
Under review as a conference paper at ICLR 2020

GUMBELCLIP: OFF-POLICY ACTOR-CRITIC USING
EXPERIENCE REPLAY

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper presents GumbelClip, a set of modifications to the actor-critic algo-
rithm, for off-policy reinforcement learning. GumbelClip uses the concepts of
truncated importance sampling along with additive noise to produce a loss func-
tion enabling the use of off-policy samples. The modified algorithm achieves
an increase in convergence speed and sample efficiency compared to on-policy
algorithms and is competitive with existing off-policy policy gradient methods
while being significantly simpler to implement. The effectiveness of GumbelClip
is demonstrated against existing on-policy and off-policy actor-critic algorithms
on a subset of the Atari domain.

1 INTRODUCTION

Recent advances in reinforcement learning (RL) have enabled the extension of long-standing meth-
ods to complex and large-scale tasks such as Atari (Mnih et al., 2015), Go (Silver et al., 2016),
and DOTA (OpenAI, 2018). The key driver has been the use of deep neural networks, a non-linear
function approximator, with the combination usually referred to as Deep Reinforcement Learning
(DRL) (LeCun et al., 2015; Mnih et al., 2015). However, deep learning-based methods are usually
data-hungry, requiring millions of samples before the network converges to a stable solution. As
such, DRL methods are usually trained in a simulated environment where an arbitrary amount of
data can be generated.

RL algorithms can be classified as either learning in an off-policy or on-policy setting. In the on-
policy setting, an agent learns directly from experience generated by its current policy. In contrast,
the off-policy setting enables the agent to learn from experience generated by its current policy
or/and other separate policies. An algorithm that learns in the off-policy setting has much greater
sample efficiency as old experience from the current policy can be reused; it also enables off-policy
algorithms to learn an optimal policy while executing an exploration-focused policy (Sutton et al.,
1998).

The most famous off-policy method is Q-Learning (Watkins & Dayan, 1992) which learns an action-
value function, Q(s, a), that maps the value to a state s and action a pair. Deep Q-Learning (DQN),
the marriage of Q-Learning with deep neural networks, was popularised by Mnih et al. (2015) and
used various modifications, such as experience replay, for stable convergence. Within DQN, experi-
ence replay (Lin, 1992) is often motivated as a technique for reducing sample correlation.

Unfortunately, all action-value methods, including Q-Learning, have two significant disadvantages.
First, they learn deterministic policies, which cannot handle problems that require stochastic poli-
cies. Second, finding the greedy action with respect to the Q function is costly for large action spaces.
To overcome these limitations, one could use policy gradient algorithms (Sutton et al., 2000), such
as actor-critic methods, which learn in an on-policy setting at the cost of sample efficiency.

The ideal solution would be to combine the sample efficiency of off-policy algorithms with the
desirable attributes of on-policy algorithms. Work along this line has been done by using importance
sampling (Degris et al., 2012) or by combining several techniques together, as in ACER (Wang et al.,
2016). However, the resulting methods are quite complex and require many modifications to existing
algorithms.

1

Under review as a conference paper at ICLR 2020

This paper, proposes a set of adjustments to A2C (Mnih et al., 2016), a parallel on-policy actor-critic
algorithm, enabling off-policy learning from stored trajectories. Therefore, our contributions are as
follows:

• GumbelClip, a fully off-policy actor-critic algorithm, the result of a small set of simple
adjustments, in under 10 lines of code (LOC)1, to the A2C algorithm.

• GumbelClip has increased sample efficiency and overall performance over on-policy actor-
critic algorithms, such as A2C.

• GumbelClip performs similarily to other off-policy actor-critic algorithms, such as ACER,
while being significantly simpler to implement.

The paper is organized as follows: Section 2 covers background information, Section 3 describes
the GumbelClip algorithm, Section 4 details the experiments along with results, discussion, and ab-
lations of our methodology. Section 5 discusses possible future work, and finally Section 6 provides
concluding remarks.

2 BACKGROUND AND NOTATION

2.1 PROBLEM SETUP

Consider an agent interacting with a Markov Decision Process (MDP) consisting of a set of states
S, a set of actions A, a transition function P : S × A → (S → [0, 1]), and a reward function
r : S × A → R. Within this work, discrete actions and time steps are assumed. A policy is a
probability distribution over actions conditioned on states, π : S ×A → [0, 1].

At each time step t, the agent observes the environment state st ∈ S, chooses an action at ∈ A
from its policy π(at|st), and receives a reward rt from the environment. The goal of the agent is to
maximize the discounted future return Gt =

∑∞
k=0 γ

krt+k+1. The discount factor γ ∈ [0, 1) trades
off the importance of immediate and future rewards. Following from this, the value function of a
policy π, in a discounted problem, is defined as the expected return V π(st) = Ea∼π[Gt|St = s] and
its action-value counterpart as Qπ(st, at) = Ea∼π[Gt|St = s,At = a].

2.2 POLICY GRADIENT METHODS

To optimize the parameters θ of the stochastic policy π the policy gradient theorem (Sutton et al.,
2000) is used, which provides an expression for the gradient of the discounted reward objectives with
respect to parameter θ. Therefore, the parameters θ of the differentiable stochastic policy πθ(at|st)
are updated as:

∇θJ(θ) = Eπ[Ψπ(st, at)∇θ log πθ(at|st)] (1)
where Ψπ(st, at), as shown by Schulman et al. (2015b), can be replaced with quantities such as:
the total reward of the trajectory, the TD residual, or the state-action value function Qπ(st, at). The
choice of Ψπ affects the variance of the estimated gradient. This work uses the advantage function
Aπ(st, at) = Qπ(st, at)− V π(st), which provides a relative measure of value for each action. The
advantage function helps to reduce the variance of the gradient estimator while keeping the bias
unchanged.

2.3 GUMBEL-SOFTMAX DISTRIBUTION

The Gumbel-Softmax distribution (GSD) (Jang et al., 2016) is a continuous distribution used to
approximate samples from a categorical distribution. The GSD uses standard Gumbel noise to
sample directly from the softmax distribution. On its own, the Gumbel distribution is typically
used to model the maximum of a set of independent samples. Given categorical class probabilities
π1, π2, ..., πk the Gumbel-Softmax distribution is defined as:

yi =
exp((log(πi) + gi)/τ)∑k
j=1 exp((log(πj) + gj)/τ)

for i = 1, ..., k (2)

1Assuming code for replay memory is available.

2

Under review as a conference paper at ICLR 2020

ex
p

ec
ta

ti
ona) Categorical

category

sa
m

pl
e

b)

τ = 0.1 τ = 0.5 τ = 1.0 τ = 10.0

Figure 1: Gumbel-Softmax distribution: The temperature parameter τ controls the interpolation
between discrete one-hot-encoded categorical distributions and continuous categorical densities. As
τ → 0 samples from the Gumbel-Softmax distribution are identical to those from a categorical
distribution. If τ →∞ then the samples tend towards a uniform distribution. At τ = 1 the samples
wash out the smaller values and accentuate high density areas. Figure used with permission of Jang
et al. (2016).

where g1...gk are i.i.d. samples drawn from Gumbel(0, 1) and τ is a temperature hyperparameter.
The temperature hyperparameter τ , interpolates between a one-hot-encoded categorical distribution
and a continuous categorical distribution. In this work, τ = 1. Additional choices of τ and their
effects are shown in Figure 1.

2.4 IMPORTANCE SAMPLING

In practice, the policy gradient is estimated from a trajectory of samples generated by the on-policy
stationary distribution π(a|s). This limits the efficiency of typical policy gradient methods, such
as actor-critic, compared to methods like Deep Q-Learning which can learn off-policy. A common
approach to using off-policy samples is a technique known as importance sampling (Degris et al.,
2012; Meuleau et al., 2000; Jie & Abbeel, 2010; Levine & Koltun, 2013).

Given a trajectory of samples generated by some behaviour policy B(a|s), the policy gradient from
Equation 1 is modified to be:

∇θJ(θ) = EB
[
ρtΨ

π(st, at)∇θ log πθ(at|st)
]

(3)

where ρ is the known as the importance weight and is defined as a ratio between the current policy
π(a|s) and the behaviour policy B(a|s):

ρt =
π(at|st)
B(at|st)

(4)

Unfortunately, the importance weighted gradient in Equation 3 suffers from high variance. To reduce
variance, Wawrzyński (2009) proposed truncating each importance weight to the interval [0, c] where
c is some constant.

3 GUMBELCLIP

GumbelClip builds off the on-policy actor-critic algorithm A2C. To enable off-policy learning Gum-
belClip uses clipped importance sampling, policy forcing through Gumbel noise, and large batches
sampled from a replay memory. Psuedo-code for GumbelClip is provided in Algorithm 1. We begin
by defining a few quantities.

In importance weighting, two policy classes exist: the current policy π(a|s; θ) and the behaviour
policy B(a|s). Because replay memory is being used, the behaviour policy is simply the distribution
over actions with an old parameter setting θ∗:

B(at|st) = π(at|st; θ∗) (5)

GumbelClip introduces a third policy, the forced policy F(a|s) using the Gumbel-Softmax distri-
bution, which results from adding noise ε(i) sampled from a standard Gumbel distribution to the

3

Under review as a conference paper at ICLR 2020

normalized logits of the current policy:

F(a
(i)
t |st) =

exp (log π(a
(i)
t |st; θ) + ε(i))∑

j=0 exp (log π(a
(j)
t |st; θ) + ε(j))

(6)

As the name implies, adding Gumbel noise has the effect of “forcing” the sampled policy distribution
to be more categorical such that one action contains most of the probability mass. As Equation 6 is
identical to the Gumbel-Softmax distribution, with temperature τ = 1, we can refer to Figure 1b) to
understand the characteristics of the resulting sampled distribution.

Algorithm 1 Pseudo-code for GumbelClip
Initialize parameters θ and θv .
Initialize replay memory D with capacity N .
repeat

for i ∈ {0, · · · , k} do
Perform ai according to π(·|si; θ).
Receive reward ri and new state si+1.
Store (si, ai, ri, π(·|st)) in D.

end for
Sample b trajectories {s0, a0, r0,B(·|s0), · · · , sk, ak, rk,B(·|sk)} from the replay memory D.
for i ∈ {0, · · · , k} do

Compute π(·|si; θ) and F(·|si).

ρ̄i = clamp
(

F(ai|si)
B(ai|si)

, 0, c
)

end for

R←

{
0 for terminal sk
V (sk; θv) otherwise

Reset gradients: dθ ← 0 and dθv ← 0.
for i ∈ {k − 1, · · · , 0} do

R←

{
0 for terminal si
ri + γR otherwise

Accumulate gradients dθ ← dθ + ρ̄i∇θ logF(ai|si)
{
R− V (si; θv)

}
Accumulate gradients dθv ← dθv +∇θv (R− V (si; θv))2

end for
Perform update of θ using dθ and θv using dθv .

until Max iteration or time reached.

Similarly to previous work, this study uses importance sampling ρ to weight the updates of the loss
function. However, instead of using the current policy, π(·|st), in the numerator, it is replaced with
the forced policy F(at|st):

ρ
(i)
t =

F(a
(i)
t |st)

B(a
(i)
t |st)

(7)

The range of ρt is clipped to [0, c] and this clipped importance weight is referred to as ρ̄t. Clipping
the upper bound prevents the product of many importance weights from exploding and reduces the
variance (Wawrzyński, 2009). Putting this all together the update equation for GumbelClip is as
follows:

∇θJ(θ) = EB[ρ̄tA(st, at)∇θ logFθ(at|st)] (8)

The gradient is estimated by uniformly sampling b trajectories of length k from a replay memory
with size N . In addition, the network parameters are updated using the forced policy F(a|s). The
advantage function A(st, at) = R

(k)
t − V (st) is used, where R(k)

t is the bootstrapped k-step return
for time t.

As the forced policy in the numerator tends towards a categorical distribution, it became evident that
the importance weights had the habit of clumping near the boundaries of the interval and often near
~1. Following from Figure 2, we can see the distribution of the ratio between GumbelClip and a
typical application of truncated importance sampling to A2C as might be suggested by Wawrzyński
(2009). Figure 2(a) shows this behaviour if one were to implement truncated importance sampling

4

Under review as a conference paper at ICLR 2020

(a) Truncated ρ with current policy (b) Truncated ρ with forced policy

Figure 2: Histograms of ratios. The x-axis is the magnitude of ρ̄ and the y-axis is the number of
updates since start of training. a) Using truncated ρ with the current policy in the numerator and b)
the ratios seen during training from GumbelClip, which corresponds to use of the forced policy in
the numerator.

under the current policy π(a|s; θ); while Figure 2(b) shows the resulting distribution if one uses the
forced policy F(a|s).

The effect of clipping and Gumbel noise has an interesting effect on the way the policy is updated.
From Figure 2(b), we see that three modes exist, which roughly correspond to the cases of agree-
ment and disagreement. The case of agreement corresponds to ratios and the mode near 1 while
disagreements correspond to ratios and modes at 0 and c. More exactly, when the forced policy
disagrees with the behaviour policy, say F(·|s) ≈ 1 and B(·|s) ≈ 0, the update the policy receives
is at most clipped by the upper bound of our interval: c. On the other hand, when the situation is
reversed, but still in disagreement, with F(·|s) ≈ 0 and B(·|s) ≈ 1, the policy has an importance
weight of ~0.

4 EXPERIMENTS

Our experiments focus on the Atari domain (Bellemare et al., 2013) as there exists a large amount
of variety between environments and the states are represented as raw high-dimensional pixels. The
gym software package by Brockman et al. (2016) was used to conduct all the experiments. All
experiments used the same algorithm, network architecture, and hyper-parameters to learn to play
Atari games using only raw pixel observations. This study used the same input pre-processing and
network architecture as Mnih et al. (2016). The network architecture consists of three convolutional
layers as follows: 32 8× 8 filters with stride 4, 64 4× 4 filters with stride 2, and 32 3× 3 filters with
stride 1. The final convolutional layer feeds into a fully-connected layer with 512 units. All layers
are followed by rectified non-linearity. Finally, the network outputs a softmax policy over actions
and a state-value.

The experimental set-up used 16 threads running on a GPU equipped machine. All experiments
trained for 40 million frames. A replay memory of size N = 250000 was kept, an update was
performed every k = 5 steps in the environment, and a clamping coefficient of c = 4 was used. The
optimization procedure used RMSProp (Hinton et al., 2012) with a learning rate of 5e− 4, entropy
regularization of 0.01, and a discount factor of γ = 0.99. We sample 64 trajectories of length 5 for
each update. Learning begins after we have collected 10, 000 samples in the replay memory. We
tuned the hyperparameters and developed GumbelClip on the FishingDerby environment only; the
other environments can be considered “out of sample”. All experiments used the same hyperparam-
eter settings and network architecture. We use the best 3 of 4 seeds and report the mean value with
1 standard deviation as shaded areas on all graphs. As GumbelClip uses larger batchsizes we see an
improvement in total run time per seed of 6-7 hours over A2C which takes 9-10 hours per seed.

Due to limited computational resources, we were only able to evaluate GumbelClip on a subset of the
environments and with a smaller replay memory size. Therefore, in this study, an effort was made to
select environments that best showcase the performance of off-policy (ACER) and on-policy (A2C)

5

Under review as a conference paper at ICLR 2020

Figure 3: Training performance across 8 Atari games. We see the performance of GumbelClip
(shown in blue) against ACER (shown in green), an off-policy actor-critic algorithm, and the on-
policy algorithm A2C (shown in red). The graphs show the average performance over 3 seeds with
1 standard deviation shown as the shaded region. GumbelClip matches or exceeds the performance
of the on-policy algorithm on all environments shown; while in all cases achieving improved con-
vergence speed. It also shows a respectable performance when compared to the ACER algorithm on
many of the environments.

actor-critic methods. We note that the performance can be expected to improve with a larger replay
memory, as seen with DQN and other methods using replay memory. Additionally, we focused the
examination of our ablations on the Alien environment to reduce computational requirements.

GumbelClip is based on a modified version of the open-source A2C implementation by Kostrikov
(2018). The present work was compared with an off-policy actor-critic algorithm, ACER (Wang
et al., 2016), and an on-policy actor-critic algorithm, A2C, the synchronous version of A3C (Mnih
et al., 2016). Both baseline models, A2C and ACER, used the baselines package provided by Ope-
nAI (Dhariwal et al., 2017). ACER used a replay ratio of 4, trust region updates (Schulman et al.,
2015a), a discount factor of γ = 0.99, entropy regularization of 0.01, updated every 20 steps, and a
50000 capacity replay memory per thread.

4.1 EXPERIMENTAL RESULTS

To test the proposed methodology, the performance of GumbelClip on a subset of Atari environments
was examined. In particular, the following environments were investigated: Alien, BeamRider, Box-
ing, FishingDerby, MsPacman, Qbert, Seaquest, and SpaceInvaders. We report the average reward
every 1000 episodes over 40 million frames. As mentioned previously, environments were chosen
where either the on-policy algorithms perform well or where there is a clear difference in perfor-
mance between an off-policy and on-policy method.

From Figure 3, we see the performance of GumbelClip, shown in blue, in comparison to the on-
policy ACER algorithm, shown in green, and the off-policy A2C algorithm. We see that the use of
replay memory and learning with off-policy samples significantly improves the sample efficiency
of GumbelClip over A2C. Across the board, we see that GumbelClip converges significantly faster
than A2C while also exceeding A2C’s performance.

We achieve similar sample efficiency between the off-policy actor-critics, GumbelClip and ACER,
across each environment. The additive noise and aggressive clamping seem to have both positive
and negative effects. We see that GumbelClip sees a faster initial increase in performance across
almost all environments, even outperforming ACER in some cases. However, clamping has been
noted by Wang et al. (2016) to have the possibility of introducing bias. We hypothesize this might
be the cause of poor performance on the Qbert environment, which while better than A2C, is much
lower when compared to ACER. The benefit of GumbelClip comes from its simplicity, requiring a
small number of easy changes to the A2C algorithm, while still providing better performance than
other on-policy actor-critic algorithms.

6

Under review as a conference paper at ICLR 2020

4.2 WILL OTHER DISTRIBUTIONS WORK FOR NOISE GENERATION?

Figure 4: Variations in distributions used to sample addi-
tive noise. We compare the impact of noise drawn from the
standard Gumbel distribution to the standard Normal distri-
bution and Uniform distribution between [0, 1].

Here we examine the distribution
used to draw the additive noise
ε(i) for use in the forced policy
F(a|s). We compare the perfor-
mance of noise sampled from the
standard Gumbel distribution to that
of the standard Normal distribution
and the Uniform distribution [0, 1].

The experiments only adjust the sam-
pling distribution with no other pa-
rameter changes. We investigate
the performance on the Alien Atari
game over 40 million frames. From
the results in Figure 4, we see that
the Gumbel and Normal distributions
have the same initial rate of improve-
ment but diverge roughly midway
through training. The Normal distri-
bution appears to degrade in perfor-
mance before becoming stable at ~1500. The uniform distribution, sampled between [0, 1], has the
same convergence characteristic as the other two distributions but instead of diverging away, similar
to the Normal distribution, it continues upward before converging at ~2000. From Figure 4, we see
that the Gumbel distribution is the most performant.

Figure 5: Stability of GumbelClip with extended training time. GumbelClip is trained for 150M
frames, ~4x longer, on the Boxing and FishingDerby environments. We see that GumbelClip expe-
riences little to no oscillations in performance even with continued weight updates.

4.3 STABILITY

It is natural to inquire on the stability of this method, as we rely on additive noise which could
cause instability after an optimal policy has been reached. To this end, we evaluate the stability
of GumbelClip by increasing the number of training iterations such that 150 million frames are
seen. The Boxing and FishingDerby environments are used for this evaluation. The environments
were chosen as the policy had achieved the highest score during training, a known ceiling, and any
instability would cause a divergence to a sub-optimal policy. From the rather uninteresting graphs,
shown in Figure 5, we see that GumbelClip can converge to and maintain a stable policy even with
continued parameter updates. To overcome the noise added by the Gumbel distribution requires the
network to output a near one-hot-encoded categorical distribution.

4.4 ABLATIONS

In our final set of experiments, we performed ablations over the various components of GumbelClip
to tease apart the cause of improvements in performance. The results of the ablation are shown in
Figure 6(a) with the complete GumbelClip algorithm in blue and each stripped version of Gumbel-
Clip as a red curve. We start with a base version, which is the application of truncated importance
sampling and replay memory to the off-policy algorithm A2C; this base version is shown in the left-
most panel in Figure 6(a). From Table 6(b) we see that the base version has a performance−39.39%

7

Under review as a conference paper at ICLR 2020

(a)

%∆ to GumbelClip %∆ from last
Base -39.39% N/A

+ Large Batchsize -26.49% +21.30%
Large Batchsize + Aggressive Clamp -17.43% +12.33%

Large Batchsize + Aggressive Clamp + Noise 0% +21.09%
(b)

Figure 6: Ablations of GumbelClip. We gradually introduce each component of GumbelClip to a
base version of an off-policy actor-critic A2C algorithm. a) The full GumbelClip algorithm is shown
as the blue curve while the stripped versions are shown in red. From left to right we gradually add
the components onto the base version until we arrive at the full GumbelClip algorithm, shown in the
last pane. The lines in the last pane are identical with one graph is stylized. b) The table provides
the percent deltas between either the stripped version to GumbelClip or the current model to the last.
We measure the change between the last 100 episodes.

lower than GumbelClip. The simple addition of a larger batchsize, from 16 sampled trajectories, to
64 as shown in the second panel in Figure 6(a) causes an increase of +21.30% over the base version
and narrows the difference to GumbelClip to −26.49%. Using an aggressive clamp of 4 instead of
10 on the importance sampling ratio ρ̄ improves performance by an additional +12.33%. Finally,
the addition of noise sampled from the Gumbel distribution closes the gap with a final increase of
+21.09%. The addition of noise changes Equation 8 from being in terms of π(a|s), in both the
policy being optimized and the numerator in ρ̄, to F(a|s). It is clearly shown that the large batch-
size and additive noise contribute the most to the performance increase between stripped versions.
Additionally, while difficult to quantify, we can see from the plots that the aggressive clamp and
additive noise improve sample efficiency the most.

Figure 7: Change in distributions over ρ̄ as components are added, shown as histograms. The x-
axis corresponds to the magnitude of ρ̄ and the y-axis is the number of occurrences. From left to
right we see the distribution over ρ̄ when using the base version. As components are added we see
three modes, at approximately 0, 1, and c, become more pronounced. The addition of Gumbel noise
increases the smoothness between 0 → 1, creates a fatter tail from the mode 1 → c, and increases
the density of all modes.

From Figure 7, we see the effect that each addition to the base version has on the ratio ρ̄ and therefore
the updates to the network. In the last two panes of Figure 7, we see three clear modes at 0, 1, and c.
Addition of Gumbel noise increases the density across all modes and reduces the “noise” seen from
0→ 1. The modes, as discussed in Section 3, correspond to “agreement”, at 1, and “disagreement”
at {0, c}.

8

Under review as a conference paper at ICLR 2020

5 FUTURE WORK

As GumbelClip relies heavily on the Gumbel distribution to sample noise from, it is best suited to
environments with discrete actions. Therefore, an interesting avenue for future work would be to
find a suitable distribution to sample noise from that works with continuous actions.

Additionally, further investigation into possible annealing schedules for a temperature hyperparam-
eter, in Equation 6, or around the clamping constant c could yield interesting results.

6 CONCLUSION

In this paper we have presented GumbelClip, a set of adjustments to the on-policy A2C algorithm,
enabling full off-policy learning from stored trajectories in a replay memory. Our approach relies
on aggressive clipping of the importance weight, large batchsize, and additive noise sampled from
the Gumbel distribution. We have empirically validated the use of each component in GumbelClip
through ablations and shown the stability of the algorithm.

Furthermore, we have shown that GumbelClip achieves superior performance and higher sample
efficiency than A2C. GumbelClip nears the performance and sample efficiency of ACER on many
of the tested environments. Our methodology requires minimal changes to the A2C algorithm, which
in contrast to ACER, makes the implementation of GumbelClip straightforward.

REFERENCES

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Thomas Degris, Martha White, and Richard S Sutton. Off-policy actor-critic. arXiv preprint
arXiv:1205.4839, 2012.

Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford,
John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai baselines. GitHub,
GitHub repository, 2017.

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine learning
lecture 6a overview of mini-batch gradient descent. 2012.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Tang Jie and Pieter Abbeel. On a connection between importance sampling and the likelihood ratio
policy gradient. In Advances in Neural Information Processing Systems, pp. 1000–1008, 2010.

Ilya Kostrikov. Pytorch implementations of reinforcement learning algorithms. https://
github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail, 2018.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436, 2015.

Sergey Levine and Vladlen Koltun. Guided policy search. In International Conference on Machine
Learning, pp. 1–9, 2013.

Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and teaching.
Machine learning, 8(3-4):293–321, 1992.

Nicolas Meuleau, Leonid Peshkin, Leslie P Kaelbling, and Kee-Eung Kim. Off-policy policy search.
2000.

9

https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail

Under review as a conference paper at ICLR 2020

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937, 2016.

OpenAI. Openai five. https://blog.openai.com/openai-five/, 2018.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897, 2015a.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015b.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484, 2016.

Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learning, volume 2. MIT
press Cambridge, 1998.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Advances in neural informa-
tion processing systems, pp. 1057–1063, 2000.

Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos, Koray Kavukcuoglu,
and Nando de Freitas. Sample efficient actor-critic with experience replay. arXiv preprint
arXiv:1611.01224, 2016.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

Paweł Wawrzyński. Real-time reinforcement learning by sequential actor–critics and experience
replay. Neural Networks, 22(10):1484–1497, 2009.

10

https://blog.openai.com/openai-five/

	INTRODUCTION
	Background and Notation
	Problem Setup
	Policy gradient methods
	Gumbel-Softmax Distribution
	Importance Sampling

	GumbelClip
	Experiments
	Experimental Results
	Will other distributions work for noise generation?
	Stability
	Ablations

	Future Work
	Conclusion

