates non-informative image components and
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projects each class in unions of linear spaces. The classification accuracy is considerably improved and goes
beyond AlexNet over ImageNet 2012.

Dictionary learning for classification was introduced in |[Mairal et al.| (2009) and implemented with deep
convolutional neural network architectures by several authors (Sulam et al.| 2018;[Mahdizadehaghdam et al.}
2019;Sun et al.| |2018). These algorithms have been applied to simpler image classification problems such as
MNIST or CIFAR but no results were published on large datasets such as ImageNet on which they do not
seem to scale. This is due to their complexity and the need to cascade several sparse codes, which leads to
complex structures. We show that a single dictionary learning is sufficient if applied to scattering coefficients
as opposed to raw data. A major issue is to compute the sparse code with a small network. We introduce
a new architecture based on homotopy continuation, which leads to exponential convergence. It is thus
implemented in a small convolutional network. The ALISTA (Liu et al., 2019)) sparse code is incorporated in
this framework. The main contributions of the paper are summarized below:

e A Sparse Scattering network architecture, illustrated in Figure 1, where the classification is performed
over a sparse code in a learned dictionary of scattering coefficients. It outperforms AlexNet over
ImageNet 2012.

e A new dictionary learning algorithm with homotopy sparse coding, optimized by gradient descent in
a deep convolutional network.

e A proof of exponential convergence of ALISTA (Liu et al.,|2019) in presence of noise.

We explain the implementation and mathematical properties of each element of the sparse scattering network.
Section [2] briefly reviews multiscale scattering transforms. Section [3|introduces homotopy dictionary learning
for classification, with a proof of exponential convergence under appropriate assumptions. Section @ analyzes
image classification results of sparse scattering networks on ImageNet 2012.

2 SCATTERING TRANSFORM

A scattering transform is a cascade of wavelet transforms and ReLLU or modulus non-linearities. It can
be interpreted as a deep convolutional network with predefined wavelet filters (Mallat, [2016)). For images,
wavelet filters are calculated from a mother complex wavelet 1) whose average is zero. It is rotated by r_j,
dilated by 27 and its phase is shifted by a:

$jo(u) =2729%(277r_gu) and ;90 = Real(e™"* ¢ o(u)).
We choose a Morlet wavelet as in|Bruna & Mallat| (2013)) to produce a sparse set of non-negligible wavelet
coefficients. A ReLU is written p(a) = max(a, 0).

Scattering coefficients of order m = 1 are computed by averaging rectified wavelet coefficients with a
subsampling stride of 27:

Sx(u, k,a) = p(x *1j0,a) * ¢J(2Ju) with k = (4,0),
where ¢ ; is a Gaussian dilated by 27 (Bruna & Mallat, 2013).

The averaging by ¢ eliminates the variations of p(z * 1/, 9.,) at scales smaller than 27. This information is

recovered by computing their variations at all scales 27 " < 27, with a second wavelet transform. Scattering
coefficients of order two are:

Sz(u, k, k' a,a") = p(p(@*j0.0) x Vjr 0r.ar) * ¢J(2Ju) with k, k' = (4,0), (5/,0).

To reduce the dimension of scattering vectors, we define phase invariant second order scattering coefficients
with a complex modulus instead of a phase sensitive ReLU:

Sa(u, k, k') = [|x % 0.0 * e 0| % ¢(27w) for j' > j.
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The scattering representation includes order 1 coefficients and order 2 phase invariant coefficients. In this
paper, we choose J = 4 and hence 4 scales 1 < j < J, 8 angles § and 4 phases « on [0, 27]. Scattering
coefficients are computed with the software package Kymatio (Andreux et al, |2018)). They preserve the
image information and x can be recovered from Sz (Oyallon et al.|[2019)). For computational efficiency, the
dimension of scattering vectors can be reduced by a factor 6 with a linear operator L which preserves the
ability to recover a close approximation of = from LS(x). The dimension reduction operator L of Figure|l|is
computed by preserving the principal directions of a PCA calculated on the training image databasis, or is
optimized by gradient descent together with the other network parameters.

The scattering transform is Lipschitz continuous to translations and deformations (Mallat, 2012). Intra-
class variablities due to translations and deformations smaller than 27 are linearized. Good classification
accuracies are obtained with a linear classifier over scattering coefficients in image databases where intra-class
variabilities are dominated by translations and deformations. This is the case for digits in MNIST or texture
images (Bruna & Mallat, 2013). However it does not take into account variabilities of pattern structures and
clutter which dominate complex image databases. To remove this clutter while preserving class separation
requires some form of supervised learning as in deep convolutional networks. When applied to raw image
data, dictionary learning often computes wavelet-like filters as in the first layer of deep neural networks
(Krizhevsky et al., 2012). This is not sufficient to obtain high classification accuracy over complex image
databases. The sparse scattering network of Figure [T]computes a sparse code of scattering representation
B = LS(z), in a dictionary D optimized by minimizing the classification loss. For this purpose, the next
section introduces a homotopy dictionary learning algorithm, implemented in a small convolutional network.

3 HoOMOTOPY DICTIONARY LEARNING FOR CLASSIFICATION

Task-driven dictionary learning for classification with sparse coding was proposed in|Mairal et al.|(2011). We
introduce a small convolutional network architecture to implement a sparse 1* code and learn the dictionary
with a homotopy continuation on thresholds. ALISTA (Liu et al.} [2019) is also shown to be a homotopy
sparse coding whose exponential convergence is proved under more general conditions. Next section reviews
dictionary learning for classification. Homotopy sparse coding algorithms are studied in Section 3.2}

3.1 DICTIONARY LEARNING

Unless specified, all norms are Euclidean norms. A sparse code approximates a vector 3 with a linear
combination of a minimum number of columns D,,, of a dictionary matrix D, which are normalized || D, || =
1. A sparse code is a vector a of minimum support which has a bounded error || Da® — 3|| < o. Such
sparse codes have been used to optimize signal compression and to remove noise, to solve inverse problems
in compressive sensing (Candes et al.l 2006)), and for classification (Mairal et al., 2011).

inimizin e support of a code v amounts to minimizing its norm’ which is not convex. is non-
M th t of d ts t ts 10 « ” which t Th

convex optimization is convexified by replacing the 1° norm by an I* norm |||y = >, |o(m)]. It is solved
by minimizing a convex Lagrangian with a multiplier A, which depends on the error bound || Do — || < o

!
a'(6) :argm;ng\\DOé*ﬂller)\* lledly - S

The sparse code ! (3, D, \.) also depends upon the dictionary D and )., we omit these two last variables in
the equation above for readability. One can prove (Donoho & Elad, 2006) that . has the same support as the
minimum support sparse code o if the support size s and the dictionary coherence satisfy:

su(D) < 1/2 where u(D) = max, |DE Dy 2
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Sparse approximation versus sparse code Sparse coding was first introduced for denoising (Donoho
& Elad, 2006). The sparse approximation Da'(3) is a non-linear filtering which preserves the “‘signal”
components of [ represented by few large amplitude coefficients. It eliminates the “noise” corresponding to
incoherent components of 5 whose correlations with all dictionary vectors D,,, are below A.. It can also be
interpreted as a projection in a union of linear spaces, each of which corresponding to a sparse code support.

For classification, we need to reduce intra-class variabilities and preserve or increase class separability.
Intra-class variabilites may be interpreted as “noise” for the classification whereas image transformations
from one class to another correspond to the “signal” we want to preserve. By defining sparse representations
of training vectors 3; = LS(x;) with different supports for different classes, it projects each class in different
unions of linear spaces, which reduces intra-class variabilites while preserving separation. The dictionary
learning optimizes the choice of D to obtain sparse codes with discriminative supports.

The classification is usually performed from the sparse code ! (3). We will see that a classification applied
on the reconstructed sparse approximation Da'!(/3) has nearly the same accuracy. Indeed, the linear operator
D can preserve separated linear spaces.

Dictionary learning by gradient descent Given a set of inputs and labels {z;,y;}, task-driven dictio-
nary learning minimizes a classification loss £(a*(x;, D, \.), y;, W) that takes as input the sparse code
al(x;, D, \,) of the input x;, the label y; and the classification parameters . Thus, the loss depends upon
the dictionary D, the Lagrange multiplier A, which adjusts the sparsity level, and the classification parameters
W. All these parameters can be jointly optimized by stochastic gradient descent to minimize the loss. This
requires to compute the sparse code o (z;, D, \,) and its derivatives w.r.t D and A, which can be done by
implementing the sparse coding in a deep convolutional network where the sparse code o' is computed in the
forward pass and the derivatives of o' w.r.t D and )\, are computed in the backward pass. For this purpose,
next section introduces a homotopy iterated soft thresholding network architecture.

3.2 HOMOTOPY ITERATED SOFT THRESHOLDING NETWORK

This section introduces an efficient convolutional network architecture to compute sparse codes and learn
dictionaries. Iterative Soft-Thresholding Algorithms (ISTA) (Daubechies et al., 2004}, and FISTA (Beck
& Teboullel 2009) can be implemented with deep neural networks but they require many layers because of
their slow convergence. LISTA algorithm (Gregor & LeCunl 2010) and its more recent version ALISTA (Liu
et al.|[2019) accelerate this convergence by introducing an auxiliary matrix which is adapted to the statistics
of the input and to the properties of the dictionary. For ALISTA, it leads to exponential convergence under
appropriate hypotheses. However, we shall see that this auxiliary matrix prevents from using this approach
to learn a dictionary which minimizes a classification loss with a sparse 1* code. We introduce a dictionary
learning based on a homotopy Iterated Soft Thresholding Continuation (Jiao et al.;2017), which has the same
exponential convergence without an auxiliary matrix. We shall see that ALISTA can also be considered as
a homotopy continuation algorithm. We give a proof of exponential convergence for non-zero Lagrange
multipliers A, in this general framework.

Iterated Soft Thresholding ISTA alternates a gradient step on the quadratic term of the 1* Lagrangian (1)
and a soft-thresholding T (a) = sign(a) max(|a| — A, 0):

1
=T, D'(B—D ith e < ———, 3
ant1 = Tex, (an + €D (B — Day,)) with € D' Dlas 3
where ||. |22 is the spectral norm and oy = 0. The first iteration computes a non-sparse code o; =

Tex, (eDB) = €T\, (D) which is progressively sparsified through iterated thresholdings. After n iterations,
the sparse code o, has an error in O(n_l). FISTA (Beck & Teboulle, [2009) accelerates the error decay to
O(n~?), which remains slow. Each iteration of ISTA and FISTA is computed with linear operators and a soft
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Figure 2: A homotopy iterated soft thresholding network computes an 1' sparse code with exponentially
decreasing thresholds \,, = A\paxy ™" with v = (Amax/ )\*)1/ N,

thresholding and can thus be implemented with one layer in a deep network (Papyan et al.,[2017). However,
the total number N of layers must be large to achieve a small error, and it requires to compute spectral norms
during training, which is slow.

Homotopy Iterated Thresholding and ALISTA Homotopy continuation algorithms introduced in |Os+
borne et al.|(2000), minimize the 1' Lagrangian (1) by progressively decreasing the Lagrange multiplier. This
optimization path is opposite to ISTA and FISTA since it goes from a very sparse initial solution towards a
less sparse but optimal one, similarly to matching pursuit algorithms (Davis et al.,[1997; |Donoho & Tsaig,
2008). Homotopy algorithms are particularly efficient if the final Lagrange multiplier A, is large so that the
optimal solution is very sparse. We shall see that it is the case for classification.

The homotopy Iterative Soft-Thresholding Continuation (ISTC) of Jiao, Jin and Lu (Jiao et al.|2017) algorithm
adjusts the decay rate of an exponentially decreasing sequence of Lagrange multipliers \,, forn < N:

1/N
any1 =T, ., (an + D'(8 — Day,)) with A\, = Apaxy™™ and v = (%) / . )
*

After N iterations, they prove that o has the same support as the optimal sparse code a?, if Ayax > || D? ]| 0o
if the dictionary coherence condition (2) is satisfied, and if  is sufficiently close to 1. Figure[2]illustrates the
implementation of this sparse coding algorithm in a deep network of depth IV, with side connections. For
image classification we use a convolutional translation invariant dictionary, which defines a deep convolutional
network. This convolutional network is used to compute the sparse code of scattering coefficients LS(z) in
Figure [T}

ALISTA can be considered as a generalization of the homotopy ISTC algorithm, which replaces D? by an
auxiliary matrix W?. We shall also study whether this flexibility can improve results. Each column W,,, of
W is normalized by |W}, D,,| = 1. The iteration (4) is thus rewritten

t : —n )\max 1/N
an + W' B — Day,)) with A\, = Apaxy " and v = (T) . 5)

The following theorem extends the convergence result of homotopy ISTC algorithm, by replacing the
coherence of D by the mutual coherence of W and D

Apt1 = T)\n+1 (

i = max |[Wt, D,
m#m/

This theorem also extends the ALISTA exponential convergence result in the general setting where the sparse
code introduces a reconstruction error, which may be interpreted as a noise removal. We will see that this
error can be large for image classification applications because it corresponds to non-informative clutter
removal.

Theorem 3.1. Let ' be the 1° sparse code of 3 with error |3 — DAV || < o. If its support s satisfies
sp<1/2 (6)
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then soft-thresholding iterations (3) with thresholds
_ ||Wt(6 B Dao)”oo

A= Amax Y "> A\ = — with1 < v < (208) " and Apax > |[W'Bllw (1)
1—2vus
define a sparse code a.,, whose support is included in the support of o° and
Han*aOHoo §2)\max77n . (8)

The proof is in Appendix A of the supplementary material. It adapts the convergence proof of ISTC to
the more general ALISTA framework. When W = D, we recover the convergence result of the homotopy
ISTC, and when A\, = 0 we recover the ALISTA exponential convergence result. However, one should
not get too impressed by this exponential convergence rate because the condition sgi < 1/2 only applies to
very sparse codes in highly incoherent dictionaries. ALISTA optimizes ¥ in order to minimize the mutual
coherence i, but it is usually not possible to reach sji < 1/2. It thus restricts the set of possible signals and
dictionaries, as opposed to ISTA and FISTA algorithms whose convergence is guaranteed for any signal and
dictionary. However, the condition sjz < 1/2 is based on a brutal upper bound calculation in the proof, and it
is not necessary for convergence. Next section shows that for image classification over ImageNet, by setting
W = D we learn a dictionary where the homotopy ISTC algorithm converges exponentially although the
theorem hypothesis is not satisfied. By learning simultaneously W and D, we shall see that we can reduce
the classification loss but the resulting algorithm does not converge to a sparse 1 code anymore.

4 IMAGE CLASSIFICATION

The goal of this work is to construct a deep neural network model which is sufficiently simple to be interpreted
mathematically, while reaching a level of accuracy of more complex deep convolutional networks on complex
classification problems. This is why we concentrate on ImageNet as opposed to MNIST or CIFAR. Next
section compares its performance to state of the art deep networks, and analyzes the influence of different
architecture components. Section [4.2]studies the exponential convergence of the homotopy ISTC sparse
coding network in comparison with ISTA, FISTA and a flexible ALISTA.

4.1 IMAGE CLASSIFICATION ON IMAGENET

We show that a sparse dictionary learning on scattering coefficients considerably improves the classification
performance on S(x) and can outperform AlexNet accuracy.

ImageNet ILSVRC2012 is a challenging color image dataset of 1.2 million training images and 50,000
validation images, divided into 1000 classes. Prior to convolutional networks, SIFT representations combined
with Fisher vector encoding reached a Top 5 classification accuracy of 74.3% with multiple model averaging
(Sanchez & Perronnin, [2011). In their PyTorch implementation, the Top 5 accuracy of AlexNet and ResNet-
1521is 79.1% and 94.1% respectively[].

The scattering transform S(z) at a scale 27 = 16 of an ImageNet color image is a spatial array of 14 x 14 of
1539 channels. Applying to S(x) an MLP classifier with 2 hidden layers of size 4096, ReLU and dropout
like in AlexNet gives a 60.7% Top 5 accuracy. Applying to S(x) a 3-layer SLE network of 1x1 convolutions
with ReLU with the same MLP reaches AlexNet performance (Oyallon et al., [2017). However, there is
no mathematical understanding of the operations performed by these three layers, and the origin of the
improvements.

The sparse scattering architecture is described in Figure 3] The convolutional operator L is applied on a
standardized scattering transform and reduces the number of scattering channels from 1539 to 256. The

! Accuracies from https://pytorch.org/docs/master/torchvision/models.htm]
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Figure 3: Two variants of the image classification architecture: ISTC « inputs the sparse code « into the
classifier, ISTC D« inputs the reconstruction D into the classifier.

sparse code is calculated with a 1 x 1 convolutional dictionary D having 2048 vectors. It takes as input an
array LS(z) of 14 x 14 x 256 which has been normalized and outputs a code ! of size 14 x 14 x 2048 or a
sparse approximation Do’ of size 14 x 14 x 256. Either is provided as input to the MLP classifier. The ISTC
network illustrated in Figure[2Jhas N = 12 layers with softshrink non-linearities and no batch normalization.
Before the classifier, there is a batch normalization and a 5 X 5 average pooling. The MLP classifier has 2
hidden layers of size 4096, ReLU and dropout rate of 0.3. The supervised learning jointly optimizes L, the
dictionary D with the Lagrange multiplier A, and the MLP classifier. It is done with a stochastic gradient
descent during 120 epochs using an initial learning rate of 0.01 with a decay of 0.1 at epochs 50 and 100.
With a sparse code in input of the MLP, it has a Top 5 accuracy of 80.9%, outperforming AlexNet. If we
replace the ISTC network by an ALISTA network, the accuracy improves to 83.7%. However, next section
shows that contrarily to ISTC, an ALISTA network optimized for classification does not compute a sparse 11
code and is therefore not mathematically interpretable. In the following we thus concentrate on the homotopy
ISTC network.

Table 1: Top 1 and Top 5 accuracy on ImageNet for Fisher Vectors (Perronnin & Larlus| [2015), AlexNet
(Krizhevsky et al.,[2012), ResNet 152 (He et al., [2016), Scattering with SLE (Oyallon et al.| 2019)), Scattering
alone, with a sparse code ol or with a classification on Dal.

Fisher | AlexNet | ResNet | Scat. + | Scat. Scat.+ Scat.+ Scat.+

Vectors 152 SLE alone | ISTC «« | ISTC Do« | ALISTA «
Topl 55.6 56.5 78.3 57.0 37.5 59.0 54.8 62.6
Top5 78.4 79.1 94.1 79.6 60.7 80.9 77.8 83.7

The dimension reduction operator L has a marginal effect in terms of performance. If we eliminate it or if we
replace it by an unsupervised PCA dimension reduction, the performance drops by less than 2%, whereas the
accuracy drops by 20% if we eliminate the sparse coding. The considerable improvement brought by the
sparse code is further amplified if the MLP classifier is replaced by a linear classifier. A linear classifier on a
scattering vector has a (Top 1, Top 5) accuracy of (23.4%, 41.8%). With an ISTC sparse code in a learned
dictionary the accuracy jumps to (51.5%, 73.4%) and hence improves by more than 30%.

If the MLP classification is applied to the sparse approximation D! as opposed to the sparse code o then the
accuracy drops only by 3%. The sparse approximation Do of LS(x) has a small dimension 14 x 14 x 256
similar to AlexNet last convolutional layer output and is not sparse. This indicates that it is not the individual
sparse outputs of the sparse code o' which are important but the linear space defined by their support, which
are mapped to other linear spaces by D.

The optimization learns a large factor A, which yields a large approximation error ||LS(z) —
Dal||/||LS(z)|| & 0.5. The resulting code ! is very sparse with about 3% non-zero coefficients. The
sparse approximation Da! thus eliminates nearly half of the energy of LS (z) which can be interpreted as
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Figure 4: Value of £L(v,) = 3||Day, — B]|? + As || ||1 versus the number of iterations n, for ISTC, ISTA
and FISTA on the left, and for ALISTA, ISTA and FISTA on the right.

non-informative "clutter" removal. The sparse code o' is a projection of LS(x) over a linear space defined
by the support of a'. If a column D,,, is interpreted as a "scattering space feature" then this linear space is a
conjunction of a particular set of such features. The high classification accuracy indicates that different linear
spaces correspond mostly to different classes. These linear spaces are mapped by D into lower dimensional
linear spaces which remain separated. It thus indicates that D is optimized to preserves discriminative
directions which transform a vector of one class into a vector of another one.

4.2 CONVERGENCE OF HOMOTOPY ALGORITHMS

To guarantee that the network is mathematically interpretable we verify numerically that the homotopy ISTC
algorithm computes an accurate approximation of the optimal 1 sparse code in (1)), with a small number of
iterations (typically 12).

The Theorem 3.1] guarantees an exponential convergence if s (D) < 1/2. In our classification setting, the
theorem hypothesis is clearly not satisfied : su(D) & 60, which is well above 1/2. However, this condition
is not necessary and based on a relatively crude upper bound.

Figure [4|left shows numerically that ISTC algorithm minimizes the I' Lagrangian £(a) = || Do — % +
A« ||||1, with an exponential convergence which is faster than ISTA and FISTA over the dictionary that it
learns. On the contrary, Figure right shows that ALISTA does not minimize the 1' Lagrangian at all. This
comes from the fact that contrarily to standard ALISTA (Liu et al.,2019), we do not impose that the auxiliary
matrix W has a minimum joint coherence with the dictionary D. It would require too much computation and
the matrix W is rather optimized to minimize the classification loss. This is why it improves the classification
accuracy but does not compute a sparse 1* code.

To further compare the convergence speed of ISTC versus ISTA and FISTA, we compute the relative mean
square error MSE(z, y) = ||z — y||?/||z||? between the optimal sparse code ! and the sparse code output of
12 iterations of each of these three algorithms. The MSE is 0.02 for ISTC, 0.25 for FISTA and 0.46 for ISTA,
which shows that ISTC reduces the error by a factor 10 compared to ISTA and FISTA after 12 iterations.

5 CONCLUSION

The first goal of this work is to define a deep neural network having a good accuracy for complex image
classification and which can be analyzed mathematically. This sparse scattering network learns the repre-



Under review as a conference paper at ICLR 2020

sentation by optimizing a sparse code computed with a dictionary learned over scattering coefficients. The
dictionary learning is implemented with a new homotopy ISTC network having an exponential convergence.
The sparse dictionary learning improves accuracy by more than 20% over a scattering representation alone,
and has a higher accuracy than AlexNet. The dictionary seems to be optimized in order to build separated
sparse codes for each class, which belong to unions of linear spaces. Because the network operators are
mathematically well specified, the analysis of its properties is simpler than for standard deep convolutional
networks. However, more work is needed to understand the dictionary optimization and how it relates to
image and class properties.
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A APPENDIX

A.1 PROOF OF THEOREM 3.1

Let a® be the optimal 1° sparse code. We denote by S(«) the support of any o.. We are going to prove by
induction on n that for any n > 0 we have S(av,) C S(a?) and ||, — @%|o < 2A, if A, > As.

Forn = 0, ap = 050 S(ap) = 0 is indeed included in the support of a® and ||ag — || = ||a°]|c0- To
verify the induction hypothesis for A\g = Amax > A«, we shall prove that [|a®]|oc < 2A\max-

Let us write the error w = 3 — Do, For all m

(M)W} Dy, = WE B —Whw — Z ®(m" YW} Dy

m#m/

10



Under review as a conference paper at ICLR 2020

Since the support of a° is smaller than s, W}, D,, = 1 and i = max,, 2y |W,, Dy |
o (m)| < Wy Bl + [Wiw] + 5 [ a’]| o

so taking the max on m gives:
la® oo (1 = fis) < [W*Blloo + W w] o

But given the inequalities

||Wtﬁ||00 S )‘max

”Wthoo < )‘maX<1 - 2'7/73>

1—yp -
(7@ < 1 sincey>1land(1—ps)>0
(1 —ps)

we get
”O‘O”oo S 2>\Inax = QAO

Let us now suppose that the property is valid for n and let us prove it for n+1. We denote by D 4 the restriction
of D to vectors indexed by .A. We begin by showing that S(a,, 1) C S(a®). For any m € S(a,+1), since
B = Da’ +wand W} D,, = 1 we have
Qny1(m) = T>\n+1 (an(m) + Wrtn (8 — Day))
= T, (@%(m) + W, (Ds@o)us(an)—{m} (@° = @) s(00)us(an)—{m} + W)

For any m not in S(a®), let us prove that v, 1 (m) = 0. The induction hypothesis assumes that S(a,) C
S(a®) and [|a® — a)|ee < 2A, with A, > A, so:

I = [a®(m) + W} (Ds(a0)us(an)—{m} (@ = an)s(a0)us(an) - {m} + )|
< W (Ds(aoy(a® = an)s(aoy)| + [Whw|  since S(a,) € S(a’) and o’ (m) = 0 by assumption.
< aslla’ = anllee + Wl

Since we assume that \,, ;1 > A, we have
[Wiwlloo < (1= 2y18) Any1
and thus
I < Jisl|a® — anlloo + [Wiw|lso < i52Mn + Anp1(1 — 297i8) < Api1
since Ay, = YAn41.

Because of the thresholding T, . ,, it proves that c,, 1 (m) = 0 and hence that S(cv,,41) C S(a®).

n+1?

Let us now evaluate ||a® — v, 1]|0o. For any (a1, aa, \), a soft thresholding satisfies

[T (a1 + ag) — oy

<X+ |OZQ|

SO:

At + Wi (Dis(00)Us ()~ {m) (@0 = @) s(00)US (@) — (m3)| + [Wiwl
An+1 +ﬁ5”0‘0 — aplloo + HWtw”oo

An-‘rl + ﬁ82)\n + )\n+1(1 — 2’}//75) = 2An+1

Taking a max over m proves the induction hypothesis.

|t s1(m) — a®(m)]

IN AN IA
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