
Under review as a conference paper at ICLR 2020

DIFFERENTIABLE REASONING OVER A
VIRTUAL KNOWLEDGE BASE

Anonymous authors
Paper under double-blind review

ABSTRACT

We consider the task of answering complex multi-hop questions using a corpus as
a virtual knowledge base (KB). In particular, we describe a neural module, DrKIT,
that traverses textual data like a virtual KB, softly following paths of relations be-
tween mentions of entities in the corpus. At each step the operation uses a combi-
nation of sparse-matrix TFIDF indices and maximum inner product search (MIPS)
on a special index of contextual representations. This module is differentiable, so
the full system can be trained completely end-to-end using gradient based meth-
ods, starting from natural language inputs. We also describe a pretraining scheme
for the index mention encoder by generating hard negative examples using ex-
isting knowledge bases. We show that DrKIT improves accuracy by 9 points on
3-hop questions in the MetaQA dataset, cutting the gap between text-based and
KB-based state-of-the-art by 70%. DrKIT is also very efficient, processing upto
10x more queries per second than existing state-of-the-art QA systems.

1 INTRODUCTION

Large knowledge bases (KBs), such as FreeBase and Wikidata, organize information around enti-
ties, which makes it easy to reason over their contents. For example, given a query like “When was
Grateful Dead’s lead singer born?”, one can identify the entity Grateful Dead and the path of
relations LeadSinger, BirthDate to efficiently extract the answer—provided that this infor-
mation is present in the KB. Unfortunately, large KBs are often incomplete (Min et al., 2013). While
relation extraction methods can be used to populate KBs, this process is inherently error-prone, and
errors in extraction can propagate to downstream tasks.

Advances in open-domain QA (Moldovan et al., 2002; Yang et al., 2019) suggest an alternative—
instead of performing relation extraction, one could treat a large corpus as a virtual KB by answering
queries with spans from the corpus. This ensures facts are not lost in the relation extraction process,
but also poses challenges. One challenge is that it is relatively expensive to answer questions using
QA models which encode each document in a query-dependent fashion (Chen et al., 2017; Devlin
et al., 2019)—even with modern hardware (Strubell et al., 2019; Schwartz et al., 2019). The cost of
QA is especially problematic for certain complex questions, such as the example question above. If
the passages stating that “Jerry Garcia was the lead singer of Grateful Dead” and “Jerry Garcia
was born in 1942” are far apart in the corpus, it is difficult for systems that retrieve and read a single
passage to find an answer—even though in this example, it might be easy to answer the question
after the relations were explicitly extracted into a KB. More generally, complex questions involving
sets of entities or paths of relations may require aggregating information from entity mentions in
multiple documents, which is expensive.

One step towards efficient QA is the recent work of Seo et al. (2018; 2019) on phrase-indexed ques-
tion answering (PIQA), in which spans in the text corpus are associated with question-independent
contextual representations and then indexed for fast retrieval. Natural language questions are then
answered by converting them into vectors that are used to perform inner product search (MIPS)
against the index. This ensures efficiency during inference. However, this approach cannot be di-
rectly used to answer complex queries, since by construction, the information stored in the index is
about the local context around a span—it can only be used for questions where the answer can be
derived by reading a single passage.

This paper addresses this limitation of phrase-indexed question answering. We introduce an efficient,
end-to-end differentiable framework for doing complex QA over a large text corpus that has been

1

Under review as a conference paper at ICLR 2020

Question: When was The Grateful Dead and Bob Dylan album released?

p!

Pretrained mention
representations

Aggregate
mentions
to entities

Dylan & dead

American beauty

The times they …

BOW*Emb* Query*Enc*+*

2nd hop

Sparse
matrix set
product

Top-k
inner
product
search

Context*
Bob$Dylan$is$American$singer+
songwriter.$

Grateful$Dead$formedin1965$$
in$Palo5Alto,5CA.$

Dylan$&$the$Dead$isalive$
albumbyBob5Dylan5and$
Grateful$Dead

Linked*KB*Facts*
Bob$Dylan,$country,$?$
Bob$Dylan,$profession,$?$

Grateful$Dead,$founded,$?$
Grateful$Dead,$located,$?$

Dylan$&$the$Dead,$
performer,$?

f(M)

Expand
entities to
mentions

Dense query vector

First hop
answers

Entities

Mentions

Figure 1: DrKIT answers multi-hop questions by iteratively mapping an input set of entities X (The
Grateful Dead,Bob Dylan) to an output set of entities Y (Dylan & Dead, American beauty,
...) which are related to any input entity by some relation R (album by).

encoded in a query-independent manner. Specifically, we consider “multi-hop” complex queries
which can be answered by repeatedly executing a “soft” version of the operation below, defined
over a set of entities X and a relation R:

Y = X.follow(R) = {x′ : ∃x ∈ X s.t. R(x, x′) holds}
In past work soft, differentiable versions of this operation were used to answer multi-hop questions
against an explicit KB (Cohen et al., 2019). Here we propose a more powerful neural module which
approximates this operation against an indexed corpus In our module, the input X is a sparse vector
representing a weighted set of entities, and the relation R is a dense feature vector, e.g. a vector
derived from a neural network over a natural language query. The output Y is another sparse vector
representing the weighted set of entities, aggregated over entity mentions in the top-k spans retrieved
from the index. The spans in turn are retrieved using a MIPS query constructed from X and R, and
we discuss pretraining schemes for the index in §2.3.

For multi-hop queries, the output entities Y can be recursively passed as input to the next iteration
of the same module. The weights of the entities in Y are differentiable w.r.t the MIPS queries, which
allows end-to-end learning without any intermediate supervision. We discuss an implementation
based on sparse matrix-vector products, whose runtime and memory depend only on the number of
spansK retrieved from the index. This is crucial for scaling up to large corpora, and leads to upto 15x
faster inference than existing state-of-the-art multi-hop and open-domain QA systems. The system
we introduce is called DrKIT (for Differentiable Reasoning over a Knowledge base of Indexed
Text). We test DrKIT on the MetaQA benchmark for complex question answering, and show that it
improves on prior text-based systems by 5 points on 2-hop and 9 points on 3-hop questions, reducing
the gap between text-based ad KB-based systems by 30% and 70%, respectively. We also test DrKIT
on a new dataset of multi-hop slot-filling over Wikipedia articles, and show that it outperforms DrQA
(Chen et al., 2017) and PIQA (Seo et al., 2019) adapted to this task.

2 DIFFERENTIABLE REASONING OVER A KB OF INDEXED TEXT

We want to answer a question q using a text corpus as if it were a KB. We start with the set of entities
z in the question q and would ideally want to follow relevant outgoing relation edges in the KB to
arrive at the answer. To simulate this behaviour on text, we first expand z to set of co-occurring
mentions (say using TF-IDF)m. Not all of these co-occurring mentions are relevant for the question
q, so we train a neural network which filters the mentions based on a relevance score of q tom. Then
we can aggregate the resulting set of mentions m to the entities they refer to end up with an ordered
set z′ of entities which are answer candidates, very similar to traversing the KB. Furthermore, if the
question requires more than one hop to answer, we can repeat the above procedure starting with z′.
This is depicted pictorially in Figure 1.

2

Under review as a conference paper at ICLR 2020

We begin by first formalizing this idea in §2.1 in a probabilistic framework. In §2.2, we describe how
the expansion of entities to mentions and the filtering of mentions can be performed efficiently, using
sparse matrix products, and MIPS algorithms (Johnson et al., 2017). Lastly we discuss a pretraining
scheme for constructing the mention representations in §2.3.

Notation: We denote the given corpus as D = {d1, d2, . . .}, where each dk = (d1k, . . . , d
Lk

k) is
a sequence of tokens. We start by running an entity linker over the corpus to identify mentions of
a fixed set of entities E . Each mention m is a tuple (em, km, im, jm) denoting that the text span
dimkm

, . . . , djmkm
in document km mentions the entity em ∈ E , and the collection of all mentions in the

corpus is denoted asM. Note that typically |M| � |E|.

2.1 DIFFERENTIABLE MULTI-HOP REASONING

We assume a weakly supervised setting where during training we only know the final answer entities
a ∈ E for a T -hop question. We denote the latent sequence of entities which answer each of the
intermediate hops as z0, z1, . . . , zT ∈ E , where z0 is mentioned in the question, and zt = a. We can
recursively write the probability of an intermediate answer as:

Pr(zt|q) =
∑

zt−1∈E
Pr(zt|q, zt−1) Pr(zt−1|q) (1)

Here Pr(z0|q) is the output of an entity linking system over the question, and Pr(zt|q, zt−1) cor-
responds to a single-hop model which answers the t-th hop, given the entity from the previous hop
zt−1, by following the appropriate relation. Eq. 1 models reasoning over a chain of latent entities,
but when answering questions over a text corpus, we must reason over entity mentions, rather than
entities themselves. Hence Pr(zt|q, zt−1) needs to be aggregated over all mentions of zt, which
yields

Pr(zt|q) =
∑

m∈M

∑
zt−1∈E

Pr(zt|m) Pr(m|q, zt−1) Pr(zt−1|q) (2)

The interesting term to model in the above equation isPr(m|q, zt−1), which represents the relevance
of mention m given the question about entity zt−1. Following the analogy of a KB, we first expand
the entity zt−1 to co-occuring mentions m and use a learnt scoring function to find the relevance of
these mentions. Formally, let F (m) denote a TF-IDF vector for the document containingm,G(zt−1)
be the TF-IDF vector of the surface form of the entity from the previous hop, and s(m, q, z) be a
learnt scoring function. Thus, we model Pr(m|q, zt−1) as

Pr(m|q, zt−1) ∝ 1{G(zt−1) · F (m) > ε}︸ ︷︷ ︸
expansion to co-occurring mentions

× s(m, zt−1, q)︸ ︷︷ ︸
relevance filtering

(3)

Another equivalent way to look at our model in Eq. 3 is that the second term retrieves mentions of
the correct type requested by the question in the t-th hop, and the first term filters these based on
co-occurrence with zt−1. When dealing with a large set of mentions m, we will typically retain only
the top-k relevant mentions. We will show that this joint modelling of co-occurrence and relevance
is important for good performance, which has also been observed in past (Seo et al., 2019).

The other term left in Eq. 2 is Pr(z|m), which is 1 if mention m matches the entity z else 0, since
each mention can only point to a single entity. In general, to compute Eq. 2 the mention scoring of
Eq. 3 needs to be evaluated for all latent entity and mention pairs, which is prohibitively expensive.
However, by restricting s to be an inner product we can implement this efficiently (§2.2).

To highlight the differentiability of the proposed overall scheme, we can represent the computation
in Eq. 2 as matrix operations. We pre-compute the TFIDF term for all entities and mentions into
a sparse matrix, which we denote as AE→M [e,m] = 1 (G(e) · F (m) > ε). Then entity expansion
to co-occuring mentions can be considered to be a sparse-matrix by sparse-vector multiplication
betweenAE→M and zt−1. For the relevance scores, let TK(s(m, zt−1, q)) denote the top-K relevant
mentions encoded as a sparse vector in R|M|. Finally, the aggregation of mentions to entities can
be formulated as multiplication with another sparse matrix AM→E , which encodes coreference, i.e.
mentions corresponding to the same entity. Putting all these together, using � to denote element-
wise product, and defining Zt = [Pr(zt = e1|q); . . . ; Pr(zt = e|E||q)], we can observe that for large
K (i.e., as K → |M|), eq. (2) becomes equivalent to:

Zt = softmax
([
ZT
t−1AE→M � TK(s(q,m, zt−1))

]
AM→E

)
. (4)

3

Under review as a conference paper at ICLR 2020

Note that every operation in above equation is differentiable and between sparse matrices and vec-
tors: we will discuss efficient implementations in §2.2. Further, the number of non-zero entries in Zt

is bounded by K, since we filtered (the multiplication in Eq. 4) to top-k relevant mentions among
TF-IDF based expansion and since each mention can only point to a single entity in AM→E . This
is important, as it prevents the number of entries in Zt from exploding across hops (which might
happen if, for instance, we added the dense and TF-IDF retrievals instead).

We can view Zt−1, Zt as weighted multisets of entities, and gt(q) as implicitly representing a rela-
tion R. Then Eq. 4 becomes a differentiable implementation of Zt = Zt−1.follow(R), i.e. mimick-
ing the graph traversal in a traditional KB. We thus call Eq. 4 a textual follow operation.

Training and Inference. The model is trained completely end-to-end by optimizing the cross-
entropy loss between ZT , the weighted set of entities after T hops, and the ground truth answer set
A. We use a temperature coefficient λ when computing the softmax in Eq, 4. Finally, we also found
that taking a maximum over the mention set of an entity Mzt in Eq. 2 works better in practice than
taking a sum. This corresponds to optimizing only over the most confident mention of each entity,
which works for corpora like Wikipedia which do not have much redundancy of information. A
similar observation has been made by Min et al. (2019) in weakly supervised settings.

2.2 EFFICIENT IMPLEMENTATION

Sparse TF-IDF Mention Encoding. To compute the sparse AE→M for entity-mention expansion
in Eq. 4, the TF-IDF vectors F (m) andG(zt−1) are constructed over unigrams and bigrams, hashed
to a vocabulary of 16M buckets. While F computes the vector from the whole passage around
m, G only uses the surface form of zt−1. This corresponds to retrieving all mentions in a document
retrieved using zt−1 as the query. We limit the number of retrieved mentions per entity to a maximum
of µ, which leads to a |E| × |M| sparse matrix.

10
2

10
3

10
4

10
5

10
6

|E| = Num entities

10
1

10
0

10
1

10
2

10
3

m
ill

is
e
c

sparse x sparse

sparse x dense

Figure 2: Runtime on a single K80 GPU
when using ragged representations for im-
plementing sparse matrix vector product, vs
the default sparse matrix times dense vector
product available in TensorFlow. |E| > 105

leads to OOM for the latter.

Efficient Entity-Mention expansion. The expansion
from a set of entities to mentions occurring around them
can be computed using the sparse-matrix by sparse vector
productZT

t−1AE→M . A simple lower bound for multiply-
ing a sparse |E|×|M|matrix, with maximum µ non-zeros
in each row, by a sparse |E| × 1 vector with k nonzeros is
Ω(kµ). Note that this lower bound is independent of the
size of matrix AE→M or in other words independent of
number of entities or mentions. To attain the lower bound,
the multiplication algorithm must be vector driven, be-
cause any matrix-driven algorithms need to at least iter-
ate over all the rows. Instead we slice out the relevant
rows from AE→M . To enable this our solution is to rep-
resent the sparse matrix AE→M as two row-wise lists of
a variable-sized lists of the non-zero elements index and
values. This results in a ragged representation of the matrix which can be easily sliced corresponding
to the non-zero entries in the vector in O(logE) time. We are now left with k sparse vectors with
at most µ non-zero elements in each. We can add these k sparse vectors weighted by corresponding
values from vector z in O(kmax{k, µ}) time. Moreover, such an implementation is feasible with
deep learning frameworks such as Tensorflow1. We quickly test the scalability of our approach by
varying the number of entities for a fixed density of mentions µ (from Wikipedia). Figure 2 com-
pared our approach to the default sparse-matrix times dense vector product (no sparse matrix times
sparse vector is available in TensorFlow)2.

Efficient top-k mention relevance filtering: To make computation of Eq. 4 feasible, we need an
efficient way to get top-k relevant mentions of entity zt−1 for given question q, without enumerating
all possibilities. A key insight is that by restricting scoring function s(m, zt−1, q) to an inner product,
we can easily approximate a parallel version of this computation, across all mentions m. To do this,
let f(m) be a dense encoding ofm, and gt(q, zt−1) be a dense encoding of the question q for the t-th
hop, both in Rp (the details of the dense encoding is provided in next paragraph), then the scoring

1 https://www.tensorflow.org/guide/ragged_tensors
2 We will release our code publicly on acceptance.

4

https://www.tensorflow.org/guide/ragged_tensors

Under review as a conference paper at ICLR 2020

function s(m, zt−1, q) becomes

s(m, zt−1, q) ∝ exp {f(m) · gt(q, zt−1)} , (5)

which can be computed in parallel by multiplying a matrix f(M) = [f(m1); f(m2); . . .] with
gt(q, zt−1). Although this matrix will be very large for a realistic corpus, but since eventually we are
only interested in top-k values we can use an approximate algorithm for Maximum Inner Product
Search (MIPS) (Andoni et al., 2015; Shrivastava & Li, 2014) to find the k top-scoring elements. The
complexity of this filtering step using MIPS is roughly O(kp polylog|M|).

Mention and Question Encoders. Mentions are encoded by passing the passages they are con-
tained in through a BERT-large (Devlin et al., 2019) model (trained as described in § 2.3). Sup-
pose mention m appears in passage d, starting at position i and ending at position j. Then
f(m) = WT [Hd

i ;Hd
j], where Hd is the sequence of embeddings output from BERT, and W is

a linear projection to size p. The query are encoded with a smaller BERT-like model: specifically,
it is tokenized with WordPieces (Schuster & Nakajima, 2012), appended to a special [CLS] to-
ken, and then passed through a 4-layer Transformer network (Vaswani et al., 2017) with the same
architecture as BERT, producing an output sequence Hq . The gt functions are defined similarly
to the BERT model used for SQuAD-style QA. For each hop t = 1, . . . , T , we add two addition
Transformer layers on top of Hq , which will be trained to produce MIPS queries from the [CLS]
encoding; the first added layer produces a MIPS query Hq

st to retrieve a start token, and the sec-
ond added layer a MIPS query Hq

en to retrieve an end token. We concatenate the two and define
g̃t(q) = V T [Hq

st;H
q
en]. Finally, to condition on current progress we add the embeddings of zt−1.

Specifically, we use entity embeddings E ∈ R|E|×p, to construct an average embedding of the set
Zt−1, as ZT

t−1E, define gt(q, zt−1) ≡ g̃t(q) + ZT
t−1. To avoid a large number of parameters in the

model, we compute the entity embeddings as an average over the word embeddings of the tokens in
the entity’s surface form. The computational cost of the question encoder gt(q) is O(p2).

Thus our total computational complexity to answer a query is Õ(kmax{k, µ} + kp + p2) (almost
independent to number of entities or mentions!), with O(µ|E| + p|M|) memory to store the pre-
computed matrices and mention index.3

2.3 PRETRAINING THE INDEX

Ideally, we would like to train the mention encoder f(m) end-to-end using labeled QA data only.
However, this poses a challenge when combined with approximate nearest neighbor search—since
after every update to the parameters of f , one would need to recompute the embeddings of all
mentions inM. We thus adopt a staged training approach: we first pre-train a mention encoder f(m),
then compute compute and index embeddings for all mentions once, keeping these embeddings fixed
when training the downstream QA task. Empirically, we observed that using BERT representations
“out of the box” do not capture the kind of information our task requires (Appendix §C), and thus,
pretraining the encoder to capture better mention understanding is a crucial step.

One option adopted by previous researchers (Seo et al., 2018) is to fine-tune BERT on Squad (Ra-
jpurkar et al., 2016). However, Squad is limited to only 536 articles from Wikipedia, leading to a
very specific distribution of questions, and is not focused on entity- and relation-centric questions.
Here we instead train the mention encoder using distant supervision from the KB.

Specifically, assume we are given an open-domain KB consisting of facts (e1, R, e2) specifying that
the relation R holds between the subject e1 and the object e2. Then for a corpus of entity-linked
text passages {dk}, we automatically identify tuples (d, (e1, R, e2)) such that d mentions both e1
and e2. Using this data, we learn to answer slot-filling queries in a reading comprehension setup,
where the query q is constructed from the surface form of the subject entity e1 and a natural lan-
guage description of R (e.g. “Jerry Garcia, birth place, ?”), and the answer e2 needs to be extracted
from the passage d. Using string representations in q ensures our pre-training setup is similar to the
downstream task. In pretraining, we use the same scoring function as in previous section, but over
all spans m in the passage:

s(m, e1, q) ∝ exp {f(s) · g(q, e1)} . (6)

Following Seo et al. (2016), we normalize start and end probabilities of the span separately.

3Following standard convention, in Õ notation we suppress poly log dependence terms.

5

Under review as a conference paper at ICLR 2020

MetaQA

Model 1hop 2hop 3hop

DrQA (ots) 0.553 0.325 0.197

KVMem† 0.762 0.070 0.195
GraftNet† 0.825 0.362 0.402
PullNet† 0.844 0.810 0.782

DrKIT (e2e) 0.844 0.860 0.876
DrKIT (strong sup.) 0.845 0.871 0.871

WikiData

Model 1hop 2hop 3hop

DrQA (ots, cascade) 0.287 0.141 0.070
PIQA (ots, cascade) 0.240 0.118 0.064

PIQA (pre, cascade) 0.670 0.369 0.182
DrKIT (pre, cascade) 0.816 0.404 0.198

DrKIT (e2e) 0.834 0.469 0.244
–BERT index 0.643 0.294 0.165

Table 1: (Left) MetaQA and (Right) WikiData Hits @1 for 1-3 hop sub-tasks. ots: off-the-shelf
without re-training. †: obtained from Sun et al. (2019). cascade: adapted to multi-hop setting by
repeatedly applying Eq. 2. pre: pre-trained on slot-filling. e2e: end-to-end trained on single-hop and
multi-hop queries.

0 5 10 15 20 25
Q/sec

0.70

0.75

0.80

0.85

0.90

Hi
ts

 @
1

MSR 3-hop
PullNet 3-hop
DrKIT 3-hop

MSR 2-hop
PullNet 2-hop
DrKIT 2-hop

0 5 10 15 20
Q/sec

0.0

0.1

0.2

0.3

0.4

0.5
Hi

ts
 @

1

PIQA-RT 2-hop
DrKIT 2-hop

PIQA-RT 3-hop
DrKIT 3-hop

2000 4000 6000 8000 10000
K = Num nearest neighbors

0.6

0.7

0.8

Hi
ts

 @
1

MetaQA 1hop
MetaQA 2hop
MetaQA 3hop

Figure 3: Hits @1 vs Queries/sec during inference on (Left) MetaQA and (Middle) WikiData tasks, measured
on a single CPU server with 6 cores. (Right) Effect of varying number of nearest neighbors K during MIPS.

For effective transfer to the full corpus setting, we must also provide negative instances during pre-
training, i.e. query and passage pairs where the answer is not contained in the passage. We consider
three types of hard negatives: (1) Shared-entity negatives, which pair a query (e1, R, ?) with a pas-
sage which mentions e1 but not the correct tail answer. (2) Shared-relation negative, which pair a
query (e1, R, ?) with a passage mentioning two other entities e′1 and e′2 in the same relation R. (3)
Random negatives, which pair queries with random passages from the corpus.

For the multi-hop slot-filling, we used Wikidata (Vrandečić & Krötzsch, 2014) as our KB, Wikipedia
as the corpus, and SLING (Ringgaard et al., 2017) to identify entity mentions. We add the restriction
that d must be from the Wikipedia article of the subject entity to reduce noise. Overall we collected
950K pairs over 550K articles. For the experiments with MetaQA, we supplemented this data with
the corpus and KB provided with MetaQA, and string matching for entity linking.

3 EXPERIMENTS

3.1 METAQA: MULTI-HOP QUESTION ANSWERING WITH TEXT

Dataset. We first evaluate DrKIT on the MetaQA benchmark for multi-hop question answering
(Zhang et al., 2018). METAQA consists of around 400K questions ranging from 1 to 3 hops con-
structed by sampling relation paths from a movies KB (Miller et al., 2016) and converting them to
natural language using templates. The questions cover 8 relations and their inverses, around 43K
entities, and are paired with a corpus consisting of 18K Wikipedia passages about those entities.
The questions are all designed to be answerable using either the KB or the corpus, which makes
it possible to compare the performance of our “virtual KB” QA system to a plausible upper bound
system that has access to a complete KB. We used the same version of the data as Sun et al. (2019).
Details of implementation MetaQA is in Appendix A

Results. Table 1 shows the accuracy of the top-most retrieved entity (Hits@1) for the sub-tasks
ranging from 1-3 hops, and compares to the state-of-the-art systems for the text-only setting on these
tasks. DrKIT outperforms the prior state-of-the-art by a large margin in the 2-hop and 3-hop cases.
The strongest prior method, PullNet (Sun et al., 2019; 2018), uses a graph neural network model
with learned iterative retrieval from the corpus to answer multi-hop questions. It uses the MetaQA
KB during training to identify shortest paths between the question entity and answer entity, which
are used to supervise the text retrieval and reading modules. DrKIT, on the other hand, has strong
performance without such supervision, demonstrating its capability for end-to-end learning. (Adding

6

Under review as a conference paper at ICLR 2020

the same intermediate supervision to DrKIT does not even consistently improve performance—it
gives DrKIT a small lift on 1- and 2-hop questions but does not help for 3-hop questions.)

DrKIT’s architecture is driven, in part, by efficiency considerations: unlike PullNet, it is designed to
answer questions with minimal processing at query time. Figure 3 compares the tradeoffs between
accuracy and inference time of DrKIT with PullNet as we vary K, the number of dense nearest
neighbors retrieved. The runtime gains of DrKIT over PullNet range between 5x-15x.

Ablations 1hop 2hop 3hop

DrKIT 0.844 0.86 0.876

–Sum over Mzt 0.837 0.823 0.797
–λ = 1 0.836 0.752 0.799
–w/o TFIDF 0.845 0.548 0.488
–BERT index 0.634 0.610 0.555

Incomplete KB for pretraining

25% KB 0.839 0.804 0.830
50% KB 0.843 0.834 0.834
(50% KB-only) 0.680 0.521 0.597

Analysis. We perform ablations on DrKIT for the
MetaQA data. First, we empirically confirm that tak-
ing a sum instead of max over the mentions of an en-
tity hurts performance. So does removing the softmax
temperature (by setting λ = 1). Removing the TFIDF
component from Eq. 3, leads a large decrease in perfor-
mance for 2-hop and 3-hop questions. This is because
the TFIDF component constrains the end-to-end learn-
ing to be along reasonable paths of co-occurring men-
tions; otherwise the search space becomes too large.
The results also highlight the importance of pretrain-
ing method introduced in §2.3, as DrKIT over an index
of BERT representations without pretraining is 23 points worse in the 3-hop case. We also check the
performance when the KB used for pre-training is incomplete. Even with only 25% edges retained,
we see a high performance, better than PullNet, and far better than state-of-the-art KB-only methods.

3.2 WIKIDATA: MULTI-HOP SLOT-FILLING

The MetaQA dataset has been fairly well-studied, but has limitations since it is constructed over a
small KB. In this section we consider a new task, in a larger scale setting with many more relations,
entities and text passages. The new dataset also lets us evaluate performance in a setting where the
test set contains documents and entities not seen at training time, an important issue when devising
a QA system that will be used in a real-world setting, where the corpus and entities in the discourse
change over time, and lets us perform analyses not possible with MetaQA, such as extrapolating
from single-hop to multi-hop settings without retraining.

Dataset. We sample two subsets of Wikipedia articles, one for pre-training (§2.3) and end-to-end
training, and one for testing. For each subset we consider the set of WikiData entities mentioned in
the articles, and sample paths of 1-3 hop relations among them, ensuring that any intermediate entity
has an in-degree of no more than 100. Then we construct a semi-structured query by concatenating
the surface forms of the head entity with the path of relations (e.g. “Helene Gayle, employer, founded
by, ?”). The answer is the tail entity at the end of the path, and the task is to extract it from the
Wikipedia articles. Existing slot-filling tasks (Levy et al., 2017; Surdeanu, 2013) focus on a single-
hop, static corpus setting, whereas our task considers a dynamic setting which requires to travers the
corpus. For each setting, we create a dataset with 10K articles, 120K passages,> 200K entities and
1.5M mentions, resulting in an index of size about 2gb. We include example queries in Appendix.

Baselines. We adapt two publicly available open-domain QA systems for this task – DrQA4 (Chen
et al., 2017) and PIQA5 (Seo et al., 2019). While DrQA is relatively mature and widely used, PIQA
is recent, and similar to our setup since it also answers questions with minimal computation at query
time. It is broadly similar to a single textual follow operation in DrKIT, but is not constructed to
allow retrieved answers to be converted to entities and then used in subsequent processing, so it
is not directly applicable to multi-hop queries. We thus also consider a cascaded architecture which
repeatedly applies Eq. 2, using either of PIQA or DrQA to compute Pr(zt|q, zt−1) against the corpus,
retaining at most k intermediate answers in each step. We tune k in the range of 1-10, since larger
values make the runtime infeasible. Further, since these models were trained on natural language
questions, we use the templates released by Levy et al. (2017) to convert intermediate questions into
natural text.6 We test off-the-shelf versions of these systems, as well as a version of PIQA re-trained

4 https://github.com/facebookresearch/DrQA
5 https://github.com/uwnlp/denspi
6 For example, “Helene Gayle. employer?” becomes “Who is the employer of Helene Gayle?”

7

https://github.com/facebookresearch/DrQA
 https://github.com/uwnlp/denspi

Under review as a conference paper at ICLR 2020

on our our slot-filling data.7 We compare to a version of DrKIT trained only on single-hop queries
(§2.3) and similarly cascaded, and one version trained end-to-end on the multi-hop queries.

Results. Table 1 (right) lists the Hits @1 performance on this task. Off-the-shelf open-domain QA
systems perform poorly, showing the challenging nature of the task. Re-training PIQA on the slot-
filling data improves performance considerably, but DrKIT trained on the same data improves on it.
A large improvement is seen on top of these cascaded architectures by end-to-end training, which
is made possible by the differentiable operation introduced in this paper. We also list performance
of DrKIT when trained against an index of fixed BERT-large mention representations. While this is
comparable to the re-trained version of PIQA, it lags behind DrKIT pre-trained using the KB, once
again highlighting the importance of the scheme outlined in §2.3. We also plot the Hits @1 against
Queries/sec for cascaded versions of PIQA and DrKIT in Figure 3 (middle). We observe gains of
2x-3x to DrKIT, due to the efficient implementation of entity-mention expansion discussed in §2.2.

Analysis. In order to understand where the accuracy gains for DrKIT come from, we conduct
experiments on the dataset of slot-filling queries released by Levy et al. (2017). We construct an
open version of the task by collecting Wikipedia articles of all subject entities in the data. A detailed
discussion is in Appendix C, here we note the main findings. PIQA trained on Squad only gets
30% macro-avg accuracy on this data, but this improves to 46% when re-trained on our slot-filling
data. Interestingly, a version of DrKIT which selects from all spans in the corpus performs similarly
to PIQA (50%), but when using entity linking it significantly improves to 66%. It also has 55%
accuracy in answering queries about rare relations, i.e. those observed < 5 times in its training data.
We also conduct probing experiments comparing the representations learned using slot-filling to
those by vanilla BERT. We found that while the two are comparable in detecting fine-grained entity
types, the slot-filling version is significantly better at encoding entity co-occurrence information.

4 RELATED WORK

Neural Query Language (NQL) (Cohen et al., 2019) defines differentiable templates for multi-step
access to a symbolic KB, in which relations between entities are explicitly enumerated. Here, we
focus on the case where the relations are implicit in mention representations derived from text.
Knowledge Graph embeddings (Bordes et al., 2013; Yang et al., 2014; Dettmers et al., 2018) at-
tach continuous representations to discrete symbols which allow them to be incorporated in deep
networks (Yang & Mitchell, 2017). Embeddings often allow generalization to unseen facts using
relation patterns, but text corpora are more complete in the information they contain.

Talmor & Berant (2018) also examined answering compositional questions by treating a text corpus
(in their case the entire web) as a KB. However their approach consists of parsing the query into
a computation tree separately, and running a black-box QA model on its leaves separately, which
cannot be trained end-to-end. Recent papers have also looked at complex QA using graph neural
networks (Sun et al., 2018; Cao et al., 2019; Xiao et al., 2019) or by identifying paths of entities
in text (Jiang et al., 2019; Kundu et al., 2019; Dhingra et al., 2018). These approaches rely on
identifying a small relevant pool of evidence documents containing the information required for
multi-step QA. Hence, Sun et al. (2019) and Ding et al. (2019), incorporate a dynamic retrieval
process to add text about entities identified as relevant in the previous layer of the model. Since the
evidence text is processed in a query-dependent manner, the inference speed is slower than when
it is pre-processed into an indexed representation (see Figure 3). The same limitation is shared by
methods which perform multi-step retrieval interleaved with a reading comprehension model (Das
et al., 2019; Feldman & El-Yaniv, 2019; Lee et al., 2019).

5 CONCLUSION

We present DrKIT, a differentiable module that is capable of answering multi-hop questions directly
using a large entity-linked text corpus. DrKIT is designed to imitate traversal in KB over the text
corpus, providing ability to follow relations in the “virtual” KB over text. We achieve state-of-the-
art results on MetaQA dataset for answering natural language questions, with a 9 point increase in
the 3-hop case. We also developed an efficient implementation using sparse operations and inner
product search, which led to a 10x increase in QPS over baseline approaches.

7 We tuned several hyperparameters of PIQA on our data, eventually picking the sparse first strategy, a
sparse weight of 0.1, and a filter threshold of 0.2. For the Squad trained version, we also had to remove para-
graphs smaller than 50 tokens since with these the model failed completely.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig Schmidt. Practical
and optimal lsh for angular distance. In Advances in Neural Information Processing Systems, pp.
1225–1233, 2015.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. In Advances in neural information
processing systems, pp. 2787–2795, 2013.

Yu Cao, Meng Fang, and Dacheng Tao. Bag: Bi-directional attention entity graph convolutional
network for multi-hop reasoning question answering. In North American Association for Compu-
tational Linguistics (NAACL), 2019.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading Wikipedia to answer open-
domain questions. In Association for Computational Linguistics (ACL), 2017.

William W Cohen, Matthew Siegler, and Alex Hofer. Neural query language: A knowledge base
query language for tensorflow. arXiv preprint arXiv:1905.06209, 2019.

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, and Andrew McCallum. Multi-step retriever-
reader interaction for scalable open-domain question answering. In International Conference on
Learning Representations (ICLR), 2019.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d
knowledge graph embeddings. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. NAACL, 2019.

Bhuwan Dhingra, Qiao Jin, Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov. Neural
models for reasoning over multiple mentions using coreference. In North American Association
for Computational Linguistics (NAACL), 2018.

Ming Ding, Chang Zhou, Qibin Chen, Hongxia Yang, and Jie Tang. Cognitive graph for multi-hop
reading comprehension at scale. In Association for Computational Linguistics (ACL), 2019.

Yair Feldman and Ran El-Yaniv. Multi-hop paragraph retrieval for open-domain question answering.
In Association for Computational Linguistics (ACL), 2019.

Yichen Jiang, Nitish Joshi, Yen-Chun Chen, and Mohit Bansal. Explore, propose, and assemble:
An interpretable model for multi-hop reading comprehension. In Association for Computational
Linguistics (ACL), 2019.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. arXiv
preprint arXiv:1702.08734, 2017.

Souvik Kundu, Tushar Khot, and Ashish Sabharwal. Exploiting explicit paths for multi-hop reading
comprehension. In Association for Computational Linguistics (ACL), 2019.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova. Latent retrieval for weakly supervised open
domain question answering. In Association for Computational Linguistics (ACL), 2019.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation extraction via
reading comprehension. In Proceedings of the 21st Conference on Computational Natural Lan-
guage Learning (CoNLL 2017), pp. 333–342, 2017.

Alexander Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bordes, and Ja-
son Weston. Key-value memory networks for directly reading documents. arXiv preprint
arXiv:1606.03126, 2016.

Bonan Min, Ralph Grishman, Li Wan, Chang Wang, and David Gondek. Distant supervision for
relation extraction with an incomplete knowledge base. In Proceedings of the 2013 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pp. 777–782, 2013.

9

Under review as a conference paper at ICLR 2020

Sewon Min, Danqi Chen, Hannaneh Hajishirzi, and Luke Zettlemoyer. A discrete hard em approach
for weakly supervised question answering. In EMNLP, 2019.

Dan Moldovan, Marius Pasca, Sanda Harabagiu, and Mihai Surdeanu. Performance issues and
error analysis in an open-domain question answering system. In Proceedings of the 40th Annual
Meeting of the Association for Computational Linguistics, pp. 33–40, Philadelphia, Pennsylvania,
USA, July 2002. Association for Computational Linguistics. doi: 10.3115/1073083.1073091.
URL https://www.aclweb.org/anthology/P02-1005.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Michael Ringgaard, Rahul Gupta, and Fernando CN Pereira. Sling: A framework for frame semantic
parsing. arXiv preprint arXiv:1710.07032, 2017.

Mike Schuster and Kaisuke Nakajima. Japanese and korean voice search. In 2012 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5149–5152. IEEE,
2012.

Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. Green ai. arXiv preprint
arXiv:1907.10597, 2019.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional attention
flow for machine comprehension. arXiv preprint arXiv:1611.01603, 2016.

Minjoon Seo, Tom Kwiatkowski, Ankur P Parikh, Ali Farhadi, and Hannaneh Hajishirzi. Phrase-
indexed question answering: A new challenge for scalable document comprehension. In EMNLP,
2018.

Minjoon Seo, Jinhyuk Lee, Tom Kwiatkowski, Ankur P Parikh, Ali Farhadi, and Hannaneh Ha-
jishirzi. Real-time open-domain question answering on wikipedia with dense-sparse phrase index.
In Association for Computational Linguistics (ACL), 2019.

Anshumali Shrivastava and Ping Li. Asymmetric lsh (alsh) for sublinear time maximum inner prod-
uct search (mips). In Advances in Neural Information Processing Systems, pp. 2321–2329, 2014.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep
learning in nlp. arXiv preprint arXiv:1906.02243, 2019.

Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn Mazaitis, Ruslan Salakhutdinov, and
William W Cohen. Open domain question answering using early fusion of knowledge bases and
text. In Proceedings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2018.

Haitian Sun, Tania Bedrax-Weiss, and William W Cohen. Pullnet: Open domain question answer-
ing with iterative retrieval on knowledge bases and text. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing (EMNLP), 2019.

Mihai Surdeanu. Overview of the tac2013 knowledge base population evaluation: English slot filling
and temporal slot filling. In TAC, 2013.

A. Talmor and J. Berant. The web as a knowledge-base for answering complex questions. In North
American Association for Computational Linguistics (NAACL), 2018.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang, Adam Poliak, R Thomas McCoy, Najoung Kim,
Benjamin Van Durme, Sam Bowman, Dipanjan Das, and Ellie Pavlick. What do you learn from
context? probing for sentence structure in contextualized word representations. In International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?
id=SJzSgnRcKX.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledge base. 2014.

10

https://www.aclweb.org/anthology/P02-1005
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX

Under review as a conference paper at ICLR 2020

Yunxuan Xiao, Yanru Qu, Lin Qiu, Hao Zhou, Lei Li, Weinan Zhang, and Yong Yu. Dynami-
cally fused graph network for multi-hop reasoning. In Association for Computational Linguistics
(ACL), 2019.

Bishan Yang and Tom Mitchell. Leveraging knowledge bases in lstms for improving machine read-
ing. 2017.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575, 2014.

Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen Tan, Kun Xiong, Ming Li, and Jimmy Lin.
End-to-end open-domain question answering with bertserini. arXiv preprint arXiv:1902.01718,
2019.

Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexander J Smola, and Le Song. Variational reason-
ing for question answering with knowledge graph. In AAAI, 2018.

A METAQA: IMPLEMENTATION DETAILS

We use p = 400 dimensional embeddings for the mentions and queries, and 200-dimensional em-
beddings each for the start and end positions. This results in an index of size 750MB. When com-
puting AE→M , the entity to mention co-occurrence matrix, we only retain mentions in the top 50
paragraphs matched with an entity, to ensure sparsity. Further we initialize the first 4 layers of the
question encoder with the Transformer network from pre-training. For the first hop, we assign Z0

as a 1-hot vector for the least frequent entity detected in the question using an exact match. The
number of nearest neighbors K and the softmax temperature λ were tuned on the dev set of each
task, and we found K = 10000 and λ = 4 to work best. We pretrain the index on a combination
of the MetaQA corpus, using the KB provided with MetaQA for distance data, and the Wikidata
corpus.

B WIKIDATA DATASET STATISTICS

Task #train #dev #test |Etest| |Mtest| |Dtest Example

1hop 16901 2467 10000 216K 1.2M 120K Q. Mendix, industry?
A. Enterprise Software

2hop 163607 398 9897 342K 1.9M 120K
Q. 2000 Hel van het Mergelland, winner,
place of birth?
A. Bert Grabsch → Lutherstadt Wittenberg

3hop 36061 453 9899 261K 1.8M 120K

Q. Magnificent!, record label, founded by,
date of death?
A. Prestige → Bob Weinstock →
14 Jan 2006

Table 2: Wikidata dataset

Details of the collected WikiData dataset are shown in Table 2.

C INDEX ANALYSIS

Single-hop questions and relation extraction. Levy et al. (2017) released a dataset of 1M slot-
filling queries of the form (e1, R, ?) paired with Wikipedia sentences mentioning e1, which was used
for training systems that answered single-step slot-filling questions based on a small set of candidate
passages. Here we consider an open version of the same task, where answers to the queries must
be extracted from a corpus rather than provided candidates. We construct the corpus by collecting
and entity-linking all paragraphs in the Wikipedia articles of all 8K subject entities in the dev and
test sets, leading to a total of 109K passages. After constructing the TFIDF AE→M and coreference
AM→E matrices for this corpus, we directly use our pre-trained index to answer the test set queries.

11

Under review as a conference paper at ICLR 2020

Probing
Task Negative Example BERT DrKIT

Shared
Entity

Neil Herron played for
West of Scotland. 0.850 0.876

Shared
Relation

William Paston was a
British politician. 0.715 0.846

Rare Frequent All
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

H
it

s
@

1

PIQA

PIQA-retrained

DrKIT-all spans

DrKIT-entities

Figure 4: Left: Macro-avg accuracy on the Levy et al. (2017) relation extraction dataset. We split
the results based on frequency of the relations in our WikiData training data. DrKIT-all spans refers
to a variant of our model which selects from all spans in the corpus, instead of only entity-linked
mentions. Right: F1 scores on Shared Entity and Shared Relation negatives. The negative context
examples are for the Query : (Neil Herron, occupation, ?)

Figure 4 (Right) shows the Hits@1 performance of the Levy et al. (2017) slot-filling dataset. We
report results on 2 subsets of relations in addition to all relations. The Rare subset comprises of rela-
tions with frequencies < 5 in the training data while the ’Frequent’ subset contains the rest. DrKIT
on entity-mentions consistently outperforms the other phrase-based models showing the benefit of
indexing entity-mentions in single-hop questions over. Note that DrKit-entities has a high Hits@1
performance on the Rare relations subset, showing that there is generalization to less frequent data
due to the natural language representations of entities and relations.

Probing Experiments Finally, to compare the representations learned by the BERT model fine-
tuned on the Wikidata slot-filling task, we design two probing experiments. In each experiment, we
keep the parameters of the BERT model (mention encoders) being probed fixed and only train the
query encoders. Similar to Tenney et al. (2019), we use a weighted average of the layers of BERT
here rather than only the top-most layer, where the weights are learned on the probing task.

In the first experiment, we train and test on shared-entity negatives. Good performance here means
the BERT model being probed encodes fine-grained entity-type information reliably8. As shown in
Table 4, BERT performs well on this task, suggesting it encodes fine-grained types well.

In the second experiment, we train and test only on shared-relation negatives. Good performance
here means that the BERT model encodes entity co-occurrence information reliably. In this probe
task, we see a large performance drop for Bert, suggesting it does not encode entity co-occurrence
information well. The good performance of the DrKIT model on both experiments suggests that
fine-tuning on the slot-filling task primarily helps the contextual representations to also encode entity
co-occurrence information, in addition to entity type information.

8A reasonable heuristic for solving this task is to simply detect an entity with the correct type in the given
sentence, since all sentences contain the subject entity.

12

	Introduction
	Differentiable Reasoning over a KB of Indexed Text
	Differentiable Multi-Hop Reasoning
	Efficient Implementation
	Pretraining the Index

	Experiments
	METAQA: Multi-Hop Question Answering with Text
	WikiData: Multi-Hop Slot-Filling

	Related Work
	Conclusion
	METAQA: Implementation Details
	WikiData Dataset Statistics
	Index Analysis

