
Under review as a conference paper at ICLR 2020

MOBILEBERT: TASK-AGNOSTIC COMPRESSION OF
BERT BY PROGRESSIVE KNOWLEDGE TRANSFER

Anonymous authors
Paper under double-blind review

ABSTRACT

The recent development of Natural Language Processing (NLP) has achieved great
success using large pre-trained models with hundreds of millions of parameters.
However, these models suffer from the heavy model size and high latency such
that we cannot directly deploy them to resource-limited mobile devices. In this
paper, we propose MobileBERT for compressing and accelerating the popular
BERT model. Like BERT, MobileBERT is task-agnostic; that is, it can be uni-
versally applied to various downstream NLP tasks via fine-tuning. MobileBERT
is a slimmed version of BERTLARGE augmented with bottleneck structures and a
carefully designed balance between self-attentions and feed-forward networks. To
train MobileBERT, we use a bottom-to-top progressive scheme to transfer the in-
trinsic knowledge of a specially designed Inverted Bottleneck BERTLARGE teacher
to it. Empirical studies show that MobileBERT is 4.3× smaller and 4.0× faster
than original BERTBASE while achieving competitive results on well-known NLP
benchmarks. On the natural language inference tasks of GLUE, MobileBERT
achieves 0.6 GLUE score performance degradation, and 367 ms latency on a
Pixel 3 phone. On the SQuAD v1.1/v2.0 question answering task, MobileBERT
achieves a 90.0/79.2 dev F1 score, which is 1.5/2.1 higher than BERTBASE.

1 INTRODUCTION

The NLP community has witnessed a revolution of pre-training self-supervised models. These mod-
els usually have hundreds of millions of parameters. They are trained on huge unannotated corpus
and then fine-tuned for different small-data tasks (Peters et al., 2018; Radford et al., 2018; Devlin
et al., 2018; Radford et al., 2019; Yang et al., 2019). Among these models, BERT (Devlin et al.,
2018), which stands for Bidirectional Encoder Representations from Transformers (Vaswani et al.,
2017), shows substantial accuracy improvements compared to training from scratch using annotated
data only. However, as one of the largest models ever in NLP, BERT suffers from the heavy model
size and high latency, making it impractical for resource-limited mobile devices to deploy the power
of BERT in mobile-based machine translation, dialogue modeling, and the like.

There have been some works that task-specifically distill BERT into compact models (Turc et al.,
2019; Tang et al., 2019; Sun et al., 2019; Tsai et al., 2019). To the best of our knowledge, there is
not yet any work for building a task-agnostic lightweight pre-trained model, that is, a model that can
be fine-tuned on downstream NLP tasks just like what the original BERT does. In this paper, we
propose MobileBERT to fill this gap. In practice, task-agnostic compression of BERT is desirable.
Task-specific compression needs to first fine-tune the original large BERT model into task-specific
teachers and then distill. Such a process is way more complicated and costly than directly fine-tuning
a task-agnostic compact model.

At first glance, it may seem straightforward to obtain a task-agnostic compact version of BERT. For
example, one may just take a narrower or shallower architecture of BERT, and then train it with a
prediction loss together with a distillation loss (Turc et al., 2019; Sun et al., 2019). Unfortunately,
empirical results show that such a straightforward approach results in significant accuracy loss (Turc
et al., 2019). This may not be that surprising. It aligns with a well-known observation that shallow
networks usually do not have enough representation power while narrow and deep networks are
difficult to train. Our MobileBERT is designed to be as deep as BERTLARGE while each layer is made
much narrower via adopting bottleneck structures and balancing between self-attentions and feed-

1

Under review as a conference paper at ICLR 2020

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Lx

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Add & Norm

Lx

Linear

Linear

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Add & Norm

Lx

Linear

Linear

xF

(b)

feature map
transfer

attention
transfer

(a) (c)

Embedding Embedding Embedding

Classifier Classifier Classifier

Figure 1: Illustration of three models: (a) BERT; (b) Inverted Bottleneck BERT (IB-BERT); and (c)
MobileBERT. In (b) and (c), red lines denote inter-block flows while blue lines intra-block flows.
MobileBERT is trained by progressively transferring knowledge from IB-BERT.

forward networks (Figure 1). To train MobileBERT, we use a bottom-to-top progressive scheme to
transfer the intrinsic knowledge of a specially designed Inverted Bottleneck BERTLARGE (IB-BERT)
teacher to it.

As a pre-trained NLP model, MobileBERT is both storage efficient (w.r.t model size) and compu-
tationally efficient (w.r.t latency) for mobile and resource-constrained environments. Experimental
results on several NLP tasks show that while being 4.3× smaller and 4.0× faster, MobileBERT can
still achieve competitive results compared to BERTBASE. On the natural language inference tasks
of GLUE, MobileBERT can have only 0.6 GLUE score performance degradation with 367 ms la-
tency on a Pixel 3 phone. On the SQuAD v1.1/v2.0 question answering task, MobileBERT obtains
90.3/80.2 dev F1 score which is 1.5/2.1 higher than BERTBASE.

2 RELATED WORK

2.1 BERT

BERT takes the embedding of source tokens as input. Each building block of BERT contains one
Multi-Head self-Attention (MHA) module (Vaswani et al., 2017) and one Feed-Forward Network
(FFN) module, which are connected by skip connections. The MHA module allows the model to
jointly attend to information from different subspaces, while the position-wise FFN consists of a
two-layer linear transformation with gelu activation (Hendrycks & Gimpel, 2016), which increase
the representational power of the model. Figure 1(a) illustrates the original BERT architecture.

In the pre-training stage, BERT is required to predict the masked tokens in sentences (mask language
modeling task), as well as whether one sentence is the next sentence of the other (next sentence
prediction task). In the fine-tuning stage, BERT is further trained on task-specific annotated data.

2.2 KNOWLEDGE TRANSFER FOR MODEL COMPRESSION

Exploiting knowledge transfer to compress model size was first proposed by Bucilu et al. (2006).
The idea was then adopted in knowledge distillation (Hinton et al., 2015), which requires the smaller
student network to mimic the class distribution output of the larger teacher network. Fitnets (Romero
et al., 2014) make the student mimic the intermediate hidden layers of the teacher to train narrow
and deep networks. Luo et al. (2016) show that the knowledge of the teacher can also be obtained
from the neurons in the top hidden layer. Similar to our proposed progressive knowledge transfer
scheme, Yeo et al. (2018) proposed a sequential knowledge transfer scheme to distill knowledge
from a deep teacher into a shallow student in a sequential way. Zagoruyko & Komodakis (2016)

2

Under review as a conference paper at ICLR 2020

proposed to transfer the attention maps of the teacher on images. Li et al. (2019) proposed to transfer
the similarity of hidden states and word alignment from an autoregressive Transformer teacher to a
non-autoregressive student.

Recently, knowledge transfer for BERT has attracted much attention. Researchers have distilled
BERT into smaller pre-trained BERT models (Turc et al., 2019), an extremely small bi-directional
LSTM Tang et al. (2019), and smaller models on sequence labeling tasks (Tsai et al., 2019). Sun
et al. (2019) distill BERT into shallower students through knowledge distillation and an additional
knowledge transfer of hidden states on multiple intermediate layers. In contrast to these works,
we only use knowledge transfer in the pre-training stage and do not require a fine-tuned teacher
for task-specific knowledge in the down-stream tasks. Moreover, compared to patient knowledge
distillation (Sun et al., 2019) which transfers knowledge for all intermediate layers simultaneously
to alleviate over-fitting in down-stream task fine-tuning, we design a novel progressive knowledge
transfer which eases the pre-training of our compact MobileBERT.

3 BOTTOM-TO-TOP PROGRESSIVE KNOWLEDGE TRANSFER OF BERT

The pre-training of BERT is challenging. This problem becomes more severe when we pre-train a
compact BERT model from scratch (Frankle & Carbin, 2018). To tackle this problem, we propose
a bottom-to-top progressive knowledge transfer scheme. Specifically, we first train a wider teacher
network that is easier to optimize, and then progressively train the student network from bottom to
top, requiring it to mimic the teacher network layer by layer. In our algorithm, the student and the
teacher can be any multi-head attention encoder such as Transformer (Vaswani et al., 2017), BERT
or XLNet (Yang et al., 2019). We take BERT as an example in the following description.

The progressive knowledge transfer is divided into L stages, where L is the number of layers. Figure
2 illustrates the diagram and algorithm of progressive knowledge transfer. The idea of progressive
transfer is that when training the (`+1)th layer of the student, the `th layer is already well-optimized.
As there are no soft target distributions that can be used for the intermediate states of BERT, we
propose the following two knowledge transfer objectives, i.e., feature map transfer and attention
transfer, to train the student network. Particularly, we assume that the teacher and the student have
the same 1) feature map size, 2) the number of layers, and 3) the number of attention heads.

3.1 FEATURE MAP TRANSFER (FMT)

Since each layer in BERT merely takes the output of the previous layer as input, the most important
thing in progressively training the student network is that the feature maps of each layer should be
as close as possible to those of the teacher, i.e., well-optimized. In particular, the mean squared error
between the normalized feature maps of the student and the teacher is used as the objective:

L`FMT =
1

TN

T∑
t=1

N∑
n=1

(LayerNorm(Htr
t,`)n − LayerNorm(Hst

t,`)n)
2, (1)

where ` is the index of layers, T is the sequence length, and N is the feature map size. The layer
normalization is added to stabilize the layer-wise training loss.

We also minimize two statistics discrepancies on mean and variance in feature map transfer:

L`µ =
1

T

T∑
t=1

(µ(Htr
t,`)− µ(Hst

t,`))
2, L`σ =

1

T

T∑
t=1

|σ2(Htr
t,`)− σ2(Hst

t,`)|, (2)

where µ and σ2 represents mean and variance, respectively. Our empirical studies show that min-
imizing the statistics discrepancy is helpful when layer normalization is removed from BERT to
reduce inference latency (see more discussions in Section 4.3).

3.2 ATTENTION TRANSFER (AT)

The attention mechanism greatly boosts the performance of NLP and becomes a crucial building
block in Transformer and BERT. Many papers (Clark et al., 2019; Jawahar et al., 2019) discover that
the attention distributions in BERT detect reasonable semantic and syntactic relationships between

3

Under review as a conference paper at ICLR 2020

Encoder
Block

Embedding

Encoder
Block

Encoder
Block

Classifier

3-layer teacher

Embedding Embedding Embedding

Encoder
Block

Encoder
Block

Encoder
Block

Encoder
Block

Encoder
Block

Encoder
Block

3-stage knowledge transfer of student

knowledge
transfer copy

Embedding

Encoder
Block

Encoder
Block

Encoder
Block

Classifier

further distillation

knowledge
distillation Input : the teacher model Mtr

Output: the student model Mst

// Copy the embedding layerd

Embedding(Mst)← Embedding(Mtr);
// Progressive knowledge transfer

for each layer ` in Mst do
Mst← Train(Mst, L`

PKT (Mst, Mtr))
// Copy the classifier layer

Classifier(Mst)← Classifier(Mtr);
// Further pre-training distillation

Mst← Train(Mst, LPD(Mst, Mtr));
return Mst

Figure 2: Left panel: diagram of progressive knowledge transfer. Lighter colored blocks represent
that they are frozen in that stage. Right panel: algorithm of progressive knowledge transfer.

words. This motivates us to use self-attention maps from the well-optimized teacher to help the
training of the student in augmentation to the feature map transfer. In particular, we minimize the
KL-divergence between the per-head self-attention distributions of the teacher and the student:

L`AT =
1

TA

T∑
t=1

A∑
a=1

DKL(a
tr
t,`,a||astt,`,a), (3)

where A is the number of attention heads.

3.3 BOTTOM-TO-TOP PROGRESSIVE KNOWLEDGE TRANSFER (PKT)

Our final progressive knowledge transfer loss L`PKT for the `th stage is a linear combination of the
objectives stated above. As shown in the right panel of Figure 2, we progressively train each layer of
the student by minimizing the knowledge transfer loss. In other words, when we train the `th layer,
we freeze all the trainable parameters in the layers below. We can somewhat soften the training
process as follows. When training a layer, we further tune the lower layers with a small learning rate
rather than entirely freezing them. Freezing the lower layers can be regarded as a special case of this
softened process with the learning rate being zero. There is no knowledge transfer for the beginning
embedding layer and the final classifier. They are are the same for the student and teacher.

3.4 PRE-TRAINING DISTILLATION (PD)

After the progressive knowledge transfer, we further pre-train MobileBERT until convergence. We
use a linear combination of the original masked language modeling (MLM) loss, next sentence
prediction (NSP) loss, and the new knowledge distillation loss as our pre-training distillation loss:

LMLM−KD =
∑
i∈[N]

DKL(P
tr(i), P st(i)), (4)

LPD = αLMLM + (1− α)LMLM−KD + LNSP , (5)

where [N] is the set of masked tokens, P tr(i) and P st(i) are two predicted distributions respectively
from the teacher and student model on the masked tokens, and α is a hyperparameter in (0, 1).We do
not perform knowledge distillation on the next sentence prediction (NSP) task as it has been shown
to be unimportant (Yang et al., 2019; Liu et al., 2019).

4 MOBILEBERT: COMPACT ARCHITECTURE DESIGN OF BERT

In this section, we present the MobileBERT architecture and the underlining design principle, i.e.,
how to exploit the benefits of the proposed progressive knowledge transfer.

4

Under review as a conference paper at ICLR 2020

4.1 BOTTLENECK AND INVERTED BOTTLENECK

MobileBERT is a much slimmed version of BERTLARGE. As illustrated in Figure 1(c), to align its
feature maps with the teacher’s, it is augmented with the bottleneck modules (He et al., 2016), which
have additional shortcut connections outside the original non-linear modules. Through the bottle-
neck modules, MobileBERT can increase the dimension of its block outputs by a linear transfor-
mation, while decreasing the dimension of its block inputs by another linear transformation. So the
intra-block hidden size (hidden size of the original non-linear modules) stays unchanged. Symmet-
rically, to align with the student’s feature maps, we can also place the inverted bottleneck modules
(Sandler et al., 2018) in the BERTLARGE teacher (Figure 1b). We refer this variant of BERTLARGE as
IB-BERT. Through the inverted bottleneck modules, we can effectively reduce the feature map size
of the teacher without losing its representational power.

We may either only use bottleneck for the student or only the inverted bottleneck for the teacher
to align their feature maps. However, when using both of them, we have a chance to search for a
better feature map size for the teacher and student to obtain a more compact student model while
not hurting the performance of the teacher.

4.2 STACKED FEED-FORWARD NETWORKS

A problem introduced by the bottleneck structure of MobileBERT is that the balance between self-
attentions and feed-forward networks is broken. In original BERT, the ratio of the parameter num-
bers in self-attentions and feed-forward networks is always 1:2. But in the bottleneck structure, the
inputs to the self-attentions are from wider feature maps (of inter-block size), while the inputs to the
feed-forward networks are from narrower bottlenecks (of intra-block size). This results in that the
self-attentions in MobileBERT will contain more parameters than normally. Therefore, we propose
to use stacked feed-forward networks in MobileBERT to re-balance it. As illustrated in 1(c), each
MobileBERT layer contains one self-attention but several stacked feed-forward networks.

4.3 FURTHER OPERATIONAL OPTIMIZATIONS

By model latency analysis1, we find that layer normalization and gelu activation accounted for a
considerable proportion of total latency. Therefore, we replace them with new operations in our
MobileBERT.

Remove layer normalization We replace the layer normalization of a n-channel hidden state h
with an element-wise linear transformation:

NoNorm(h) = γ ◦ h+ β, (6)
where γ,β ∈ Rn and ◦ denotes the Hadamard product. Please note that NoNorm has different
properties from LayerNorm even in test mode since the original layer normalization is not a linear
operation for a batch of vectors.

Use relu activation We replace the gelu activation with simpler relu activation.

5 EXPERIMENTS

5.1 MODEL SETTINGS OF THE TEACHER AND THE STUDENT

We conduct extensive experiments to search good model settings for the IB-BERT teacher and the
MobileBERT student. We replace the original embedding table by a 3-convolution from a smaller
embedding table with embedding size 128 to keep the number of embedding parameters in different
model settings the same. We start with SQuAD v1.1 dev F1 score as the metric to measure the
performance of different model settings. Since BERT pre-training is time and resource consuming,
in the architecture search stage, we only train each model for 125k steps with 2048 batch size, which
halves the training schedule of original BERT (Devlin et al., 2018; You et al., 2019).

1A detailed analysis of effectiveness of operational optimizations on real-world inference latency can be
found in Appendix C

5

Under review as a conference paper at ICLR 2020

Table 1: Experimental results on SQuAD v1.1 dev F1 score in search of good model settings for the
IB-BERTLARGE teacher (left) and the MobileBERT student (right). The number of layers is set to 24
for all models. Especially, in the right table, the inter-block hidden size of all models is set to 512,
which is the same as the chosen teacher model, and the total parameter numbers in these models are
all roughly 24M.

#Params hinter hintra #Head SQuAD
(a) 356M 1024 1024 16 88.2
(b) 325M 768 1024 16 88.6
(c) 293M 512 1024 16 88.1
(d) 276M 384 1024 16 87.6
(e) 262M 256 1024 16 87.0
(f) 293M 512 1024 4 88.3
(g) 92M 512 512 4 85.8
(h) 33M 512 256 4 84.8
(i) 15M 512 128 4 82.0

hintra #Head (#Params) #FFN (#Params) SQuAD
192 6 (8M) 1 (7M) 82.6
160 5 (6.5M) 2 (10M) 83.4
128 4 (5M) 4 (12.5M) 83.4
96 3 (4M) 8 (14M) 81.6

Table 2: The detailed model settings of a few models. L, hinter, hintra, hFFN, hembedding,
#Head, #FFN, and #Params denote the number of layers, inter-block hidden size (feature map
size), intra-block hidden size, FFN intermediate size, embedding table size, the number of heads in
multi-head attention, the number of FFN layers, and the number of parameters, respectively.

L hinter hintra hFFN hembedding #Head #FFN #Params
BERTLARGE 24 1024 1024 4096 1024 16 1 334M
BERTBASE 12 768 768 3072 768 12 1 109M
BERTSMALL* 12 384 384 1536 128 12 1 25.3M
IB-BERTLARGE 24 512 1024 4096 128 4 1 293M
MobileBERT 24 512 128 512 128 4 4 25.3M

Architecture Search of the Teacher As shrinking the inter-block size can effectively compress
the model while maintaining its representational power (Sandler et al., 2018), our design philosophy
for the teacher model is to use as small inter-block hidden size (feature map size) as possible as
long as there is no accuracy loss. Under this guideline, we design experiments to manipulate the
inter-block size of a BERTLARGE-sized IB-BERT, and the results are shown in the left panel of Table
1 with labels (a)-(e). As can be seen, decreasing the inter-block hidden size doesn’t damage the
performance of BERT until the inter-block size is smaller than 512. As a result, we choose the
IB-BERTLARGE with its inter-block hidden size being 512 as the teacher model.

One may wonder whether we can also shrink the intra-block hidden size of the teacher, as this may
bridge the gap between the student and teacher (Mirzadeh et al., 2019). We conduct experiments
and the results are shown in the left panel of Table 1 with labels (f)-(i). We can see that when the
intra-block hidden size is reduced, the model performance is dramatically worse. This means that
the intra-block hidden size, which represents the representation power of non-linear modules, plays
a crucial role in BERT. Therefore, unlike the inter-block hidden size, we do not shrink the intra-
block hidden size of our teacher model. Besides, by comparing (a) and (f) in Table 1, we can see
that reducing the number of heads from 16 to 4 does not harm the performance of BERT. This is in
line with the observation in the recent literature (Michel et al., 2019; Voita et al., 2019).

Architecture Search of the Student We seek a compression ratio of 4× for BERTBASE, so we
design a set of MobileBERT models all with approximately 25M parameters but different ratios of
the parameter numbers in MHA and FFN to select a good student model. The right part of Table
1 shows our experimental results. They have different balances between self-attentions and feed-
forward networks. From the table, we can see that the model performance reaches the peak when
the ratio of parameters in MHA and FFN is 0.4∼ 0.6. This may justify why the original Transformer
chooses the parameter ratio of self-attention and feed-forward networks to 0.5.

We choose the architecture with 128 intra-block hidden size and 4 stacked FFNs as the student model
in consideration of model accuracy and training efficiency. We also accordingly set the number of
attention heads in the teacher model to 4 in preparation for the progressive knowledge transfer. Table
2 demonstrates the model settings of our IB-BERTLARGE teacher and MobileBERT student.

6

Under review as a conference paper at ICLR 2020

Table 3: The test results on the GLUE benchmark (except WNLI). The number below each task
denotes the number of training examples. The metrics for these tasks can be found in the GLUE
paper (Wang et al., 2018). For tasks with multiple metrics, the metrics are arithmetically averaged to
compute the GLUE score. “OPT” denotes the operational optimizations introduced in Section 4.3.

#Params #FLOPS CoLA SST-2 MRPC STS-B QQP MNLI-m/mm QNLI RTE GLUE8.5k 67k 3.7k 5.7k 364k 393k 108k 2.5k
ELMo-BiLSTM-Attn - - 33.6 90.4 84.4 72.3 63.1 74.1/74.5 79.8 58.9 70.0
OpenAI GPT 109M - 47.2 93.1 87.7 84.8 70.1 80.7/80.6 87.2 69.1 76.9
BERTBASE 109M 22.5B 52.1 93.5 88.9 85.8 71.2 84.6/83.4 90.5 66.4 78.3
BERTBASE-6L-PKD 66.5M 11.3B - 92.0 85.0 - 70.7 81.5/81.0 89.0 65.5 -
BERTBASE-3L-PKD 45.3M 5.7B - 87.5 80.7 - 68.1 76.7/76.3 84.7 58.2 -
MobileBERT 25.3M 5.7B 50.5 92.8 88.8 84.4 70.2 83.3/82.6 90.6 66.2 77.7
MobileBERT w/o OPT 25.3M 5.7B 51.1 92.6 88.8 84.8 70.5 84.3/83.4 91.6 70.4 78.5

5.2 IMPLEMENTATION DETAILS

Following BERT (Devlin et al., 2018), we use the BooksCorpus (Zhu et al., 2015) and English
Wikipedia as our pre-training data. To make the IB-BERTLARGE teacher reach the same accuracy as
original BERTLARGE, we train IB-BERTLARGE on 256 TPU v3 chips for 500k steps with a batch size
of 4096 and LAMB optimizer (You et al., 2019). For MobileBERT, we also use the same training
schedule. Besides, progressive knowledge transfer of MobileBERT over 24 layers takes 240k steps,
so that each layer of MobileBERT is trained for 10k steps.

For the downstream tasks, all reported results are obtained by simply fine-tuning MobileBERT just
like what the original BERT does. To fine-tune the pre-trained models, we search the optimization
hyperparameters in a search space including different batch sizes (16/32/48), learning rates ((1-10)
* e-5), and the number of epochs (2-10). The search space is different from the original BERT
because we find that MobileBERT usually needs a larger learning rate and more training epochs
in fine-tuning. We select the model for testing according to their performance on the development
(dev) set.

5.3 GLUE DATASET

The General Language Understanding Evaluation (GLUE) benchmark (Wang et al., 2018) is a col-
lection of 9 natural language understanding tasks. We briefly describe these tasks in Appendix F.
Following BERT (Devlin et al., 2018), we use the final hidden vector corresponding to the first input
token as model output, and introduced a new linear classification layer for the final predictions.

We submit the predictions of MobileBERT and MobileBERT without operational optimizations to
the online test evaluation system2 of GLUE to get the test results. We compare MobileBERT with
BERTBASE and a few other state-of-the-art pre-BERT models on the GLUE leaderboard: OpenAI
GPT (Radford et al., 2018) and ELMo (Peters et al., 2018). We also compare with a recent work on
compressing BERT: BERT-PKD (Sun et al., 2019). The results are listed in Table 3.3

We can see that our MobileBERT is quite competitive with the original BERTBASE. It outperforms
BERTBASE a bit on QNLI and RTE tasks, while the overall GLUE score performance gap is only
0.6. Moreover, It outperform the strong OpenAI GPT baseline by 0.8 GLUE score with 4.3× smaller
model size. We also find that the introduced operational optimizations hurt the model performance a
bit. Without these optimizations, MobileBERT can even outperform BERTBASE by 0.2 GLUE score.

5.4 SQUAD DATASET

SQuAD is a large-scale reading comprehension datasets. SQuAD1.1 (Rajpurkar et al., 2016) only
contains questions that always have an answer in the given context, while SQuAD2.0 (Rajpurkar
et al., 2018) contains unanswerable questions. Following BERT (Devlin et al., 2018), we treat
questions that do not have an answer as having an answer span with start and end at the sentence
classification token to fine-tune a MobileBERT on SQuAD2.0.

2https://gluebenchmark.com/leaderboard
3We follow Devlin et al. (2018) to skip the WNLI task.

7

https://gluebenchmark.com/leaderboard

Under review as a conference paper at ICLR 2020

Table 4: The results on the SQuAD dev datasets. †marks our runs with the official code.

#Params #FLOPS SQuAD v1.1 SQuAD v2.0
EM F1 EM F1

DocQA + ELMo - - - - 65.1 67.6
BERTBASE 109M 71.2B 80.8 88.5 74.2† 77.1†
MobileBERT 25.3M 18.2B 82.9 90.0 76.2 79.2
MobileBERT w/o OPT 25.3M 18.2B 83.4 90.3 77.6 80.2

Table 5: Ablation on the dev sets of GLUE benchmark. BERTBASE, BERTSMALL∗, and the bare
MobileBERT (i.e., w/o PD, FMT, AT, FMT & OPT) use the standard BERT pre-training scheme.
PD, AT, FMT, and OPT denote Pre-training Distillation, Attention Transfer, Feature Map Transfer,
and operational OPTimizations, respectively. †marks our runs with the official code.

#Params #FLOPS Latency MNLI-m QNLI MRPC SST-2
BERTLARGE (Devlin et al., 2018) 334M 79.2B 5023 ms 86.6 92.1† 87.8 93.7
IB-BERTLARGE 293M 75.8B 5077 ms 87.0 93.2 87.3 94.1
BERTBASE (Devlin et al., 2018) 109M 22.5B 1468 ms 84.4 91.1† 86.7 92.9
BERTMEDIUM (Turc et al., 2019) 41.1M 6.8B - 81.2 - - 89.6
BERTSMALL (Turc et al., 2019) 28.2M 3.4B - 78.8 - - 88.4
BERTSMALL* 25.3M 5.8B 466 ms 80.2 88.1 84.1 89.8
MobileBERT (bare) 25.3M 5.7B 620 ms 80.8 88.2 84.3 90.1

+ PD 25.3M 5.7B 620 ms 81.1 88.9 85.5 91.7
+ PD + FMT 25.3M 5.7B 620 ms 83.8 91.1 87.0 92.2
+ PD + FMT + AT 25.3M 5.7B 620 ms 84.4 91.5 87.0 92.5
+ PD + FMT + AT + OPT 25.3M 5.7B 367 ms 83.9 91.0 87.5 92.1

We evaluate MobileBERT only on the SQuAD dev datasets, as there is nearly no single model
submission on SQuAD test leaderboard4. We compare our MobileBERT with BERTBASE and a
strong baseline DocQA (Clark & Gardner, 2017). As shown in Table 4, MobileBERT outperforms a
large margin over BERTBASE and DocQA. We notice that MobileBERT also outperforms BERTBASE
on QNLI, a question-answering GLUE task. This may be due to that since we search the model
settings on SQuAD, MobileBERT may be over-fitted to question answering tasks.

5.5 ABLATION STUDY AND DISCUSSION

We perform an ablation study to investigate how each component of MobileBERT contributes to its
performance on the dev data of a few GLUE tasks with diverse characteristics. To accelerate the
experiment process, we halve the original pre-training schedule in the ablation study.

We conduct a set of ablation experiments with regard to Attention Transfer (AT), Feature Map Trans-
fer (FMT) and Pre-training Distillation (PD). The operational OPTimizations (OPT) are removed in
these experiments. Moreover, to investigate the effectiveness of the proposed novel architecture of
MobileBERT, we compare MobileBERT with two compact BERT models from Turc et al. (2019).
For a fair comparison, we also design our own BERT baseline BERTSMALL*, which is the best model
setting we can find with roughly 25M parameters under the original BERT architecture. The detailed
model setting of BERTSMALL* can be found in Table 2.

Besides these experiments, to verify the performance of MobileBERT on real-world mobile devices,
we export the models with Tensorflow Lite5 APIs and measure the inference latencies on a single
large core of a Pixel 3 phone with a fixed sequence length of 128.

The results are listed in Table 5. We first can see that the propose Feature Map Transfer contributes
most to the performance improvement of MobileBERT, while Attention Transfer and Pre-training
Distillation also play positive roles. As expected, the proposed operational OPTimizations hurt the
model performance a bit, but it brings a crucial speedup of 1.68×. In architecture comparison, we
find that although specifically designed for progressive knowledge transfer, our MobileBERT archi-
tecture alone is still quite competitive. It outperforms BERTSMALL* and BERTSMALL on all com-
pared tasks, while outperforming the 1.7× sized BERTMEDIUM on the SST-2 task. Finally, we can

4https://rajpurkar.github.io/SQuAD-explorer/
5https://www.tensorflow.org/lite

8

https://rajpurkar.github.io/SQuAD-explorer/
https://www.tensorflow.org/lite

Under review as a conference paper at ICLR 2020

L1 H1 L1 H2 L1 H3 L1 H4 L12 H1 L12 H2 L12 H3 L12 H4

MobileBERT (bare)
+ PD + FMT + AT

IB-BERT
Teacher

MobileBERT (bare)

MobileBERT (bare)
+ PD + FMT

MobileBERT (bare)
+ PD

Figure 3: The visualization of the attention distributions in some attention heads of the IB-BERT
teacher and different MobileBERT models. We provide the visualization of attention distributions
of all 24 layer in Appendix G to readers for further details.

find that although augmented with the powerful progressive knowledge transfer, our MobileBERT
still degrades greatly when compared to the IB-BERTLARGE teacher.

We visualize the attention distributions of the 1st and the 12th layers of a few models in Figure
3 for further investigation. The proposed attention transfer can help the student mimic the atten-
tion distributions of the teacher very well. Surprisingly, we find that the attention distributions in
the attention heads of ”MobileBERT(bare)+PD+FMT” are exactly a re-order of those of ”Mobile-
BERT(bare)+PD+FMT+AT” (also the teacher model), even if it has not been trained by the attention
transfer objective. This phenomenon indicates that multi-head attention is a crucial and unique part
of the non-linearity of BERT. Moreover, it can explain the minor improvements of Attention Trans-
fer in ablation table 5, since the alignment of feature maps lead to the alignment of attention
distributions.

6 CONCLUSION

We have presented MobileBERT which is a task-agnostic compact variant of BERT. It is built upon
a progressive knowledge transfer method and a conjugate architecture design. Standard model com-
pression techniques including quantization (Shen et al., 2019) and pruning (Zhu & Gupta, 2017) can
be applied to MobileBERT to further reduce the model size as well as the inference latency. In ad-
dition, although we have utilized low-rank decomposition for the embedding layer, it still accounts
for a large part in the final model. We believe there is a big room for extremely compressing the
embedding table (Khrulkov et al., 2019; May et al., 2019).

REFERENCES

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise training
of deep networks. In Advances in neural information processing systems, pp. 153–160, 2007.

Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo Giampiccolo, and Bernardo. Magnini. The
fifth PASCAL recognizing textual entailment challenge. TAC, 2009.

Cristian Bucilu, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In Proceedings
of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
535–541. ACM, 2006.

9

Under review as a conference paper at ICLR 2020

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. Semeval-2017 task
1: Semantic textual similarity-multilingual and cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055, 2017.

Z. Chen, H. Zhang, X. Zhang, and L. Zhao. Quora question pairs. Quora, 2018. URL https:
//data.quora.com/First-Quora-Dataset-Release-Question-Pairs.

Christopher Clark and Matt Gardner. Simple and effective multi-paragraph reading comprehension.
arXiv preprint arXiv:1710.10723, 2017.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D Manning. What does bert look
at? an analysis of bert’s attention. arXiv preprint arXiv:1906.04341, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

William B Dolan and Chris. Brockett. Automatically constructing a corpus of sentential paraphrases.
In Proceedings of the International Workshop on Paraphrasing., 2005.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Fei Gao, Lijun Wu, Li Zhao, Tao Qin, Xueqi Cheng, and Tie-Yan Liu. Efficient sequence learning
with group recurrent networks. In Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol-
ume 1 (Long Papers), pp. 799–808, 2018.

Tobias Glasmachers. Limits of end-to-end learning. arXiv preprint arXiv:1704.08305, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Dan Hendrycks and Kevin Gimpel. Bridging nonlinearities and stochastic regularizers with gaussian
error linear units. arXiv, 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep belief
nets. Neural computation, 18(7):1527–1554, 2006.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. arXiv
preprint arXiv:1905.02244, 2019.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt
Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡ 0.5 mb model size.
arXiv preprint arXiv:1602.07360, 2016.

Ganesh Jawahar, Benoı̂t Sagot, Djamé Seddah, Samuel Unicomb, Gerardo Iñiguez, Márton Karsai,
Yannick Léo, Márton Karsai, Carlos Sarraute, Éric Fleury, et al. What does bert learn about the
structure of language? In 57th Annual Meeting of the Association for Computational Linguistics
(ACL), Florence, Italy, 2019.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld, Luke Zettlemoyer, and Omer Levy.
Spanbert: Improving pre-training by representing and predicting spans. arXiv preprint
arXiv:1907.10529, 2019.

10

https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs

Under review as a conference paper at ICLR 2020

Valentin Khrulkov, Oleksii Hrinchuk, Leyla Mirvakhabova, and Ivan Oseledets. Tensorized embed-
ding layers for efficient model compression. arXiv preprint arXiv:1901.10787, 2019.

Yoon Kim and Alexander M Rush. Sequence-level knowledge distillation. arXiv preprint
arXiv:1606.07947, 2016.

Oleksii Kuchaiev and Boris Ginsburg. Factorization tricks for lstm networks. arXiv preprint
arXiv:1703.10722, 2017.

Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. arXiv preprint arXiv:1808.06226, 2018.

Guillaume Lample, Alexandre Sablayrolles, Marc’Aurelio Ranzato, Ludovic Denoyer, and Hervé
Jégou. Large memory layers with product keys. CoRR, abs/1907.05242, 2019. URL http:
//arxiv.org/abs/1907.05242.

Hector J Levesque, Ernest Davis, and Leora. Morgenstern. The Winograd schema challenge. In
AAAI Spring Symposium: Logical Formalizations of Commonsense Reasoning., volume 46, pp.
47, 2011.

Zhuohan Li, Di He, Fei Tian, Tao Qin, Liwei Wang, and Tie-Yan Liu. Hint-based training
for non-autoregressive translation, 2019. URL https://openreview.net/forum?id=
r1gGpjActQ.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Ping Luo, Zhenyao Zhu, Ziwei Liu, Xiaogang Wang, and Xiaoou Tang. Face model compression by
distilling knowledge from neurons. In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

Xindian Ma, Peng Zhang, Shuai Zhang, Nan Duan, Yuexian Hou, Dawei Song, and Ming Zhou. A
tensorized transformer for language modeling. arXiv preprint arXiv:1906.09777, 2019.

Brian W Matthews. Comparison of the predicted and observed secondary structure of t4 phage
lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure, 405(2):442–451, 1975.

Avner May, Jian Zhang, Tri Dao, and Christopher Ré. On the downstream performance of com-
pressed word embeddings. arXiv preprint arXiv:1909.01264, 2019.

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? arXiv
preprint arXiv:1905.10650, 2019.

Seyed-Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, and Hassan Ghasemzadeh. Improved knowl-
edge distillation via teacher assistant: Bridging the gap between student and teacher. arXiv
preprint arXiv:1902.03393, 2019.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word representations. arXiv preprint arXiv:1802.05365,
2018.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language un-
derstanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-
assets/researchcovers/languageunsupervised/language understanding paper. pdf, 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI Blog, 1(8), 2019.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions
for squad. arXiv preprint arXiv:1806.03822, 2018.

11

http://arxiv.org/abs/1907.05242
http://arxiv.org/abs/1907.05242
https://openreview.net/forum?id=r1gGpjActQ
https://openreview.net/forum?id=r1gGpjActQ

Under review as a conference paper at ICLR 2020

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550, 2014.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 4510–4520, 2018.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael W. Mahoney,
and Kurt Keutzer. Q-bert: Hessian based ultra low precision quantization of bert. arXiv preprint
arXiv:1909.05840, 2019.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Ng,
and Christopher. Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of EMNLP., pp. 1631–1642, 2013.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient knowledge distillation for bert model
compression. arXiv preprint arXiv:1908.09355, 2019.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2820–2828, 2019.

Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga Vechtomova, and Jimmy Lin. Distilling task-
specific knowledge from bert into simple neural networks. arXiv preprint arXiv:1903.12136,
2019.

Henry Tsai, Jason Riesa, Melvin Johnson, Naveen Arivazhagan, Xin Li, and Amelia Archer. Small
and practical bert models for sequence labeling. arXiv preprint arXiv:1909.00100, 2019.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Well-read students learn better:
The impact of student initialization on knowledge distillation. arXiv preprint arXiv:1908.08962,
2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and
composing robust features with denoising autoencoders. In Proceedings of the 25th international
conference on Machine learning, pp. 1096–1103. ACM, 2008.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. arXiv preprint
arXiv:1905.09418, 2019.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural network acceptability judgments.
arXiv preprint 1805.12471, 2018.

Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. In Proceedings of NAACL-HLT., 2018.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and Quoc V
Le. Xlnet: Generalized autoregressive pretraining for language understanding. arXiv preprint
arXiv:1906.08237, 2019.

Doyeob Yeo, Ji-Roon Bae, Nae-Soo Kim, Cheol-Sig Pyo, Junho Yim, and Junmo Kim. Sequential
knowledge transfer in teacher-student framework using densely distilled flow-based information.
In 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 674–678. IEEE,
2018.

12

Under review as a conference paper at ICLR 2020

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, and Cho-Jui Hsieh. Large batch optimization for deep learning: Training
bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving the perfor-
mance of convolutional neural networks via attention transfer. arXiv preprint arXiv:1612.03928,
2016.

Ting Zhang, Guo-Jun Qi, Bin Xiao, and Jingdong Wang. Interleaved group convolutions. In Pro-
ceedings of the IEEE International Conference on Computer Vision, pp. 4373–4382, 2017.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 6848–6856, 2018.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for
model compression. arXiv preprint arXiv:1710.01878, 2017.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and
Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by watching
movies and reading books. In Proceedings of the IEEE international conference on computer
vision, pp. 19–27, 2015.

13

Under review as a conference paper at ICLR 2020

APPENDIX

A EXTRA RELATED WORK ON LAYER-WISE TRAINING OF NEURAL
NETWORKS

Layer-wise pre-training of neural networks can be dated back to Deep Belief Networks (DBN) (Hin-
ton et al., 2006) and stacked auto-encoders (Vincent et al., 2008). Bengio et al. (2007) showed that
the unsupervised pre-training of DBN helps to mitigate the difficult optimization problem of deep
networks by better initializing the weights of all layers. Although they made essential breakthrough
in the application of neural networks, they are widely considered to be obsolete. A more popular
way today is to train deep neural networks in an end-to-end fashion. However, Glasmachers (2017)
recently showed that end-to-end learning can sometimes be very inefficient.

In this paper, we propose a progressive knowledge transfer scheme to combine the best of both
worlds. Compared to previous layer-wise methods, we use a well-optimized wider teacher to guide
the layer-wise pre-training of the narrower student, rather than a greedy layer-wise unsupervised
way, which makes better use of labels and rewards. Our method also tackle the difficult training
problem of end-to-end training from scratch.

B EXTRA RELATED WORK ON COMPACT ARCHITECTURE DESIGN

While much recent research has focused on improving efficient Convolutional Neural Networks
(CNN) for mobile vision applications (Iandola et al., 2016; Howard et al., 2017; Zhang et al., 2017;
2018; Sandler et al., 2018; Tan et al., 2019; Howard et al., 2019), they are usually tailored for
CNN. Popular lightweight operations such as depth-wise convolution (Howard et al., 2017) cannot
be directly applied to Transformer or BERT. In the NLP literature, the most relevant work can be
group LSTMs (Kuchaiev & Ginsburg, 2017; Gao et al., 2018), which employs the idea of group
convolution (Zhang et al., 2017; 2018) into Recurrent Neural Networks (RNN).

Recently, compressing or accelerating Transformer or BERT has attracted much attention. Ma et al.
(2019) apply Block-Term Tensor Decomposition on the self-attention modules of Transformer and
achieve a compression of 2.5 on the machine translation task, but they don’t consider how to com-
press the feed-forward networks, which constrains the compression ratio. Lample et al. (2019) use
structured memory layers to replace feed-forward networks in BERT and get better perplexity by
half the computation, but they cannot compress the model size. Compared to these work, Mobile-
BERT reduces overheads in both self-attentions and feed-forward networks of BERT by bottleneck
structure, while achieves efficiency with regard to both storage and computation.

C LATENCY ANALYSIS OF OPERATIONAL OPTIMIZATIONS

We evaluate the effectiveness of our two operational optimizations for MobileBERT introduced in
Section 4.3: replacing layer normalization (LayerNorm) with NoNorm and replacing gelu activation
with relu activation. We use the same experimental setting as in Section 5.5, where the models are
exported to Tensorflow Lite format and evaluated on a single large core of a Pixel 3 phone with
a fixed sequence length of 128. From Table 6, we can see that both NoNorm and relu are very
effective in reducing the latency of MobileBERT, even if these two operational optimizations do not
reduce FLOPS. This reveals the gap between the real-world inference latency and the theoretical
computation overhead (i.e., FLOPS).

Table 6: The effectiveness of operational optimizations on real-world inference latency.

Setting #FLOPS Latency

MobileBERT

LayerNorm & gelu 5.7B 620 ms
NoNorm & gelu 5.7B 449 ms

LayerNorm & relu 5.7B 538 ms
NoNorm & relu 5.7B 367 ms

14

Under review as a conference paper at ICLR 2020

D EXTRA EXPERIMENTAL SETTINGS

Progressive Knowledge Transfer Our final progressive knowledge transfer loss L`PKT in Section
3.3 for the `th stage can be written as:

L`PKT = λL`AT + µL`FMT + βL`µ + γL`σ (7)

(λ, µ, β, γ) are hyperparameters to balance the different loss terms. Specifically, we use λ = 1, µ =
100, β = 5000, γ = 5 in our all experiments.

Pre-train MobileBERT For a fair comparison with original BERT, we follow the same pre-
processing scheme as BERT, where we mask 15% of all WordPiece (Kudo & Richardson, 2018)
tokens in each sequence at random and use next sentence prediction. Please note that MobileBERT
can be potentially further improved by several training techniques recently introduced, such as span
prediction (Joshi et al., 2019) or removing next sentence prediction objective (Liu et al., 2019). We
leave it for future work.

In pre-training distillation, the hyperparameter α is used to balance the original masked language
modeling loss and the distillation loss. Following (Kim & Rush, 2016), we set α to 0.5.

E COMPARISON WITH DISTILBERT

We notice that recently there is an unpublished work6 that also propose a task-agnosticly compressed
BERT, called DistilBERT. Basically, DistilBERT is a 6-layer truncated BERTBASE, which is distilled
from BERTBASE on unannotated data with masked language modeling target. The distillation process
of DistilBERT is quite similar to the pre-training distillation described in Section 3.4. In comparison,
in this paper, we propose a pair of conjugate architectures to help knowledge transfer and design
a progressive knowledge transfer scheme which transfers the intrinsic knowledge of intermediate
layers from the teacher to the student in a bottom-to-top progressive way.

F GLUE DATASET

In this section, we provide a brief description of the tasks in the GLUE benchmark (Wang et al.,
2018).

CoLA The Corpus of Linguistic Acceptability (Warstadt et al., 2018) is a collection of English
acceptability judgments drawn from books and journal articles on linguistic theory. The task is
to predict whether an example is a grammatical English sentence and is evaluated by Matthews
correlation coefficient (Matthews, 1975).

SST-2 The Stanford Sentiment Treebank (Socher et al., 2013) is a collection of sentences from
movie reviews and human annotations of their sentiment. The task is to predict the sentiment of a
given sentence and is evaluated by accuracy.

MRPC The Microsoft Research Paraphrase Corpus (Dolan & Brockett, 2005) is a collection of
sentence pairs automatically extracted from online news sources. They are labeled by human an-
notations for whether the sentences in the pair are semantically equivalent. The performance is
evaluated by both accuracy and F1 score.

STS-B The Semantic Textual Similarity Benchmark (Cer et al., 2017) is a collection of sentence
pairs drawn from news headlines, video and image captions, and natural language inference data.
Each pair is human-annotated with a similarity score from 1 to 5. The task is to predict these scores
and is evaluated by Pearson and Spearman correlation coefficients.

6It is actually a blog: “Smaller, faster, cheaper, lighter: Introducing DistilBERT, a distilled version of
BERT”, https://medium.com/huggingface/distilbert-8cf3380435b5, Sept. 23, 2019.

15

https://medium.com/huggingface/distilbert-8cf3380435b5

Under review as a conference paper at ICLR 2020

QQP The Quora Question Pairs7 (Chen et al., 2018) dataset is a collection of question pairs from
the community question-answering website Quora. The task is to determine whether a pair of ques-
tions are semantically equivalent and is evaluated by both accuracy and F1 score.

MNLI The Multi-Genre Natural Language Inference Corpus (Williams et al., 2018) is a collection
of sentence pairs with textual entailment annotations. Given a premise sentence and a hypothesis
sentence, the task is to predict whether the premise entails the hypothesis (entailment), contradicts
the hypothesis (contradiction), or neither (neutral) and is evaluated by accuracy on both matched
(in-domain) and mismatched (cross-domain) sections of the test data.

QNLI The Question-answering NLI dataset is converted from the Stanford Question Answering
Dataset (SQuAD) (Rajpurkar et al., 2016). The task is to determine whether the context sentence
contains the answer to the question and is evaluated by the test accuracy.

RTE The Recognizing Textual Entailment (RTE) datasets come from a series of annual textual
entailment challenges (Bentivogli et al., 2009). The task is to predict whether sentences in a sentence
pair are entailment and is evaluated by accuracy.

WNLI The Winograd Schema Challenge (Levesque et al., 2011) is a reading comprehension task
in which a system must read a sentence with a pronoun and select the referent of that pronoun from
a list of choices. We follow Devlin et al. (2018) to skip this task in our experiments, because few
previous works do better than predicting the majority class for this task.

G VISUALIZATION OF ATTENTION DISTRIBUTIONS

We show the visualization of attention distributions in all 24 layers of a few models in Figure 4-5 (for
IB-BERT teacher), Figure 6-7 (for MobileBERT w/o OPT). Figure 8-9 (for MobileBERT w/o OPT
& AT), Figure 10-11 (for MobileBERT w/o OPT, AT & FMT), and Figure 12-13 (for MobileBERT
w/o OPT, AT FMT & PD).

7https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs

16

https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs

Under review as a conference paper at ICLR 2020

Figure 4: The visualization of attention distributions in the first 12 layers of
IB-BERT teacher.

17

Under review as a conference paper at ICLR 2020

Figure 5: The visualization of attention distributions in the last 12 layers of
IB-BERT teacher.

18

Under review as a conference paper at ICLR 2020

Figure 6: The visualization of attention distributions in the first 12 layers of
MobileBERT (bare) + PD + FMT + AT.

19

Under review as a conference paper at ICLR 2020

Figure 7: The visualization of attention distributions in the last 12 layers of
MobileBERT (bare) + PD + FMT + AT.

20

Under review as a conference paper at ICLR 2020

Figure 8: The visualization of attention distributions in the first 12 layers of
MobileBERT (bare) + PD + FMT.

21

Under review as a conference paper at ICLR 2020

Figure 9: The visualization of attention distributions in the last 12 layers of
MobileBERT (bare) + PD + FMT.

22

Under review as a conference paper at ICLR 2020

Figure 10: The visualization of attention distributions in the first 12 layers of
MobileBERT (bare) + PD.

23

Under review as a conference paper at ICLR 2020

Figure 11: The visualization of attention distributions in the last 12 layers of
MobileBERT (bare) + PD.

24

Under review as a conference paper at ICLR 2020

Figure 12: The visualization of attention distributions in the first 12 layers of
MobileBERT (bare).

25

Under review as a conference paper at ICLR 2020

Figure 13: The visualization of attention distributions in the last 12 layers of
MobileBERT (bare).

26

	Introduction
	Related Work
	BERT
	Knowledge Transfer for Model Compression

	Bottom-to-Top Progressive Knowledge Transfer of BERT
	Feature Map Transfer (FMT)
	Attention Transfer (AT)
	Bottom-to-Top Progressive Knowledge Transfer (PKT)
	Pre-training Distillation (PD)

	MobileBERT: Compact Architecture Design of BERT
	Bottleneck and Inverted Bottleneck
	Stacked Feed-Forward Networks
	Further Operational Optimizations

	Experiments
	Model Settings of the Teacher and the Student
	Implementation Details
	GLUE Dataset
	SQuAD Dataset
	Ablation Study and Discussion

	Conclusion
	Extra Related Work on Layer-wise Training of Neural Networks
	Extra Related Work on Compact Architecture Design
	Latency Analysis of Operational Optimizations
	Extra Experimental Settings
	Comparison with DistilBERT
	GLUE Dataset
	Visualization of Attention Distributions

