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ABSTRACT

We extend the idea of word pieces in natural language models to machine learning
tasks on opaque ids. This is achieved by applying hash functions to map each id
to multiple hash tokens in a much smaller space, similarly to a Bloom filter. We
show that by applying a multi-layer Transformer to these Bloom filter digests, we
are able to obtain models with high accuracy. They outperform models of a similar
size without hashing and, to a large degree, models of a much larger size trained
using sampled softmax with the same computational budget. Our key observation
is that it is important to use a multi-layer Transformer for Bloom filter digests to
remove ambiguity in the hashed input. We believe this provides an alternative
method to solving problems with large vocabulary size.

1 INTRODUCTION

In natural language processing, one recent development, made popular by Wu et al. (2016) is to use a
smaller sub-word vocabulary (Sennrich et al., 2016), or so called word piece model. In such a model,
only frequent words and word pieces are kept in the vocabulary. Each word is then segmented as a
sequence of word pieces. Both the input and the prediction are then represented in the smaller word
piece space.

The word piece model has multiple benefits. Besides its generalizability and compact size, one
crucial benefit is that we can afford to compute the full softmax loss on its much smaller vocabulary.
This leads to more precise predictions, (measured e.g. using recall at k for small values of k),
compared to alternative approaches such as the sampled softmax method (Bengio & Sénécal, 2003;
2008) or the hierarchical softmax (Morin & Bengio, 2005). Word pieces have been shown to work
well for natural language understanding (NLU) tasks. For example, the recent break-through of
BERT (Devlin et al., 2018) uses a vocabulary of about 30K word pieces. The goal of this paper is
to extend this idea to machine learning tasks where we have to model a large number of categorical
values, which are represented by opaque ids (e.g. product ids, video ids) or named entities (e.g.
Wikipedia or Knowledge Graph entities).

While word pieces are a natural way for breaking up words, it is unclear how this could be done for
a set of arbitrary categorical values (referred to as vocabulary throughout the paper). We propose to
use random hashing to achieve this goal. Similarly to a Bloom filter (Bloom, 1970), we use multiple
hashing functions to map each id to multiple hash tokens in a smaller space. The other motivation of
our approach is based on the promise that Transformer models (Vaswani et al., 2017; Devlin et al.,
2018) can disambiguate word meanings well using context. A hashed token can be viewed as a word
piece with many different meanings. We hope that a Transformer model is also able to remove the
ambiguity of hash tokens using the context, i.e. the set of other input tokens.

In this work, we propose Superbloom in which we apply a Bloom filter with random hashing scheme
to reduce the vocabulary size, then apply a Transformer model to the Bloom filter digest. We demon-
strate, through experiments, that Superbloom works well for tasks with a large vocabulary size – it
can be efficiently trained and outperforms non-hashed models of a similar size, and larger models
trained with sampled softmax with the same computational budget. We highlight the importance of
using a multiple-layer Transformer for Bloom filter digests to resolve the ambiguity in the hashed
input. For instance, we find that the model quality gap between a one layer and a twelve layer Trans-
former model is significantly larger when using Bloom filter digests, compared to that when the
vocabulary is not hashed. This capability of the Transformer to “unhash” the Bloom digest is a key
difference to earlier work on feature hashing (Weinberger et al., 2009) and multiple hashing (Serrà
& Karatzoglou, 2017; Svenstrup et al., 2017; Daniely et al., 2017).
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1.1 RELATED WORK

Learning with a large vocabulary is a well-studied but still open research problem. Weinberger
et al. (2009) proposed feature hashing which uses random hashing to reduce the input vocabulary
size, and then learns embeddings for hashed ids in the smaller vocabulary. Several follow-up works
propose to better resolve collisions by using multiple hashes: Svenstrup et al. (2017) proposed to
learn a weighted sum of hashed embeddings; Shu & Nakayama (2018) used an unweighted sum,
but proposed instead to learn the hash function itself; and Chen et al. (2018) proposed to learn both
the hash function and the combiner, for which they use either a linear function or an LSTM. A key
difference with the aforementioned work is that we do not resolve the hashing early at the input of
the model; instead, we feed all hashed embeddings to the Transformer and let it learn to resolve the
hashing collisions using the context. Our experiments show that multi-layer Transformer models
indeed have the capacity to resolve hashing collisions while learning a high quality model.

Besides reducing the input space and memory usage, another set of related work focuses on deal-
ing with large output vocabularies and improving training efficiency. A commonly used method is
sampled softmax (Bengio & Sénécal, 2003; 2008) where for each gradient update, only a subset of
the output vocabulary is considered. Another line of work is hierarchical softmax where classes are
organized in clusters (Goodman, 2001) or in a tree structure (Morin & Bengio, 2005) to allow for
efficient pruning of the output vocabulary. Through our experiments, we show that Superbloom,
which allows us to train a full softmax on the hashed vocabularies, can lead to more accurate results
than using sampled softmax on the larger output vocabulary. Serrà & Karatzoglou (2017) proposed
to use Bloom filters as a general tool in deep models, for both the input and output. Our work demon-
strates the efficiency of a multi-layer Transformer-like architecture to use contextual information to
resolve hash ambiguity. Indeed, we show that shallow models, even with attention, fail.

2 SUPERBLOOM MODEL ARCHITECTURE

Given discrete sets SI ,SO, representing respectively the input and output spaces (e.g. word tokens
or entities), the goal is to model a function that maps a sequence of n elements1 in SI , to a sequence
of probability distributions over SO. The space of probability distributions over a set S will be
denoted by ∆(S) = {p ∈ R|S|+ :

∑
s∈S ps = 1}.

The input and output entities are typically represented using embedding matrices EI ∈ R|SI |×d and
EO ∈ R|SO|×d, which map each entity to an embedding vector of dimension d. This makes training
and inference expensive if the number of entities is very large. In order to reduce the model size and
improve efficiency, we use a Bloom filter to represent input and output sequences.

A Bloom filter is a probabilistic data structure used to efficiently represent a subset of a given set S.
In its simplest form, it can be described by m hash functions hj : S → H, j ∈ {1, . . . ,m}. To
represent a subset S ⊂ S , one then stores its digest b(S) = {hj(s) : s ∈ S, j ∈ {1, . . . ,m}}. Typi-
cally, the cardinality ofH is much smaller than S. In Superbloom, each element in SI (respectively
SO) is represented by a Bloom filter digest, which allows us to reduce the vocabulary size and thus
the size of embedding matrices.

We decompose the Superbloom model architecture into M = O ◦ (TL ◦ · · · ◦ T1) ◦ I , as illustrated
in Figure 1. It consists of three components: an input layer (Sec. 2.1) I : (SI)n → Rmn×d which
maps each item in the sequence to m embeddings of dimension d; L transformer layers (Sec. 2.2)
Ti : Rmn×d → Rmn×d which apply transformations in the embedding space; and an output layer
(Sec. 2.3) O : Rmn×d → ∆(HO)n mapping the embeddings to probability distributions. Since the
model predicts distributions overHO instead of SO, both training (Sec. 2.4) and inference (Sec. 2.5)
need to be adapted accordingly.

2.1 INPUT LAYER I : (SI)n → Rmn×d

The input layer consists of m hash functions hj : SI → HI , j ∈ {1, . . . ,m} and an embedding
matrix EI ∈ R|HI |×d. Each element s is mapped to the m embeddings (Eh1(s), . . . , Ehm(s)). The

1We assume a fixed sequence length for simplicity. This is also a useful assumption for practical implemen-
tation on a TPU, which requires fixed input dimensions.
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Figure 1: Superbloom model architecture

embeddings for all elements in a sequence (s1, . . . , sn) are packed into a matrix X ∈ Rmn×d.
With some abuse of notation, we will identify this matrix with the sequence {xi,j}i=1,...,n

j=1,...,m, where
xi,j ∈ Rd is the j-th embedding of element i.

2.2 TRANSFORMER LAYERS T : Rmn×d → Rmn×d

The Transformer is an attention-based model that was initially proposed for sequence transduction
tasks, and that has been used in various other settings such as BERT. For the intermediate layers of
Superbloom, we use the same architecture as the original transformer model (Vaswani et al., 2017),
which we briefly summarize in Appendix A. Each transformer layer is a function T : Rmn×d →
Rmn×d which maps a sequence of mn embeddings in Rd to another sequence in the same space.

2.3 OUTPUT LAYER: O : Rmn×d → ∆(HO)mn

Similarly to the input layer, we have m hash functions ηj : SO → HO, j ∈ {1, . . . ,m} for the
output space. We modify the original goal of predicting distribution over SO for the n elements,
to predicting the hashes of these elements, i.e. the mn distributions over HO. More formally, if
Y ∈ Rmn×d is the output of the last transformer layer, thenO(Y ) = σ(Y (EO)>) ∈ Rmn×d, where
EO ∈ R|HO|×d is an output embedding matrix, and σ is the row-wise softmax function (defined in
Appendix A). In some problems, the input and output spaces coincide, so it can be advantageous to
use identical input and output hash functions, hj = ηj , and the same embedding matricesEI = EO.

2.4 TRAINING

If the target sequence in SO is (t1, . . . , tn), then we define mn target distributions in ∆(HO), given
by {1[ηj(ti)]}i=1,...,n

j=1,...,m, where 1[·] is the indicator function. Let {pi,j}i=1,...,n
j=1,...,m denote the output

of the model, and let ` : ∆(HO) × ∆(HO) → R denote the loss function, e.g. cross-entropy
loss. Then the training objective is defined as

∑n
i=1

∑m
j=1 `(pi,j , 1[ηj(ti)]). Note that we can pre-

process the training data to map the elements in the original spaces (SI)n, (SO)n to the hash spaces
(HI)mn, (HO)mn, and training proceeds entirely in the hash spaces.

Model size and efficiency Compared to a model trained on the original space, the main advantage
of Superbloom is a reduction in the size of the embedding matrices EI , EO. For instance, if a
α-to-one hashing is used (i.e., each hash bucket contains α elements), then |H| = |S|/α and the
size of the input matrices is reduced by a factor α. This not only reduces the memory cost of the
model, but may also improve the efficiency of gradient updates during training. Consider a cross-
entropy loss, for each training example, all elements in the output space have a non-zero gradient
due to the partition function in softmax, and thus the full matrix EO needs to be updated at each
step, unless approximate methods such as sampled softmax (Bengio & Sénécal, 2003) are used. Our
experiments (see Section 3.3) show that the cost of updating EO dominates that of training, and
a reduction in vocabulary size allows us to significantly reduce training time without resorting to
negative sampling.
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Algorithm 1 Approximate and exact inference in Superbloom
1: Input: Model output pj ∈ ∆(HO), j = 1, . . . ,m, and a beam width B.
2: For each j ∈ {1, . . . ,m}, find the top B hash values h ∈ HO sorted by pj(h), call this set HB

j

3: Let SB = η−11 (HB
1 ) ∪ · · · ∪ η−1m (HB

m).
4: Score all candidates in SB . Let s? = arg maxs∈SB γ(ρ(s)).
5: if Approximate inference then
6: Return s?
7: else
8: Let pBj be the B-th largest value in pj , and define γB := γ(pB1 , . . . , p

B
m).

9: Find B? the smallest B′ ≥ B such that γB
′ ≤ γ(ρ(s?)).

10: Reapply the search with B replaced by B?, and return the resulting s?.

H1

H2 SB

ρ1

ρ
2

γ

γ
ρ1

ρ
2

Figure 2: Illustration of approximate and exact inference, with a number of hashes m = 2, a four-
to-one hashing scheme, and a beam width B = 2. The scoring function is γ(ρ) = log ρ1 + log ρ2.

2.5 INFERENCE

For each position i in the sequence, the model outputs m distributions {pi,j}j=1,...m ∈ ∆(HO)m,
which defines a vector of m scores for each candidate t ∈ SO, that we denote by ρ(t) =
{pi,j(ηj(t))}j=1,...,m. We can sort the candidates according to an aggregated score γ(ρ(t)),
where the function γ : Rk → R induces a total ordering over Rk. Consider for example
γ(ρ(t)) =

∑
j log ρj(t), or minj ρj(t). In order to return the top prediction2 arg max γ(ρ(t)),

one can exhaustively score all elements t ∈ SO, which is expensive for a large output space.

Under the natural assumption that the function γ(·) is increasing, in the sense that if ρ � ρ′ element-
wise then γ(ρ) ≥ γ(ρ′), we propose a simple algorithm (Algorithm 1) which performs approximate
inference efficiently. First, observe that each element ρj in the vector ρ can only take |HO| values,
and it is inexpensive to find hash values that have a high ρj , for each j. Given a beam width B, this
defines a subset of candidates SB to score. The second observation is that the set of elements that
are not scored is exactly the set {s ∈ S : ρ(s) � pB} (where pB is defined on line 8), and under the
assumption that γ is increasing, this guarantees that γ(s) ≤ γ(pB) for all unscored elements. Thus,
if γ(ρ(s?)) ≥ γ(pB), we have a certificate that s? is indeed the maximizer over all SO.

An example of this procedure for m = 2 and four-to-one collisions (four elements share the same
hash value along each dimension) is illustrated in Figure 2. For a beam width of 2, the subset of
candidates to score is highlighted in blue. In the left figure, the top element s? is circled, and the
solid line shows its γ level set. Since this does not intersect the shaded area (unscored elements),
we have a certificate that s? is the exact maximizer. The right figure shows a different configuration
where the s? level set does intersect the shaded area. To find the exact maximizer, a second step is
performed where we extend the search region (red region). This step is guaranteed to yield the exact
maximizer, but may result in searching a much larger set. In Appendix B, we investigate the effect
of the beam width on model quality.

The computational cost of approximate inference consists of two parts: first, finding the top
B elements in HO along each ρj (line 2); second, scoring candidates in SB (line 4), that is,
O(m|HO| logB +Bα), which can be significantly cheaper than scoring all candidates O(α|HO|).

2In the experiments, we extend the algorithm to return the top-k elements, but we derive it here for k = 1
for simplicity.
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3 WIKIPEDIA ENTITY PREDICTION

We apply Superbloom to the Wikipedia entity prediction task, in which we use surrounding links
on a Wikipedia page to predict a held-out link. This task is derived from the same data set as many
NLU tasks, but uses entities instead of natural language. We believe this study is complementary
to previous NLU models trained on Wikipedia, that focus on modeling language. Indeed, we show
through examples that the model can learn entity relations well and demonstrates a strong use of
contextual information.

The task needs to model about 5.3 million entity pages on Wikipedia. This vocabulary size is
two orders of magnitude larger than in previous work that applies a Transformer model with full
softmax loss (Devlin et al., 2018; Zhang et al., 2018; Sun et al., 2019). Other works, such as Zhang
et al. (2019) and Soares et al. (2019), train a Transformer model with a large number of entities
using sampled softmax, with either in-batch or in-example negative sampling. But as we shall show,
sampled softmax, even with a large number of 128K negative samples, results in much worse quality.

3.1 TASK

We take all the entity pages on the website en.wikipedia.org. For each page, we obtain the URL
links to other Wikipedia entity pages. We only use “raw” links, i.e. links that explicitly appear
on the page. We obtain 5,281,889 pages and 462,588,415 links. Since the Wikipedia site usually
removes duplicates of links on each page, the distribution of pages is rather long tail. For example,
the top 100 most frequent pages represent only 3.8% of the total links, and the top 10% most frequent
pages represent about 60% of the total links.

We hold out 10% random entity pages for testing. For the training data, we apply a masking similar
to BERT – from each page, we take a random contiguous segment of entities, of length up to n = 32,
and mask 15% of the segment. The task is then to predict the masked entities. We also apply the
same input perturbation, where for the input, each masked out link is either replaced with a special
[MASK] entity (with 80% probabilty), replaced with a random entity (with 10% probability), or left
unchanged (with 10% probability). For evaluation, we hold out one random entity from a random
segment on a test page. For quality evaluation, we use recall at k metric (abbreviated as rec@k
below), which represents the chance the held out entity is in one of the top k predictions.

3.2 MODEL

To apply Superbloom, we first create m hash maps from entities to hash tokens with a given hash
density α. Each hash map is obtained by applying a random permutation to the vocabulary and map
every consecutive α entities to the same token. This way we guarantee each hash token to have
the same number of collisions α.3 Special tokens [CLS], [MASK], [SEP], are each mapped to m
tokens with no collisions. For example we create [MASK1], .., [MASKm] tokens corresponding to
[MASK].

We apply the hashing to the input and target, to map each entity tom tokens as described in Section 2.
We then apply the Transformer model to the input to predict the masked tokens. Unlike in BERT,
we do not use position embeddings, in other words, we treat the input as a set instead of a sequence.
Since the input and output spaces coincide, we use the same hash functions and the same embedding
matrices in the input and output layer.

We carry out experiments on both the full vocabulary as well as a smaller subset consisting of the
top 500K entity pages. On the smaller vocabulary, we are able to train a baseline model with large
capacity, with no hashing and no sampling, which is useful for understanding the best achievable
model quality.

We train all of our models on 16 Cloud TPUs. We use a batch size of 1024 for experiments with
full vocabulary and 4096 for experiments with 500K vocabulary. All the experiments use the Adam
optimizer (Kingma & Ba, 2014), and use a decreasing learning rate sequence with inverse square
root decay, and initial learning rate 1e-4 for the full vocabulary and 2e-4 for the 500K vocabulary.
All the experiments have been run for more than 1 million steps to reach near convergence.

3The procedure described here is for simplicity. If we are concerned with space, we may use some space
efficient methods, for example a perfect hash function (Fredman et al., 1984).
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3.3 SUPERBLOOM IS MORE ACCURATE

We experiment with two models of similar size: one is a baseline model (baseline) with full vo-
cabulary of sizeN equal to the number of entities; the other is a Superbloom model (superbloom)
with a heavy 50 to 1 hashing. We set other hyper-parameters (such as the embedding dimension) so
both models have a similar size. We also compare to a large model (sampled-softmax) trained
using sampled softmax. Table 1 lists the hyper-parameters of each model. Recall that α denotes
the number of collisions (1 if there is no hashing), d the embedding dimension, nA the number of
attention heads, dF the dimension of intermediate hidden layers, and L the number of transformer
layers. In all of our experiments, we use two hash functions for Superbloom models. Hence their
vocabulary size is 2N/α.

model α d nA dF L #parameters #samples

baseline 1 48 4 1024 12 248M 5.3M
sampled-softmax 1 512 8 2048 12 2.6G 128K
superbloom 50 768 12 3072 12 229M 200K

Table 1: Model parameters. “#samples” lists the number of samples in the softmax loss computa-
tion. For baseline and superbloom, since there is no sampling, this number corresponds to the full
vocabulary, 5.3M and 200K, respectively. For sampled-softmax, we use 128K samples.

Table 2 shows the recall metrics of the models. For the Superbloom model, we set the beam width
to B = 20 (our experiments suggest that it is sufficient to set B = k in order to achieve the best
rec@k metric, see Appendix B for details).

model rec@1 rec@10 rec@20

baseline 36.2% 63.1% 68.2%
sampled-softmax 3.1% 36.2% 55.1%
superbloom 51.1% 72.3% 76.5%

Table 2: Recall metrics for different models.

The Superbloom model clearly outperforms, to a large extent, both the baseline and the sampled-
softmax model. We note that the sampled-softmax model has much worse rec@k than the other
two models, and this gap is larger for smaller k. This is not surprising given the relatively small
percentage (2.5%) of negative examples we can afford to sample.

While the Superbloom model performs well overall, there is a possibility that it devotes most of the
embedding capacity to the top entities, so it loses accuracy on the less frequent entities. To test this,
we plot the rec@1 value as a function of label frequency. In Figure 3, we show the mean rec@1
for every 10 percentile bucket in terms of the label frequency. We can observe that Superbloom
is more accurate than the baseline in all the buckets. Another interesting phenomenon is that the
most challenging labels are those in the 20 and 30 percentile. One possible reason is that they lack
the higher predictability of the most frequent labels, and also the strong regularity of less frequent
labels.

Besides the high predictive accuracy, the prediction from the model shows strong semantic ability
and context dependency. We show some examples of predictions in Figure 4 in Appendix D. In
one set of examples, we pair “Copenhagen” with different entities, and observe that the predictions
change accordingly, depending on the context. Another observation is that despite the heavy hash-
ing, there are almost no unrelated entities in the top 10 predictions. The model even exhibits an
ability to perform certain analogy tasks (without being trained on such tasks) – for example, given
“Tunisia Tunis Thailand”, it predicts “Bangkok” as the top result.

3.4 MULIT-LAYER TRANSFORMER IS IMPORTANT FOR SUPERBLOOM

Intuitively, given the large noise introduced by hashing, it is more important for Superbloom to
use multiple attention layers in Transformer to “remove” the noise. To test this intuition, we run
experiments with a smaller vocabulary size of the top 500K entity pages (about 60% of the links).
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Figure 3: Rec@1 with respect to label frequency, starting from the most frequent labels.

On this smaller vocabulary size, we can afford to run a full softmax model with a larger embedding
dimension.

model α d nA dF L #parameters rec@1 rec@10 rec@20

baseline-l1 1 256 1 1024 1 123M 51.0% 70.4% 75.5%
baseline-l12 1 256 8 1024 12 132M 55.0% 73.7% 77.3%

superbloom-d256l1 20 256 1 1024 1 13M 17.8% 35.8% 42.6%
superbloom-d384l1 20 384 1 1536 1 21M 30.6% 52.9% 58.7%
superbloom-d256l12 20 256 8 1024 12 21M 43.4% 60.1% 64.0%

Table 3: Model parameters and recall metrics.

We consider different embedding dimensions and model complexity. Table 3 lists the model pa-
rameters as well as the recall metrics for each model. We observe that for the baseline models, the
quality difference is small between models of different complexity. For example, rec@1 of baseline-
l12 (55.0%) is about 8% better than baseline-l1 (51.0%). Since a one layer Transformer is close to a
bag-of-words (BOW) model, one may argue that it may be unnecessary to use a Transformer in this
case – instead one can use a larger dimension BOW model to achieve a similar accuracy.

However, for Superbloom models, the quality improves significantly with more layers. When in-
creasing the number of layers from 1 (superbloom-d256l1) to 12 (superbloom-d256l12), rec@1
increases from 17.8% to 43.4%. The multi-layer model also performs much better than the single
layer model with the same size (superbloom-d384l1). Note that previous work on hashed vocabu-
laries relies on BOW models, which are less expressive than even a single-layer transformer. This
highlights one of our key observations that multi-layer Transformer models are more effective for
working with hashed vocabularies.

4 EXPERIMENTS ON NATURAL LANGUAGE DATA

In this section, we apply Superbloom to natural language data. We consider a large vocabulary that
contains frequent unigrams and bigrams and use it to tokenize the text, then apply a Bloom filter to
reduce the vocabulary size. We show that despite high hash collisions, the model can achieve high
accuracy on natural language data. Since many named entities appear in the large vocabulary, we
observe that the model seems to make better predictions of named entities than the BERT model.

While each hash id can be regarded as a word piece in an NLU model, there are important differ-
ences between hash ids and word pieces. First, hashing causes random collisions, while wordpiece
tokenization can be viewed as a special hashing scheme based on the spelling – there is often co-
herence between words that share a word piece. As suggested by the experiments in Appendix C,
random hashing with Superbloom digests may outperform coherent hashing. In addition, as every
token in the large vocabulary is hashed, we do not have unambiguous anchors (such as the exact
word pieces) to help bootstrap the disambiguation process. Despite these differences, our experi-
ments suggest that even with high hashing collision α = 40, the Transformer is capable of resolving,
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or unhashing, the Bloom filter digest effectively and produces highly accurate predictions and mean-
ingful embeddings.

We construct a vocabulary of size 1M by taking the union of standard BERT word piece vocabulary
(∼ 30K) with the most frequent unigrams and bigrams, and follow the same procedure in BERT to
create training examples. For Superbloom, we apply random hash maps to the 1M vocabulary simi-
lar to the approach described in Section 3.2 to ensure an even number of collisions. The Superbloom
architecture is chosen to have a comparable model size to the baseline BERT model.

We compare four models: For the non-hashed baselines, we have a large model with embedding
dimension d = 256, and a small model with d = 64. And we have two Superbloom models with
similar model sizes. We list the parameters in Table 4. In Table 5 we list the recall metrics for the

model α d nA dF L #parameters

baseline-h64 1 64 4 256 12 62.6M
baseline-h256 1 256 8 1024 12 254.4M

hash40-h512 40 512 8 2048 12 62.3M
hash20-h1024 20 1024 16 4096 12 246.3M

Table 4: The model parameters.

models. We observe that with comparable model size, Superbloom outperforms the baseline model
in all the recall metrics, and the improvement is more significant for smaller model size.

model name rec@1 rec@10 rec@20 model name rec@1 rec@10 rec@20

baseline-h64 28.4% 44.9% 48.6% baseline-h256 37.2% 57.4% 63.3%
hash40-h512 31.7% 48.3% 52.9% hash20-h1024 39.2% 58.5% 64.5%

Table 5: Recall metrics.

Since many named entities are included in the larger vocabulary, the Superbloom model shows that
it may have better “understanding” or representation of those entities. We show some anecdotal
evidence in Appendix D by comparing predictions of pretrained BERT and Superbloom model on
some fill-in-the-blanks examples. The BERT model often predicts generic words, seemingly ignor-
ing other named entities in the sentence. The Superbloom model, on the other hand, can often fill in
the blank with related entities.

5 CONCLUSION

Our experiments show that the multi-layer Transformer is effective for achieving high accuracy
on hashed inputs, represented using Bloom filter digests. Besides applying it to tasks with large
vocabularies, it also points to a few interesting future research directions.

The Transformer model has been mostly studied in natural language settings and for sequence data.
In our setup, we show that it can work effectively with sets of hashed entities. We hope that by in-
vestigating this simpler setup, it can help us better understand the properties of the Transformer. For
example, due to hashing, each token is similar to words with multiple meanings, so its embedding
can be viewed as a combination, possibly linear (Arora et al., 2018), of the embeddings of multiple
entities. A multi-layer Transformer model may provide a mechanism for iteratively filtering such
noisy representations, using the context. It would be interesting to further study this mechanism.

While hashing adds noise to the learned representations, it can also increase the flexibility of these
representations – when we hash multiple entities to the same token, the model is free to allocate the
corresponding embedding unevenly among entities, which results in a different effective embedding
dimension for each entity. Such learned capacity allocation might be more efficient than using a
fixed embedding size or frequency-based allocation. Of course, an effective “denoising” model is a
pre-requisite for such an approach to work. Perhaps Superbloom, with its strong denoising ability,
can help further realize the potential of embedding models on hashed vocabularies.
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A TRANSFORMER ARCHITECTURE

We briefly recall the Transformer architecture following Vaswani et al. (2017). Each transformer
layer is a function T : Rmn×d → Rmn×d which transforms a sequence of mn embeddings4 in Rd

to another sequence of mn embeddings in the same space. T can be decomposed into T = F ◦ A,
where

• A is an attention function,

A(X) =

nA∑
a=1

σ
(

(XQa)(XKa)>/
√
dA

)
XVaW

>
a , (1)

where a ∈ {1, . . . , nA} indexes attention heads, dA ≤ d is an internal embedding dimension
(usually dA = d/nA), and for each a, Qa,Ka, Va,Wa ∈ Rd×dA . Finally, σ : Rn×n → ∆([n])n

is the row-wise softmax function, given by

σ(Y )ij =
exp(Yij)∑n
l=1 exp(Yil)

. (2)

One interpretation of the attention function is that it forms the i-th output embedding by taking
a convex combination of input embeddings weighted by the softmax weights, followed by a
low-rank transformation VaW>a ∈ Rd×d.

• F is a fully connected feed-forward network given by F (X) = ReLU(XU1 + b1)U>2 + b2,
where Ui ∈ Rd×dF for some dF ≥ d.

A residual connection and layer normalization are also applied at each stage A,F .

B THE QUALITY OF BEAM SEARCH

Before we report the recall metrics, we first need to make sure that the beam search is accurate for
Superbloom models. Table 6 shows rec@k for k = 1, 10, 20 for different beam widths B, using a
small number of test examples for the Superbloom model. We observe that to obtain highest rec@k
metric, it is sufficient to set the beam width B = k in Algorithm 1.

beam width rec@1 rec@10 rec@20

B=1 53.0% 56.0% 56.0%
B=10 53.2% 68.2% 69.1%
B=20 53.2% 67.9% 71.0%
B=100 53.2% 67.8% 71.5%

Table 6: Recall metrics at different beam width.

C COMPARISON OF DIFFERENT HASHING SCHEMES

We have used random hashing functions in Superbloom. One natural alternative is “coherent” hash-
ing, in which we map similar entities to the same hash bucket. A potential benefit of coherent
hashing is that it may use embedding capacity more effectively by sharing it among similar entities.
However, the downside is that it becomes difficult to distinguish those similar entities.

To create a coherent hashing function, we first run a co-occurrence factorization algorithm and then
group similar entities together using the following procedure, designed to guarantee equal-sized hash
buckets. For each entity, in decreasing frequency order, we compute the nearest neighbors (scored
using cosine similarity), then create a hash bucket that includes the elements and its α − 1 nearest
neighbors which have not been already assigned a bucket. When creating a second coherent hash
function, we add the constraint that any pair of elements that share a bucket for the first hash function

4A minor difference with the original Transformer model is that we operate on Rmn×d instead of Rn×d,
since we have m embeddings for each element in the sequence.
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cannot be assigned to the same bucket in the second hash. This ensures that no two elements have
the same collision in both hash functions.

We carry out the experiments on the data set with smaller vocabulary (500K). We train different
models that all use two hash functions, with the following configurations: both random, one random
and one coherent; and both coherent. We also use different hashing densities α = 10 and α = 20.
All the models have the same hyper-parameters as the superbloom-l12 model in Section 3.4. The
results are given in the following table.

model α #coherent hashing token rec@1 entity rec@1

hash10-00 10 0 36.32% 52.50%
hash10-01 10 1 38.19% 50.20%
hash10-11 10 2 38.55% 34.70%

hash20-00 20 0 33.39% 43.70%
hash20-01 20 1 36.98% 41.10%
hash20-11 20 2 37.65% 30.20%

Table 7: Random hashing versus coherent hashing.

We observe that with coherent hashing, we get higher accuracy for predicting hash tokens but lower
accuracy for predicting entities. And the entity recall@1 is significantly lower when both hash
functions are coherent. This indicates that with higher coherence, it becomes increasingly difficult
for the model to make finer distinctions between similar items.
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D EXAMPLES OF WIKIPEDIA ENTITY PREDICTIONS

1. Examples of pairing “Copenhagen” with different entities. The predictions vary according to the
context, from Danish cities, to major European cities, to Danish royalty, and Danish culture. There
is a one unrelated result (underlined), which disappears in the presence of additional context.

Copenhagen [MASK]
Denmark Oslo Stockholm Paris Berlin Aarhus Danish language University of Copenhagen Sweden
Copenhagen

Copenhagen Aarhus [MASK]
Denmark Odense Copenhagen Aalborg Aarhus Oslo Malmö Max Wilms Stockholm Esbjerg

Copenhagen Paris [MASK]
Berlin Denmark London Oslo Rome Vienna Stockholm New York City Brussels Hamburg

Copenhagen Dynasty [MASK]
Denmark Margrethe II of Denmark Danish language Copenhagen Catholic Church Rome Chris-
tian V of Denmark Jutland When We Wake Up Frederik, Crown Prince of Denmark

Copenhagen Dynasty Danish language [MASK]
Denmark German language Margrethe II of Denmark Catholic Church Copen-
hagen English language Princess Benedikte of Denmark Danish language Fred-
erik, Crown Prince of Denmark Christian V of Denmark

2. Examples of Jazz musicians. These relatively long and rare name entities would not appear in the
vocabulary of a word piece model.

Miles Davis [MASK]
Jazz Columbia Records Miles Davis John Coltrane Dizzy Gillespie Bill Evans Album
Sonny Rollins AllMusic Charles Mingus

John Coltrane [MASK]
Miles Davis AllMusic Jazz A Love Supreme Rolling Stone Elvin Jones Albert Ayler
Tenor saxophone New York City Drum kit

Miles Davis John Coltrane [MASK]
Jazz Charles Mingus Album AllMusic Miles Davis Dizzy Gillespie Thelonious Monk
Sonny Rollins Charlie Parker Bill Evans

3. Example showing that the prediction is the set union if two entities are not related.

Miles Davis Thailand [MASK]
Vietnam Bangkok Japan Miles Davis Cambodia Malaysia Jazz Indonesia Thai language Brazil
Myanmar Rock music Dizzy Gillespie John Coltrane

4. Examples for completing location analogy task!

Texas Austin, Texas Florida [MASK]
Miami Houston Orlando, Florida Dallas Jacksonville, Florida Fort Lauderdale, Florida
Tampa, Florida Georgia (U.S. state) Tallahassee, Florida St. Petersburg, Florida

Tunisia Tunis Thailand [MASK]
Bangkok Philippines Montcau Tokyo Malaysia Singapore Indonesia Pattaya Vietnam Thai language

Figure 4: Examples of Superbloom model predictions. For each example, we output the top 10
predictions of the model (computed using Algorithm 1 with a beam width B = 10). The entity
names shown here are obtained by removing the prefix “https://en.wikipedia.org/wiki/” from the
entity URL.
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E EXAMPLES OF NATURAL LANGUAGE ENTITY PREDICTIONS

Miles Davis is a Jazz musician, he is similar to [MASK].

BERT: jazz himself beethoven him davis chopin bowie williams jones
baseline-h256: miles davis john coltrane bill evans charlie parker louis armstrong sonny rollins
keith jarrett thelonious monk jazz duke ellington
hash20-h1024: miles davis john coltrane charlie parker thelonious monk dizzy gillespie bill evans
billie holiday duke ellington humans is louis armstrong

Empire state building is an iconic site of [MASK1] , it is close to [MASK2] .

[MASK1]
BERT: architecture chicago manhattan downtown pittsburgh art philadelphia history washington
america
baseline-h256: architecture modern art contemporary art modern architecture national significance
new york art its day historical significance the city
hash20-h1024: the city new york lower manhattan manhattan the neighborhood downtown
wall street the area harlem architecture

[MASK2]
BERT: downtown it chicago philadelphia rome london broadway manhattan chinatown campus
baseline-h256: downtown downtown pittsburgh city hall new york the city times square
columbia university san francisco philadelphia the pentagon
hash20-h1024: central park city hall times square wall street union station broadway
lower manhattan the pentagon fifth avenue carnegie hall

Figure 5: Natural language fill-in-the-blank examples. BERT is the base BERT model in Devlin
et al. (2018); baseline-h256 and hash20-h1024 are the Superbloom models with 1M vocabulary,
with model parameters listed in Table 4.
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