Under review as a conference paper at ICLR 2020

EVOLUTIONARY POPULATION CURRICULUM FOR
SCALING MULTI-AGENT REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

In multi-agent games, the complexity of the environment can grow exponentially
as the number of agents increases, so it is particularly challenging to learn good
policies when the agent population is large. In this paper, we introduce Evolutionary
Population Curriculum (EPC), a curriculum learning paradigm that scales up Multi-
Agent Reinforcement Learning (MARL) by progressively increasing the population
of training agents in a stage-wise manner. Furthermore, EPC uses an evolutionary
approach to fix an objective misalignment issue throughout the curriculum: agents
successfully trained in an early stage with a small population are not necessarily
the best candidates for adapting to later stages with scaled populations. Concretely,
EPC maintains multiple sets of agents in each stage, performs mix-and-match and
fine-tuning over these sets and promotes the sets of agents with the best adaptability
to the next stage. We implement EPC on a popular MARL algorithm, MADDPG,
and empirically show that our approach consistently outperforms baselines by a
large margin as the number of agents grows exponentially.

1 INTRODUCTION

Most real-world problems involve interactions between multiple agents and the problem becomes
significantly harder when there exist complex cooperation and competition among agents. Inspired
by the tremendous success of deep reinforcement learning (RL) in single-agent applications, such as
Atari games (Mnih et al.,|2013)), robotics manipulation (Levine et al.l[2016)), and navigation (Zhu et al.
2017; Wu et al., 2018} [Yang et al., [2019), it has become a popular trend to apply deep RL techniques
into multi-agent applications, including communication (Foerster et al., 2016; |Sukhbaatar et al.|[2016;
Mordatch & Abbeel, 2018)), traffic light control (Wu et al.| 2017), physical combats (Bansal et al.|
2018)), and video games (L1u et al., 2019;|OpenAll 2018)).

A fundamental challenge for multi-agent reinforcement learning (MARL) is that, as the number of
agents increases, the problem becomes significantly more complex and the variance of policy gradients
can grow exponentially (Lowe et al., |2017). Despite the advances on tackling this challenge via
actor-critic methods (Lowe et al.l [2017; [Foerster et al., 2018)), which utilize decentralized actors and
centralized critics to stabilize training, recent works still scale poorly and are mostly restricted to less
than a dozen agents. However, many real-world applications involve a moderately large population
of agents, such as algorithmic trading (Wellman et al., 2005)), sport team competition (Hausknecht
& Stonel, |2015)), and humanitarian assistance and disaster response (Meier, |2015)), where one agent
should collaborate and/or compete with all other agents. When directly applying the existing MARL
algorithms to complex games with a large number of agents, as we will show in Sec.[5.3] the agents
may fail to learn good strategies and end up with little interaction with other agents even when
collaboration is significantly beneficial. |Yang et al.|(2018) proposed a provably-converged mean-
field formulation to scale up the actor-critic framework by feeding the state information and the
average value of nearby agents’ actions to the critic. However, this formulation strongly relies on
the assumption that the value function for each agent can be well approximated by the mean of local
pairwise interactions. This assumption often does not hold when the interactions between agents
become complex, leading to a significant drop in the performance.

In this paper, we propose a general learning paradigm called Evolutionary Population Curriculum
(EPC), which allows us to scale up the number of agents exponentially. The core idea of EPC is to
progressively increase the population of agents throughout the training process. Particularly, we divide
the learning procedure into multiple stages with increasing number of agents in the environment. The

Under review as a conference paper at ICLR 2020

agents first learn to play in simpler scenarios with less agents and then leverage these experiences to
gradually adapt to later stages with more agents and ultimately our desired population.

There are two key components in our curriculum learning paradigm. To process the varying number
of agents during the curriculum procedure, the policy/critic needs to be population-invariant. So, we
choose a self-attention (Vaswani et al.,|2017) based architecture which can generalize to an arbitrary
number of agents with a fixed number of parameters. More importantly, we introduce an evolutionary
selection process, which helps address the misalignment of learning goals across stages and improves
the agents’ performance in the target environment. Intuitively, our within-stage MARL training
objective only incentivizes agents to overfit a particular population in the current stage. When moving
towards a new stage with a larger population, the successfully trained agents may not adapt well to the
scaled environment. To mitigate this issue, we maintain multiple sets of agents in each stage, evolve
them through cross-set mix-and-match and parallel MARL fine-tuning in the scaled environment,
and select those with better adaptability to the next stage.

EPC is RL-algorithm agnostic and can be potentially integrated with most existing MARL algorithms.
In this paper, we illustrate the empirical benefits of EPC by implementing it on a popular MARL
algorithm, MADDPG (Lowe et al.,[2017)), and experimenting on three challenging environments,
including a predator-prey-style individual survival game, a mixed cooperative-and-competitive bat-
tle game, and a fully cooperative food collection game. We show that EPC outperforms baseline
approaches by a large margin on all these environments as the number of agents grows even exponen-
tially. We also demonstrate that our method can improve the stability of the training procedure.

2 RELATED WORK

Multi-Agent Reinforcement Learning: It has been a long history in applying RL to multi-agent
games (Littmanl |1994;|Shoham et al.,[2003; |Panait & Luke, 2005; Wright et al.,[2019). Recently, deep
RL techniques have been applied into the multi-agent scenarios to solve complex Markov games and
great algorithmic advances have been achieved. Foerster et al.|(2016) and He et al.|(2016)) explored
a multi-agent variant of deep Q-learning; Peng et al.|(2017)) studied a fully centralized actor-critic
variant; |[Foerster et al.|(2018)) developed a decentralized multi-agent policy gradient algorithm with a
centralized baseline; [Lowe et al.|(2017) proposes the MADDPG algorithm which extended DDPG
to the multi-agent setting with decentralized policies and centralized Q functions. Our population
curriculum approach is a general framework for scaling MARL which can be potentially combined
with any of these algorithms. Particularly, we implement our method on top of the MADDPG
algorithm in this paper and take different MADDPG variants as baselines in experiments. There are
also other works studying large-scale MARL recently (Lin et al.|[2018]; Jiang & Lul [2018}|Yang et al.|
2018 [Suarez et al.|[2019)), which typically simplify the problem by weight sharing and taking only
local observations. We consider a much more general setting with global observations and unshared-
weight agents. Additionally, our approach is a general learning paradigm which is complementary to
the specific techniques proposed in these works.

Attention-Based Policy Architecture: Attention mechanism is widely used in RL policy repre-
sentation to capture object level information (Duan et al., 2017; [Wang et al., 2018)), represent
relations (Zambaldi et al., 2018} Malysheva et al., 2018} Yang et al.,2019) and extract communication
channels (Jiang & Lu, [2018)). Igbal & Shal(2019) use an attention-based critic. In our work, we utilize
an attention module in both policy and critic, inspired by the transformer architecture (Vaswani et al.|
2017), for the purpose of generalization to an arbitrary number of input entities.

Curriculum Learning: Curriculum learning can be tracked back to |[Elman| (1993)), and its core
idea is to “start small”: learn the easier aspects of the task first and then gradually increase the task
difficulty. It has been extended to deep neural networks on both vision and language tasks (Bengio
et al., 2009) and much beyond: |[Karras et al.|(2017) propose to progressively increase the network
capacity for synthesizing high quality images; [Murali et al.| (2018) apply a curriculum over the
control space for robotic manipulation tasks; several works (Wu & Tian| 2016} Florensa et al., 2017}
Sukhbaatar et al., 2017; Wang et al., [2019) have proposed to first train RL agents on easier goals
and switch to harder ones later. [Baker et al.|(2019) show that multi-agent self-play can also lead to
autocurricula in open-ended environments. In our paper, we propose to progressively increase the
number of the agents as a curriculum for better scaling multi-agent reinforcement learning.

Under review as a conference paper at ICLR 2020

Evolutionary Learning: Evolutionary algorithms, originally inspired by Darwin’s natural selection,
has a long history (Back & Schwefel, |1993)), which trains a population of agents in parallel, and
let them evolve via crossover, mutation and selection processes. Recently, evolutionary algorithms
have been applied to learn deep RL policies to improve training scalability (Jaderberg et al., 2017
Salimans et al.,|2017), promote diversity (Houthooft et al., [2018]) and encourage exploration (Conti
et al.| |2018; |Khadka & Tumer, 2018). Leveraging this insight, we train several groups of agents
in parallel and keep evolving them to larger population for the purpose of better generalization
across stages and improved training stability. |Czarnecki et al.| (2018) proposed a similar evolutionary
mix-and-match training paradigm to progressively increase agent capacity, i.e., larger action spaces
and more parameters. Their work considers a fixed environment with an increasingly more complex
agent and utilizes the traditional parameter crossover and mutation during evolution. By contrast, we
focus on scaling MARL, namely an increasingly more complex environment with a growing number
of agents. More importantly, we utilize MARL fine-tuning as an implicit mutation operator rather
than the classical way of mutating parameters, which is more efficient, guided and applicable to even
a very small number of evolution individuals. A similar idea of using learning for mutation is also
considered by |Gangwani & Peng|(2018) in the single-agent setting.

3 BACKGROUND

Markov Games: We consider a multi-agent Markov decision processes (MDPs) (Littman), (1994)).
Such an N-agent Markov game is defined by state space S of the game, action spaces Ay, ..., Ay and
observation spaces O1, ..., Oy for each agent. Each agent ¢ receives a private observation correlated
with the state o; : S — O; and produces an action by a stochastic policy g, : O; x A; — [0, 1]
parameterized by 6;. Then the next states are produced according to the transition function 7T :
S x A X ... x Ay — S. The initial state is determined by a distribution p : S + [0, 1]. Each agent
1 obtains rewards as a function of the state and its action r; : S x A; — R, and aims to maximize its
own expected return R; = "1 77t (s?, al), where 7 is a discount factor and T is the time horizon.
To minimize notation, we omit subscript of policy when there is no ambiguity.

Multi-Agent Deep Deterministic Policy Gradient MADDPG): MADDPG (Lowe et al.,2017) is
a multi-agent variant of the deterministic policy gradient algorithm (Silver et al.| 2014). It learns
a centralized Q function for each agent which conditions on global state information to resolve
the non-stationary issue. Consider N agents with deterministic policies g = {p1, ..., pn } where
i : O; — A; is parameterized by 6;. The policy gradient for agent 1 is:

v97‘](61) = ExyﬂND[VQi/J‘i (Oi)vai Qf' (Xa A1y ..ey aN)|ai:p,i (oi)]a (1)

Here D denotes the replay buffer while Q¥ (x, a1, ...,an) is a centralized action-value function
for agent ¢ that takes the actions of all agents, a1, ...,ay and the state information x (i.e., x =
(01,...,0n) or simply x = s if s is available). Let x’ denote the next state from the environment tran-
sition. The replay buffer D contains experiences in the form of tuples (x,x’, a1,...,an,71,...,7N).
Suppose the centralized critic Q¥ is parameterized by ¢;. Then it is updated via:

£(¢1) = Exyayr,x’[(Q/lj‘(Xvalw .. 7aN) - y)Q]’ Yy=rr +’7Q7 (leallv s 7a/1\/')| F—u'(0:)? (2)
a; I‘J(OJ)

where p' = {po;, ..., poy, } is the set of target policies with delayed parameters ;. Note that
the centralized critic is only used during training. At execution time, each policy py, remains
decentralized and only takes local observation o;.

4 EVOLUTIONARY POPULATION CURRICULUM

In this section, we will first describe the base network architecture with the self-attention mecha-
nism (Vaswani et al.;,|2017) which allows us to incorporate a flexible number of agents during training.
Then we will introduce the population curriculum paradigm and the evolutionary selection process.

4.1 POPULATION-INVARIANT ARCHITECTURE

We describe our choice of architecture based on the MADDPG algorithm (Lowe et al.l 2017), which
is population-invariant in the sense that both the Q function and the policy can take in an arbitrary
number of input entities. We first introduce the Q function (Fig.|l]) and then the policy.

Under review as a conference paper at ICLR 2020

Q Value fi(oj' a])
4
FC FC
1 t 4 t t 4
FC Vi FC FC
Attention Attention Attention
fi fi fi - S
0;,@; 01,01 03,0 on,ay 9j,j %1 %2 Ojm-1 Ojm aj
(a) (b)

Figure 1: Our population-invariant Q function: (a) utilizes the attention mechanism to combine
embeddings from different observation-action encoder f;; (b) is a detailed description for f;, which
also utilizes an attention module to combine M different entities in one observation.

We adopt the decentralized learning framework, so each agent has its own Q function and policy
network. Particularly for agent ¢, its centralized Q function is represented as follows:

Q¥ (x,a1,...,an) = hi([g:(fi(0i,a;)),v:]), where v; = attention(f;(0;,a;)Vj #14) (3)

Here f;(0;,a;) is an observation-action encoder (the green box in Fig. a)) which takes in the
observation o; and the action a; from agent j, and outputs the agent embedding of agent j; v; denotes
the global attention embedding (the orange box in Fig. [I(a)) over all the agent embeddings. We
will explain v; and f; later. g; is a 1-layer fully connected network processing the embedding of
the ith agent’s own observation and action. h; is a 2-layer fully connected network that takes the
concatenation of the output of g; and the global attention embedding v; and outputs the final Q value.

Attention Embedding v;: We define the attention embedding v; by a weighted sum of each agent’s
embedding f;(0;, a;) for j # i:

vi= Y ai;fi(oj,a;) (4)
J#i
The coefficient ¢; ; is computed by
exXp (Blj) T T
Vij == 5 Big=[i (05,0)Wy W fio),a; (5)
T piexp (Big) ! (00, a:)Wy Wo filoj, a;)

where Wy, and W, are parameters to learn. 3; ; computes the correlation between the embeddings of
agent ¢ and every other agent j via an inner product. «; ; is then obtained by normalizing 3; ; by a
softmax function. Since we represent the observations and actions of other agents with a weighted
mean v; from Eq.[d] we can model the interactions between agent i and an arbitrary number of other
agents, which allows us to easily increase the number of agents in our curriculum training paradigm.

Observation-Action Encoder f;: We now define the structure of f;(o;,a;) (Fig. b)). Note that
the observation of agent j, o5, also includes many entities, i.e., states of all visible agents and objects
in the game. Suppose o; contains M entities, i.e., 0; = [0j.1,...,0;). M may also vary as the
agent population scales over training procedure or simply during an episode when some agents die.
Thus, we apply another attention module to combine these entity observations together in a similar
way to how v; is computed (Eq. @] [3).

In more details, we first apply an entity encoder for each entity type to obtain entity embeddings
of all the entities within that type. For example, in o;, we can have embeddings for agent entities
(green boxes in Fig.[I(b)) and landmark/object entities (purple boxes in Fig.[T[b)). Then we apply an
attention module over each entity type by attending the entity embedding of agent j to all the entities
of this type to obtain an attended fype embedding (the orange box in Fig. [T[b)). Next, we concatenate
all the type embeddings together with the entity embedding of agent j as well as its action embedding.
Finally, this concatenated vector is forwarded to a fully connected layer to generate the output of
fi(oj,a;). Note that in the overall critic network of agent ¢, the same encoder f; is applied to every
observation-action pair so that the network can maintain a fixed size of parameters even when the
number of agents increases significantly.

Under review as a conference paper at ICLR 2020

Policy Network: The policy network p;(0;) has a similar structure as the observation-action encoder
fi(0s, a;), which uses an attention module over the entities of each type in the observation o; to adapt
to the changing population during training. The only difference in this network is that the action a; is
not included in the input. Notably, we do not share parameters between the Q function and the policy.

4.2 POPULATION CURRICULUM

We propose to progressively scale the number of agents in MARL with a curriculum. Before
combining with the evolutionary selection process, we first introduce a simpler version, the vanilla
population curriculum (PC), where we perform the following stage-wise procedure: (i) the initial
stage starts with MARL training over a small number of agents using MADDPG and our population-
invariant architecture; (ii) we start a new stage and doubld’|the number of agents by cloning each of
the existing agents; (iii) apply MADDPG training on this scaled population until convergence; (iv) if
the desired number of agents is not reached, go back to step (ii).

Mathematically, given N trained agents with parameters @ = {61, ..., 05 } from the previous stage,
we want to increase the number of the agents to 2N with new parameters 6= {él, e 0 Nyoees 0y N}
for the next stage . In this vanilla version of population curriculum, we simply initialize 6 by setting
éi <~ 6; and 7] N+i < 0;, and then continue MADDPG training on 0 to get the final policies for the

new stage. Although 0; and 0 N+ are both initialized from 6;, as training proceeds, they will converge
to different policies since these policies are trained in a decentralized manner in MADDPG.

4.3 EVOLUTIONARY SELECTION

Introducing new agents by directly cloning existing ones from the previous stage has a clear limitation:
the policy parameters suitable for the previous environment are not necessarily the best initialization
for the current stage as the population is scaled up. In the purpose of better performance in the final
game with our desired population, we need to promote agents with better adaptation abilities during
early stages of training.

Therefore, we propose an evolutionary selection process to facilitate the agents’ scaling adaption
ability during the curriculum procedure. Instead of training a single set of agents, we maintain K
parallel sets of agents in each stage, and perform crossover, mutation and selection among them for
the next stage. This is the last piece in our proposed Evolutionary Population Curriculum (EPC)
paradigm, which is essentially population curriculum enhanced by the evolutionary selection process.

Specifically, we assume the agents in the multi-agent game have (2 different roles. Agents in the
same role have the same action set and reward structure. For example, we have) = 2 roles in a
predator-prey game, namely predators and prey, and 2 = 1 role of agents for a fully cooperative
game with homogeneous agents. For notation conciseness, we assume there are /N7 agents for of role
1, namely A; = {p1, ..., N, }; N2 agents of role 2, namely Ay = {pn, 41, .-y LN, +N, }» and so on.

In each stage, we keep K parallel sets for each role of agents, denoted by Agl), e ,AZ(.K) for role
1, and take a 3-step procedure, i.e., mix-and-match (crossover), MARL fine-tuning (mutation) and
selection, as follows to evolved these K parallel sets of agents for the next stage.

Mix-and-match (Crossover): In the beginning of a curriculum stage, we scale the population
of agents from NV to 2N. Note that we have K parallel agent sets of size N, for role ¢, namely

Az(.l), N AgK). We first perform a mix-and-match over these parallel sets within every role i: for

each set Al(j), we pair it with all the K sets of the same role, which leads to K (K + 1)/2 new scaled
agent sets of size 2/NV;. Given these scaled sets of agents, we then perform another mix-and-match
across all the Q roles: we pick one scaled set for each role and combine these (2 selected sets to

produce a scaled game with 2V agents. For example, in the case of 2 = 2, we can pick one agent

set Agkl) from the first role and another agent set Ang) from the second role to form a scaled game.

Thus, there are Cpyax = (K (K + 1)/2) different combinations in total through this mix-and-match
process. We sample C' games from these combinations for mutation in the next step. Since we are
mixing parallel sets of agents, this process can be considered as the crossover operator in standard
evolutionary algorithms.

!Generally, we can scale up the population with any constant factor by introducing any amount of cloned
agents. We use the factor of 2 as a concrete example here for easier understanding.

Under review as a conference paper at ICLR 2020

MARL Fine-tuning (Mutation): In standard evolutionary algorithms, mutations are directly per-
formed on the parameters, which is inefficient in high-dimensional spaces and typically requires a
large amount of mutants to achieve sufficient diversity for evolution. Instead, here we adopt MARL
fine-tuning in each curriculum stage (step (iii) in vanilla PC) as our guided mutation operator, which
naturally and efficiently explores effective directions in the parameter space. Meanwhile, due to
the training variance, MARL also introduces randomness which benefits the overall diversity of the
evolutionary process. Concretely, we apply parallel MADDPG training on each of the C' scaled
games generated from the mix-and-match step and obtain C' mutated sets of agents for each role.

Selection: Among these C' mutated sets of agents for each role, only the best K mutants can survive.
In the case of 2 = 1, the fitness score of a set of agents is computed as their average reward after
MARL training. In other cases when €2 > 2, given a particular mutated set of agents of a specific role,
we randomly generate games for this set of agents and other mutated sets from different agent roles.
We take its average reward from these randomly generated games as the fitness score for this mutated
set. We pick the top-K scored sets of agents in each role to advance to the next curriculum stage.

Algorithm 1: Evolutionary Population Curriculum

Data: environment E(N, {A; }1<i<q) with IV agents of {2 roles, desired population Ny, initial
population Ny, evolution size K, mix-and-match size C

Result: a set of N, best policies

N « NO;

initialize K parallel agent sets Agl), ceey AEK) foreachrole 1 < i <

initial parallel MARL training on K games, E(N, {AE‘])}lgfL‘SQ) forl <j<K;

while N < N, do

N+ 2x N;
for1 <j<Cdo

L foreachrole 1 < i < Q: j1, 72 + unif(1, K), Agj) +— Agjl) + Al(jz) (mix-and-match);

MARL training in parallel on E (N, {AE])}lgiSQ) for 1 < j < C (guided mutation) ;
for role 1 <7< Qdo
for1<j<Cdo
1(ka

L ng) — Egpimpc {avg. rewards on E (NN, {flgkl)7 . .,flf;j), .. .,Ag)}) (fitness);
AZ(-l), e ,AgK) <« top-K w.rt. S; from /L(-l), e ,flgc) (selection);
kr e [1, K] V1 <i<Q};

return the best set of agents in each role, i.e., {Agk"')

Overall Algorithm: Finally, when the desired population is achieved, we take the best set of agents
in each role based on their last fitness scores as the output. We conclude the detailed steps of EPC in
Alg.[T] Note that in the first curriculum stage, we just train & parallel games without mix-and-match
or mutation. So, EPC simply selects the best from the K initial sets in the first stage while the
evolutionary selection process only takes effect starting from the second stage. We emphasize that
although we evolve multiple sets of agents in each stage, the three operators, mix-and-match, MARL
fine-tuning and selection, are all perfectly parallel. Thus, the evolutionary selection process only
introduces little influence on the overall training time. Lastly, EPC is an RL-algorithm-agnostic
learning paradigm that can be potentially integrated with any MARL algorithm other than MADDPG.

5 EXPERIMENT

We experiment on three challenging environments, including a predatory-prey-style Grassland game,
a mixed-cooperative-and-competitive Adversarial Battle game and a fully cooperative Food Collection
game. We compare EPC with multiple baseline methods on these environments with different scales
of agent populations and show consistently large gains over the baselines. In the following, we
will first introduce the environments and the baselines, and then both qualitative and quantitative
performances of different methods on all three environments.

5.1 ENVIRONMENTS

All these environments are built on top of the particle-world environment (Mordatch & Abbeel, |2018)
where agents take actions in discrete timesteps in a continous 2D world.

Under review as a conference paper at ICLR 2020

Grassland: In this game, we have oo ‘o @ i e |

Q = 2 roles of agents, Ng sheep 7o, . © it | 0. @ Qrem! | e ® ! @5
and Ny wolves, where sheepmoves (o @ o' . pu (@ o < Resouce | o~ @ | P
twice as fast as wolves. We also | '~ ° ! Pe P

have a fixed amount of L grass peuets (a) Grass Land (b) Adversarial battle (c) Food Collection

g:(i;d éf;))r. Slfeg)offs ‘girﬁe]r; eligi/n;f (ﬂ:{g Figure 2: Environment Visualizations

when it collides with (eats) a sheep, and the (eaten) sheep will obtain a negative reward and becomes
inactive (dead). A sheep will be rewarded when it comes across a grass pellet and the grass will be
collected and respawned in another random position. Note that in this survival game, each individual
agent has its own reward and does not share rewards with others.

Adversarial Battle: This scenario consists of L units of resources asThank yoTha green landmarks
and two teams of agents (i.e., {2 = 2 for each team) competing for the resources (Fig. 2b). Both
teams have the same number of agents (IN; = N3). When an agent collects a unit of resource, the
resource will be respawned and all the agents in its team will receive a positive reward. Furthermore,
if there are more than two agents from team 1 collide with one agent from team 2, the whole team 1
will be rewarded while the trapped agent from team 2 will be deactivated (dead) and the whole team
2 will be penalized, and vice versa.

Food Collection: This game has N food locations and N fully cooperative agents (2 = 1). The
agents need to collaboratively occupy as many food locations as possible within the game horizon
(Fig. 2c). Whenever a food is occupied by any agent, the whole team will get a reward of 6 /N in that
timestep for that food. The more food occupied, the more rewards the team will collect.

In addition, we introduce collision penalties as well as auxiliary shaped rewards for each agent in
each game for easier training. All the environments are fully observable so that each agent needs to
handle a lot of entities and react w.r.t. the global state. More environment details are in Appx.[A]

5.2 METHODS AND METRIC

We evaluate the following approaches in our experiments: (1) the MADDPG algorithm (Lowe
et al., 2017) with its original architecture (MADDPG); (2) the provably-converged mean-field
algorithm (Yang et al., 2018)) (mean-field); (3) the MADDPG algorithm with our population-invariant
architecture (Att-MADDPG); (4) the vanilla population curriculum without evolutionary selection
(vanilla-PC); and (5) our proposed EPC approach (EPC). For EPC parameters, we choose K = 2
for Grassland and Adversarial Battle and K = 3 for Food Collection; for the mix-and-match size C,
we simply set it Cy,.x and enumerate all possible mix-and-match combinations instead of random
sampling. More training details can be found in Appx.[B]

For Grassland and Adversarial Battle with Q2 = 2, we evaluate the performance of different methods
by competing their trained agents against our EPC trained agents. Specifically, in Grassland, we let
sheep trained by each approach compete with the wolves from EPC and collect the average sheep
reward as the evaluation metric for sheep. Similarly, we take the same measurement for wolves from
each method. In Adversarial Battle, since two teams are symmetric, we just evaluate the shared
reward of one team trained by each baseline against another team by EPC as the metric. For Food
Collection with Q) = 1, since it is fully cooperative, we take the team reward for each method as the
evaluation metric. In addition, for better visualization, we plot the normalized scores by normalizing
the rewards of different methods between 0 and 1 in each scale for each game. More evaluation
details are in Appx.[C]

5.3 QUALITATIVE RESULTS

We qualitatively illustrate the learned strategies by MADDPG and EPC in the three games here.

In Grassland, as the number of wolves goes up, it becomes increasingly more challenging for sheep
to survive; meanwhile, as the sheep become more intelligent, the wolves will be incentivized to be
more aggressive accordingly. In Fig.|3] we illustrate two representative matches for competition,
including one using the MADDPG sheep against the EPC wolves (Fig.[3a), and the other between the
EPC sheep and the MADDPG wolves (Fig. [3b). From Fig.[3a] we can observe that the MADDPG
sheep can be easily eaten up by the EPC wolves (note that dark circle means the sheep is eaten). On

Under review as a conference paper at ICLR 2020

(a) MADDPG sheep vs EPC wolves (b) MADDPG wolves vs EPC sheep
Figure 3: Example matches between EPC and MADDPG trained agents in Grassland
e T B e i e% ee @& e T S P
‘e o_ e ! :
PR IR @ ° .
o S i ® © o "}
. % ¢ v * .
070 o0 | e i i e % g ® o i i i ‘e’
(a) EPC (a) EPC (b) MADDPG
Figure 4: Adversarial Battle: dark particles are dead agents. Figure 5: Food Collection

the other hand, in Fig. [3b] we can see that the EPC sheep learns to eat the grass and avoid the wolves
at the same time.

In Adversarial Battle, we visualize two matches in Fig. [d] with one over agents by EPC (Fig. and
the other over agents by MADDPG (Fig. b). We can clearly see the collaborations between the EPC
agents: although the agents are initially spread over the environment, they learn to quickly gather as a
group to protect themselves from being killed. While for the MADDPG agents, their behavior shows
little incentives to cooperate or compete — these agents stay in their local regions throughout the
episode and only collect resources or kill enemies very infrequently.

In Food Collection (Fig.), the EPC agents in Fig. [5a]learn to spread out and occupy as many food as
possible to maximize the team rewards. While only one agent among the MADDPG agents in Fig. [5b|
successfully occupies a food in the episode.

5.4 QUANTITATIVE RESULTS
Quantitative Results in Grassland

In the Grassland game, we perform curriculum training by starting with 3 sheep and 2 wolves, and
gradually increase the population of agents. We denote a game with Ng sheep and Ny wolves by
“scale Ng-Nyw . We start with scale 3-2 and gradually increase the game size to scales 6-4, 12-8
and finally 24-16.For the two curriculum learning approach, vanilla-PC and EPC, we train over 10°
episodes in the first curriculum stage (scale 3-2) and fine-tune the agents with 5 x 10* episodes after
mix-and-match in each of the following stage. For other methods that train the agents from scratch,
we take the same accumulative training iterations as the curriculum methods for a fair comparison.

Main Results: We report the performance of different methods for each game scale in Fig. [6a]
Overall, there are little differences between the mean-field approach and the original MADDPG algo-
rithm while the using the population-invariant architecture (i.e., Att-MADDPG) generally boosts the
performance of MADDPG. For the method with population curriculum, vanilla-PC performs almost
the same as training from scratch (Att-MADDPG) when the number of agents in the environment is
small (i.e., 6-4) but the performance gap becomes much more significant when the population further
grows (i.e., 12-18 and 24-16). For our proposed EPC method, it consistently outperforms all the
baselines across all the scales. Particularly, in the largest scale 24-16, EPC sheep receive 10x more
rewards than the best baseline sheep without curriculum training.

Detailed Statistics: Besides rewards, we also compute the statistics of sheep to understand how the
trained sheep behavior in the game. We perform competitions between sheep trained by different
methods against the EPC wolves and measure the average number of total grass pellets eaten per
episode, i.e, #grass eaten, and the average percentage of sheep that survive until the end of an episode,
i.e., survival rate, in Fig. We can observe that as the population increases, it becomes increasingly
harder for sheep to survive while EPC trained sheep remain a high survival rate even on the largest
scale. Moreover, as more sheep in the game, EPC trained sheep consistently learn to eat more grass
even under the strong pressure from wolves. In contrast, the amount of eaten grass of MADDPG
approach (i.e., Att-MADDPG) drastically decreases when the number of wolves becomes large.

Under review as a conference paper at ICLR 2020

scale = 3-2 scale = 6-4 scale = 12-8 scale = 24-16
1.00 - - - - o
MADDPG g8 & 80-
0.75 - . o o e mean field § 6- 2 60-
0.50- 5. 5. 5. Att-MADDPG " =
3 3 2 s vanilla-PC 8 4- S 40-
0.25 - . . . - EPC 5, o
I - I %2 52 I
0.00- - - - - - - " - - B o.ull < «H I o- 1N NI
wolf sheep wolf sheep wolf sheep wolf sheep 32 6.4 12.824-16 32 6.4 12-824.16
(a) Normalized scores of wolves and sheep (b) Sheep statistics

Figure 6: Results in Grassland. In part (a), we show the normalized scores of wolves and sheep
trained by different methods when competing with EPC sheep and EPC wolves respectively. In part
(b), we measure the sheep statistics over different scales (x-axis), including the average number of
total grass pellets eaten per episode (left) and the average percentage of sheep that survive until the
end of episode (right). EPC trained agents (yellow) are consistently better than any baseline method.

Quantitative Results in Adversarial Battle

1.0-
In this game, we evaluate on environments with different sizes of 08"
agent population IV, denoted by scale N1-No where N; = Ny = 0.6
N/2. We start the curriculum from scale 4-4 and the increase the -
population size to scale 8-8 (N = 16) and finally 16-16 N = 32). 02-

Both vanilla-PC and EPC take 5 x 10* training episodes in the first . 1l 8 I
stage and then 2 x 10* episodes in the following two curriculum e e
stages. We report the normalized scores of different methods in m mean-field mEN EPC
Fig.[7} where agents trained by EPC outperforms all the baseline Ty

methods increasingly more significant as the agent population grows.

-8 16-16
Figure 7: Adversarial Battle
Quantitative Results in Food Collection
In this game, we begin curriculum training with N = 3, namely o
3 agents and 3 food locations, and progressively increase the pop- 08"
ol o il ¥
3

ulation size N to 6, 12 and finally 24. Both vanilla-PC and EPC
perform training on 5 x 10% episodes on the first stage of N = 3

and then 2 x 10* episodes in each of the following curriculum stage. 02

We report the normalized scores for all the methods in Fig. [8] where 00

EPC is always the best among all the approaches with a clear margin. T A
Note that the performance of the original MADDPG and the mean- me meanfield mmm EPC

Att-MADDPG

field hd drastically as th lation size NV i .
eld approach drops drastically as the population size /N increases Figure 8: Food Collection

Particularly, the mean-field approach performs even worse than the
original MADDPG method. We believe this is because in this game, the agents must act according
to the global team state collaboratively, which means the local approximation assumption in the
mean-field approach does not hold clearly.

Ablative Analysis

Stability Analysis: The evolutionary selection process in EPC not only leads to better final perfor-
mances but also stabilizes the training procedure. We validate the stability of EPC by computing the
variance over 3 training seeds for the same experiment and comparing with the variance of vanilla-PC,
which is also obtained from 3 training seeds. Specifically, we pick the second stage of curriculum
learning and visualize the variance of agent scores throughout the stage of training. These scores are
computed by competing against the final policy trained by EPC. We perform analysis on all the 3
environments: Grassland with scale 6-4 (Fig.[9a), Adversarial Battle with scale 8-8 (Fig.[9b) and
Food Collection with scale 6 (Fig.[9c). We can observe that the variance of EPC is much smaller than
vanilla-PC in different games.

Convergence Analysis: To illustrate that the self-attention based policies trained from a smaller
scale is able to well adapt to a larger scale via fine-tuning, we pick a particular mutant by EPC
in the second curriculum stage and visualize its learning curve throughout fine-tuning for all the
environments, Grassland (Fig.[9d), Adversarial Battle (Fig.[9¢) and Food Collection (Fig.[9f). The
scores are computed in the same way as the stability analysis. By comparing to MADDPG and

Under review as a conference paper at ICLR 2020

wolf score

episode (x10%) episode (x10%)

—— EPC —— vanilla-PC

(a) Stability comparison: Grassland,

o ~
® o

sheep score
o
>

wolf

o o o

o N =
o o
N &

0 2 4 0 2 4
episode (x10%) episode (x10%)
MADDPG ~—— Att-MADDPG = EPC

(d) Normalized scores: Grassland,

0.95 -
0.90 -

0 0.85 -

o

& 0.80 \\/__/
0.75 -

0.70-

05 10 15 20
episode (x10%)

—— EPC —— vanilla-PC

(b) Adversarial Battle,
1.0-
\/\/'\/\/\ﬂ\

0.8-
206-
=}
?
0.4-
02-
00-)) J
05 1.0 15 20
episode (x10%)

MADDPG — [EE
~—— Att-MADDPG

(e) Adversarial Battle,

05 10 15 20
episode (x10%)

—— EPC —— vanilla-PC

(c) Food Collection.

00 05 10 15 20
episode (x10%)

MADDPG — EC
~—— Att-MADDPG

(f) Food Collection.

Figure 9: Ablation analysis on the second curriculum stage in all the games. Stability comparison
(top) in (a), (b) and (c): We use 3 different seeds to perform training and observe EPC has much less
variance comparing to vanilla-PC. Normalized scores during fine-tuning (bottom) in (d), (e) and (f):
This illustrates that EPC can successfully transfer the agents trained with a smaller population to a
larger population by fine-tuning.

O I
0.0- I

1.0-

o
®
m

wolf score
o
o
o
o
score

<
>

sheep score
o
4>

-
0.0 - \‘; o

0.0 - g g
M(/MN)D \,am\\a ¥C eC ‘N\M)Dv\,am\\a PC gpC N{«N\N)DP(\?BY‘“\@PC epC N‘M,\ADD?g’a“\\\a«\’C epC
(a) Environment Generalization: Grassland. (b) Adversarial Battle. (c) Food Collection.

Figure 10: Environment Generalization: We take the agents trained on the largest scale and test on an
environment with twice the population. We perform experiments on all the games and show that EPC
also advances the agents’ generalizability.

Att-MADDPG, which train policies from scratch, we can see that EPC starts learning with a much
higher score, continues to improve during fine-tuning and converges to a much better solution.

Generalization: We investigate whether the learned policies can generalize to a different test
environment with even a larger scale than the training ones. To do so, we take the best polices trained
by different methods on the largest population and directly apply these policies to a new environment
with a doubled population by self-cloning. We evaluate in all the environments with EPC, vanilla-PC
and Att-MADDPG and measure the normalized scores of different methods, which is computed in
the same way as the fitness score. In all cases, we observe a large advantage of EPC over the other
two methods, indicating the better generalization ability for policies trained by EPC.

6 CONCLUSION

In this paper, we propose to scale multi-agent reinforcement learning by using curriculum learn-
ing over the agent population with evolutionary selection. Our approach has shown significant
improvements over baselines not only in the performance but also the training stability. Given these
encouraging results on different environments, we believe our method is general and can potentially
benefit scaling other MARL algorithms. We also hope that learning with a large population of agents
can also lead to the emergence of swarm intelligence in environments with simple rules in the future.

10

Under review as a conference paper at ICLR 2020

REFERENCES

Thomas Bick and Hans-Paul Schwefel. An overview of evolutionary algorithms for parameter
optimization. Evolutionary computation, 1(1):1-23, 1993.

Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob McGrew, and Igor
Mordatch. Emergent tool use from multi-agent autocurricula. arXiv preprint arXiv:1909.07528,
2019.

Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya Sutskever, and Igor Mordatch. Emergent com-
plexity via multi-agent competition. In /CLR, 2018.

Yoshua Bengio, Jérdme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
ICML, pp. 41-48. ACM, 2009.

Edoardo Conti, Vashisht Madhavan, Felipe Petroski Such, Joel Lehman, Kenneth Stanley, and
Jeff Clune. Improving exploration in evolution strategies for deep reinforcement learning via a
population of novelty-seeking agents. In NeurIPS, pp. 5027-5038, 2018.

Wojciech Marian Czarnecki, Siddhant M Jayakumar, Max Jaderberg, Leonard Hasenclever, Yee Whye
Teh, Nicolas Heess, Simon Osindero, and Razvan Pascanu. Mix & match agent curricula for
reinforcement learning. In ICML, pp. 1095-1103, 2018.

Yan Duan, Marcin Andrychowicz, Bradly Stadie, Jonathan Ho, Jonas Schneider, Ilya Sutskever,
Pieter Abbeel, and Wojciech Zaremba. One-shot imitation learning. In NIPS, pp. 1087-1098,
2017.

Jeffrey L Elman. Learning and development in neural networks: The importance of starting small.
Cognition, 48(1):71-99, 1993.

Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter Abbeel. Reverse
curriculum generation for reinforcement learning. In CoRL, pp. 482495, 2017.

Jakob Foerster, Ioannis Alexandros Assael, Nando de Freitas, and Shimon Whiteson. Learning to
communicate with deep multi-agent reinforcement learning. In NIPS, pp. 2137-2145, 2016.

Jakob N Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In AAAI, 2018.

Tanmay Gangwani and Jian Peng. Genetic policy optimization. In ICLR, 2018.

Matthew Hausknecht and Peter Stone. Deep reinforcement learning in parameterized action space.
arXiv preprint arXiv:1511.04143, 2015.

He He, Jordan Boyd-Graber, Kevin Kwok, and Hal Daumé III. Opponent modeling in deep reinforce-
ment learning. In International Conference on Machine Learning, pp. 1804-1813, 2016.

Rein Houthooft, Yuhua Chen, Phillip Isola, Bradly Stadie, Filip Wolski, OpenAl Jonathan Ho, and
Pieter Abbeel. Evolved policy gradients. In NeurIPS, pp. 5400-5409, 2018.

Shariq Igbal and Fei Sha. Actor-attention-critic for multi-agent reinforcement learning. In ICML, pp.
2961-2970, 2019.

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff Donahue, Ali
Razavi, Oriol Vinyals, Tim Green, lain Dunning, Karen Simonyan, et al. Population based training
of neural networks. arXiv preprint arXiv:1711.09846, 2017.

Jiechuan Jiang and Zongqing Lu. Learning attentional communication for multi-agent cooperation.
In NeurIPS, 2018.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for
improved quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.

Shauharda Khadka and Kagan Tumer. Evolution-guided policy gradient in reinforcement learning.
In NeurIPS, pp. 1188-1200, 2018.

11

Under review as a conference paper at ICLR 2020

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. The Journal of Machine Learning Research, 17(1):1334—1373, 2016.

Kaixiang Lin, Renyu Zhao, Zhe Xu, and Jiayu Zhou. Efficient large-scale fleet management via
multi-agent deep reinforcement learning. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 1774-1783. ACM, 2018.

Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In ICML,
volume 157, pp. 157-163, 1994.

Siqi Liu, Guy Lever, Nicholas Heess, Josh Merel, Saran Tunyasuvunakool, and Thore Graepel.
Emergent coordination through competition. In /CLR, 2019.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-
critic for mixed cooperative-competitive environments. NIPS, 2017.

Aleksandra Malysheva, Tegg Tackyong Sung, Chae-Bong Sohn, Daniel Kudenko, and Aleksei
Shpilman. Deep multi-agent reinforcement learning with relevance graphs. arXiv preprint
arXiv:1811.12557, 2018.

Patrick Meier. Digital humanitarians: how big data is changing the face of humanitarian response.
Routledge, 2015.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, lIoannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language in multi-agent
populations. In AAAI, 2018.

Adithyavairavan Murali, Lerrel Pinto, Dhiraj Gandhi, and Abhinav Gupta. Cassl: Curriculum
accelerated self-supervised learning. In ICRA, pp. 6453-6460. IEEE, 2018.

OpenAl OpenAl Five. https://blog.openai.com/openai-five/, 2018.

Liviu Panait and Sean Luke. Cooperative multi-agent learning: The state of the art. AAMAS, 11(3):
387-434, 2005.

Peng Peng, Quan Yuan, Ying Wen, Yaodong Yang, Zhenkun Tang, Haitao Long, and Jun Wang.
Multiagent bidirectionally-coordinated nets for learning to play starcraft combat games. arXiv
preprint arXiv:1703.10069, 2, 2017.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a
scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

Yoav Shoham, Rob Powers, and Trond Grenager. Multi-agent reinforcement learning: a critical
survey. Web manuscript, 2003.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In /CML, pp. 387-395, 2014.

Joseph Suarez, Yilun Du, Phillip Isola, and Igor Mordatch. Neural mmo: A massively multiagent
game environment for training and evaluating intelligent agents. arXiv preprint arXiv:1903.00784,
2019.

Sainbayar Sukhbaatar, Rob Fergus, et al. Learning multiagent communication with backpropagation.
In NIPS, pp. 22442252, 2016.

Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel Synnaeve, Arthur Szlam, and Rob
Fergus. Intrinsic motivation and automatic curricula via asymmetric self-play. arXiv preprint
arXiv:1703.05407, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Fukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, pp. 5998-6008, 2017.

12

https://blog.openai.com/openai-five/

Under review as a conference paper at ICLR 2020

Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O Stanley. Paired open-ended trailblazer (poet):
Endlessly generating increasingly complex and diverse learning environments and their solutions.
arXiv preprint arXiv:1901.01753, 2019.

Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks. In
CVPR, 2018.

Michael P Wellman, Daniel M Reeves, Kevin M Lochner, Shih-Fen Cheng, and Rahul Suri. Ap-
proximate strategic reasoning through hierarchical reduction of large symmetric games. In AAAI,
2005.

Mason Wright, Yongzhao Wang, and Michael P Wellman. Iterated deep reinforcement learning in
games: history-aware training for improved stability. In Proceedings of the 2019 ACM Conference
on Economics and Computation, pp. 617-636. ACM, 2019.

Cathy Wu, Aboudy Kreidieh, Eugene Vinitsky, and Alexandre M Bayen. Emergent behaviors in
mixed-autonomy traffic. In CoRL, pp. 398-407, 2017.

Yi Wu, Yuxin Wu, Georgia Gkioxari, and Yuandong Tian. Building generalizable agents with a
realistic and rich 3d environment. arXiv preprint arXiv:1801.02209, 2018.

Yuxin Wu and Yuandong Tian. Training agent for first-person shooter game with actor-critic
curriculum learning. In ICLR, 2016.

Wei Yang, Xiaolong Wang, Ali Farhadi, Abhinav Gupta, and Roozbeh Mottaghi. Visual semantic
navigation using scene priors. In /ICLR, 2019.

Yaodong Yang, Rui Luo, Minne Li, Ming Zhou, Weinan Zhang, and Jun Wang. Mean field multi-agent
reinforcement learning. In ICML, pp. 5567-5576, 2018.

Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor Babuschkin, Karl
Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart, et al. Relational deep reinforcement
learning. arXiv preprint arXiv:1806.01830, 2018.

Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav Gupta, Li Fei-Fei, and Ali Farhadi.
Target-driven visual navigation in indoor scenes using deep reinforcement learning. In ICRA, pp.
3357-3364. IEEE, 2017.

13

Under review as a conference paper at ICLR 2020

A ENVIRONMENT DETAILS

In the grassland game, sheep gets +2 reward when he eats the grass, -5 reward when eaten by wolf.
The wolf get +5 reward when eats a sheep. We also shape the reward by distance, sheep will get less
negative reward when it is more closer to grass and wolf will less negative reward when it is more
closer to sheep.

In the Adversarial battle game, agent will get +1 reward when he eats the food, —6 reward when
killed by other agents. If N agents kill an enemy, they will be rewarded +6/N. We shape the reward
by distance. Agent will receive less negative rewards when it is more closer to other agents and grass.
We want to encourage collision within agents and also will be easier for them to learn to eat.

In the food collection game, there are N agents and N food locations. Each agent will get a shared
+6/N reward per timestep when one food is occupied by any agent. If one agent gets collision with
another, all of the agents will get a punish of —6/N. We shape the reward by distance. Agents will
receive less negative rewards when it gets closer to the food. Since the number of agents and food are
equal, we want to avoid the collision within agents and let the agents to learn to occupy as many food
as possible.

We use the normalized reward as the score during evaluation. For a particular game with a particular
scale, we first collect the reward for each type of agents, namely the average reward of each individual
of that type without the shaped rewards. Then we re-scale the collected rewards by considering the
lowest reward among all methods as score 0 and highest reward as score 1.

B TRAINING DETAILS

We use the Adam optimizer with learning rate 0.01, 5, = 0.9, 83 = 0.999 and € = 10~8 across all
experiments. 7 = 0.01 is set for target network update and v = 0.95 is used as discount factor. We
also use a replay buffer of size 10° and we update the network parameters after every 100 samples.
The batch size is 1024.

We set K = 2 in all the games during training except that X = 3 in the food collection game. During
EPC training, in the grassland game, we train the scale of 3 sheep 2 wolf for 100000 episodes. We
train another 50000 episodes every time the agents number doubles. In the adversarial battle game
and food collection game, we train the first scale for 50000 episodes. We train another 20000 episodes
every time the agents number doubles.

In the grassland game, the entity types are the agent itself, other sheep, other wolf and food. We
thus have four types of entity encoders for each of those entity types. In the adversarial battle game,
Similar to grassland game, the entity types are agent itself, other teammates, enemies and food. We
also have four types of entity encoders for each of those entity types. Since there is only one group in
the food collection game, the entity types are agent itself, other teammates and food. We thus have
three entity encoders in our network.

C EVALUATION DETAILS

To evaluate the agents trained in the environment with {2 = 2, we make two roles of agents trained
with different approaches compete against each other. Each competition is simulated for 10000
episodes. The average normalized reward over the 10000 episodes will be used as the competition
score for each side. Note that in our experiments, we let all the methods compete against our EPC
approach for evaluation. For adversarial battle game, we take the average score of two teams as the
model’s final evaluation score, since the two teams in this game are completely symmetric.

In the food collection game, since there is only one role, we simply simulate the model for 10000
episodes. The average normalized reward over the 10000 episodes will be used as the score of the
model.

14

	Introduction
	Related Work
	Background
	Evolutionary Population Curriculum
	Population-Invariant Architecture
	Population Curriculum
	Evolutionary Selection

	Experiment
	Environments
	Methods and Metric
	Qualitative Results
	Quantitative Results

	Conclusion
	Environment Details
	Training Details
	Evaluation Details

