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ABSTRACT

Granger causal structure reconstruction is an emerging topic that can uncover
causal relationship behind multivariate time series data. In many real-world sys-
tems, it is common to encounter a large amount of multivariate time series data
collected from heterogeneous individuals with sharing commonalities, however
there are ongoing concerns regarding its applicability in such large scale com-
plex scenarios, presenting both challenges and opportunities for Granger causal
reconstruction. To bridge this gap, we propose a Granger cAusal StructurE
Reconstruction (GASER) framework for inductive Granger causality learning and
common causal structure detection on heterogeneous multivariate time series. In
particular, we address the problem through a novel attention mechanism, called
prototypical Granger causal attention. Extensive experiments, as well as an on-
line A/B test on an E-commercial advertising platform, demonstrate the superior
performances of GASER.

1 INTRODUCTION

Broadly, machine learning tasks are either predictive or descriptive in nature, often addressed by
black-box methods (Guo et al., 2018). With the power of uncovering relationship behind the data
and providing explanatory analyses, causality inference has drawn increasing attention in many
fields, e.g. marketing, economics, and neuroscience (Pearl, 2000; Peters et al., 2017). Since the
cause generally precedes its effects, known as temporal precedence (Eichler, 2013), recently, an
increasing number of studies have focused on causal discovery from time series data. They are
commonly based on the concept of Granger causality (Granger, 1969; 1980) to investigate the causal
relationship with quantification measures.

In many real-world systems, it is common to encounter a large amount of multivariate time series
(MTS) data collected from different individuals with shared commonalities, which we define as het-
erogeneous multivariate time series. The underlying causal structures of such data often vary (Zhang
et al., 2017; Huang et al., 2019). For example, in the financial market, the underlying causal drivers
of stock prices are often heterogeneous across stocks of different plates. Similar phenomenons are
also observed in the sales of different products in E-commerce. To this situation, most existing
methods have to train separate models for MTS of each individual, which suffer from over-fitting
especially given limited training samples. Although some works have been proposed to solve such
problem (Zhang et al., 2017; Huang et al., 2019), they lack the inductive capability to do inferences
for unseen samples and fall short of fully exploiting shared causal information among the heteroge-
neous data which often exist in practice. For instance, the causal structures of the products belonging
to the same categories are usually similar. Such shared information presents opportunities for causal
reconstruction to alleviate overfitting and to do inductive reasoning. However, it is also challenging
to detect common and specific causal structures simultaneously.

In this paper, we propose a Granger cAusal StructurE Reconstruction (GASER) framework for
inductive Granger causality learning and common causal structure detection on heterogeneous mul-
tivariate time series data. Our approach builds on the idea of quantifying the contributions of each
variable series into the prediction of target variable via a novel designed prototypical Granger causal
attention mechanism. In order to ensure that the attention capturing Granger causality, we first de-
sign an attention mechanism based on Granger causal attribution of the target series and then perform
prototype learning that generates both shared and specific prototypes to improve the model’s robust-
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ness. Extensive experiments demonstrate the superior causal structure reconstruction and prediction
performances of GASER. In summary, our specific contributions are as follows:

• A novel framework that inductively reconstructs Granger causal structures and uncovers common
structures among heterogeneous multivariate time series.

• A prototypical Granger causal attention mechanism that summarizes variable-wise contributions
towards prediction and generates prototypes representing common causal structures.

• Relative extensive experiments on real-world, benchmark and synthetic datasets as well as an on-
line A/B test on an E-commercial advertising platform that demonstrate the superior performance
on the causal discovery and the prediction performance comparable to state-of-the-art methods.

2 GASER
In this section, we formally define the problem, introduce the architecture of GASER, present the
prototypical Granger causal attention with the final objective function.

2.1 PROBLEM DEFINITION

Assuming we have a set of heterogeneous multivariate time series from N individuals, i.e., X =
{Xi}Ni=1, with each consisting of S time series of length T , denoted as Xi = (x1

i ,x
2
i , . . . ,x

S
i )T ∈

RS×T , where xs
i = (xsi,1, x

s
i,2, . . . , x

s
i,T )T ∈ RT represents the s-th time series of individual i, and

one of them is taken as the target series yi. We aim to train a model that (1) reconstructs Granger
causal structures among variables for each individual; (2) generates K common structures among
all the N individuals, each structure represented by a prototype pk ∈ RS , k = 1, ...,K; and (3)
learns a nonlinear mapping to predict the next value of the target variable series for each individual,
i.e., ŷi,T+1 = F(Xi).

2.2 NETWORK ARCHITECTURE

Our GASER framework consists of two parts: a set of parallel encoders, each predicting the target
given the past observations, and an attention mechanism that generates prototypical Granger causal
attention vectors to quantify variable-wise contributions towards prediction. Figure 1 illustrates the
overall framework of GASER. As illustrated in Figure 1(a), for an input multivariate time series
Xi, the encoder specific to s-th variable projects the time series xs

i into a sequence of hidden state,
denoted as hs

i,t = Hs(xi,t,h
s
i,t−1). The encoder could be any RNN models, such as LSTM (Hochre-

iter & Schmidhuber, 1997) and GRU (Cho et al., 2014). The last hidden states, {hs
i,T }Ss=1, are used

as the hidden embeddings of each variable. Then the predicted next value of the target variable con-
ditioned on historical data of variable s, denoted as ŷsi,T+1, can be computed by ŷsi,T+1 = fs(h

s
i,T ),

where fs(·) denotes the MLP network specific to variable s. Then we obtain the prediction ŷi,T+1

by aggregating the predicted values specific to variables through the prototypical Granger causal
attention described below.

2.3 PROTOTYPICAL GRANGER CAUSAL ATTENTION

We propose a novel attention mechanism in GASER, namely prototypical Granger causal attention,
to reconstruct Granger causal relationships for each individual and uncover common causal struc-
tures among heterogeneous individuals. The goal is to learn attentions that can reflect the Granger
causal strength between variables for each individual, and generate prototypes among heteroge-
neous individuals. As illustrated in Figure 1(b), the idea of the prototypical Granger causal attention
mechanism is as follows. The Granger causal attribution corresponding to each individual is first
computed according to the concept of Granger causality, followed by prototype learning that sum-
marizes common causal structures for heterogeneous individuals in the training set, and produces
the attention vector specific to each individual. The details of these two parts are described below.

2.3.1 GRANGER CAUSAL ATTRIBUTION

Granger causality (Granger, 1969; 1980) is a concept of causality based on prediction, which de-
clares that if a time series x Granger-causes a time series y, then y can be better predicted using
all available information than if the information apart from x had been used. Thus, we obtain the
Granger causal attributions by comparing the prediction error when using all available information
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(a) The architecture of the proposed GASER.
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(b) Prototypical Granger causal attention.

Figure 1: The overview of the GASER framework.

with the error when using the information excluding one variable series. In particular, given all the
hidden embeddings {hs

i,T }Ss=1 of individual i, we obtain the embedding that encodes all available
information and the one that encodes all available information excluding one variable s, denoted as
hall
i and h

all\s
i respectively, by concatenating the embeddings of corresponding variables:

hall
i = [hj

i,T ]Sj=1, h
all\s
i = [hj

i,T ]Sj=1,j 6=s, (1)

where [·] represents the concatenation operation. Then we feed them into respective predictors,
denoted as gall(·) and gs(·), to get the predicted value of target and compute the squared errors:

ŷalli,T+1 = gall(h
all
i ), ŷ

all\s
i,T+1 = gs(h

all\s
i ), (2)

εalli = (ŷalli,T+1 − yi,T+1)2, ε
all\s
i = (ŷ

all\s
i,T+1 − yi,T+1)2, (3)

where the predictor gall(·) and gs(·) can be MLP networks. Inspired by Schwab et al. (2019), we
define the Granger causal attribution of the target variable corresponding to variable s as the decrease
in error when adding s-th series to the set of available information, computed as:

∆εsi = ReLU(ε
all\s
i − εalli ), (4)

where ReLU(·) is the rectified linear unit. For each individual i, by normalising the Granger causal
attribution, we obtain an attention vector that reflects Granger causality, namely Granger causal
attention, denoted as qqqi. The attention factor for variable s can be computed as:

qsi =
∆εsi∑S
j=1 ∆εji

. (5)

2.3.2 PROTOTYPE LEARNING
The Granger causal attention above is not robust enough to reconstruct Granger causal structure,
given limited data (e.g., very short time series) of each individual in training. We address the problem

3



Under review as a conference paper at ICLR 2020

by generating Granger causal prototypes from all the individuals, under the assumption that there
should be several common causal structures among heterogeneous individuals.
In particular, we assume there existK Granger causal prototypes, denoted as {pk}Kk=1, and compute
the similarity between the Granger causal attention vector qqqi of individual i and each prototype
vectors pk. Since the attention can be seen as a distribution, we use the cosine similarity:

dk,i =
pk · qqqi
‖pk‖‖qqqi‖

, (6)

Then we output a prototype most similar to qi by sampling from the similarity distribution di using
Gumbel-Softmax (Maddison et al., 2017; Jang et al., 2016), which samples from a reparameterized
continuous distribution approximation to the categorical one-hot distribution:

e = GumbelSoftmax(di) = softmax((log(di) + g)/τ), (7)

where GumbelSoftmax(·) denotes the Gumbel-Softmax function, e ∈ RK is the sample vector
which approaches one-hot, and g is a vector of i.i.d. samples drawn from Gumbel(0, 1) distribution.
τ is the softmax temperature, and the distribution becomes discrete when τ goes to 0. With the
sample vector e, the output prototype p̂ can be obtained as:

p̂ = [p1,p2, . . . ,pK ] · e. (8)

After normalizing the sampled prototype, we obtain an attention vector for individual i, denoted as
ri, namely prototypical attention.

The Granger causal attention reflects the Granger causal structure specific to each individual, while
the prototypical attention reflects one common Granger causal structure most similar to the Granger
causal structure of each individual. To detect the specific and common causal structures simulta-
neously, we summarize them together and generate the prototypical Granger causal attention ai as
follows:

ai = αqqqi + (1− α)rrri, (9)

where α ∈ [0, 1] is a hyperparameter that controls the ratio of the two attention mechanism.

Finally, the prediction of the target variable’s next value can be computed as the weighted sum of
the predicted values from all variables:

ŷi,T+1 =

S∑
s=1

asi ŷ
s
i,T+1. (10)

2.4 LEARNING OBJECTIVE

In order to obtain accurate prediction and Granger causality structure, and generate diverse common
causality structures, the objectives of GASER consist of three parts. The first two objective functions
are to encourage accurate predictors, including the predictors f(·) to perform final prediction and
the auxiliary predictors g(·) to compute Granger attribution, and we adopt the the mean squared
error (MSE) as the prediction loss function:

Lpred =
1

N

N∑
i=1

(ŷi,T+1 − yi,T+1)2, Laux =
1

N

N∑
i=1

(εalli +

s∑
s=1

ε
all\s
i ). (11)

The last objective function is to avoid duplicate prototypes by a diversity regularization term that
penalizes on prototypes that are similar to each other (Ming et al., 2019):

Ldiv =

K∑
i=1

K∑
j=i+1

max(γ,
pi · pppj
‖pi‖‖pppj‖

), (12)

where γ controls the closeness to a tolerable degree.

To summarize, the loss function, denoted by L, is given by:

L = Lpred + λ1Laux + λ2Ldiv, (13)

where λ1 and λ2 are hyperparameters that adjust the ratios between the losses.
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3 EXPERIMENTS

In this section, we evaluate the causal structure reconstruction performance on multivariate time
series from both single individual and multiple individuals, as well as the prediction performance of
GASER. We also conduct an online A/B test on an E-commerce advertising platform to further test
GASER in more practical situations.

3.1 EXPERIMENTAL SETUP

We first evaluate the causal structure reconstruction performances on two causal benchmark datasets.

Finance (Kleinberg, 2009) consists of simulated financial market time series with known underlying
causal structures. Each dataset includes 25 variables of length 4,000. For each dataset, we choose
variables that are related to the most causes as the target variables to test model abilities in the
relatively most challenging scenarios.

FMRI (Smith et al., 2011) contains 28 different Blood-oxygen-level dependent time series datasets
with the ground-truth causal structures. In the experiments, we evaluate on the first 5 datasets and
take the first variable as the target as causal variables distribute relatively evenly in this dataset.

Then, we evaluate the causal structure reconstruction performance on heterogeneous individuals on
synthetic data:

Synthetic data: We first obtain the S exogenous time series through the following Non-linear Au-
toregressive Moving Average (NARMA) (Atiya & Parlos, 2000) generators:

xsi,t = αsx
s
i,t−1 + βsx

s
i,t−1

d∑
j=1

xsi,t−j + γsεi,t−dεi,t−1 + εi,t, (14)

where εt are zero-mean noise terms of 0.01 variance, d is the order of non-linear interactions, and
αs, βs and γs are parameters specific to variable s, generated from N (0, 0.1). Then, we generate
the target series from the generated exogenous series via the formula:

yi,t =

S∑
s=1

ωs
i (ηηη

s
i )

T tanh (xs
i,t−p:t−1) + εi,t, (15)

where ωs
i ∈ {0, 1} with 0.6 probability of being zero that controls the underlying causal relationship

from the s-th variable to the target variable, ηηηsi ∈ Rp controls the causal strength sampling from
Unif{−1, 1}, and xs

i,t−p:t−1 = (xsi,t−p, x
s
i,t−p+1, . . . , x

s
i,t−1)T ∈ Rp represents the last p historical

values of variable s of sample i. The 0-1 indicator vector ωωωi = (ω1
i , ω

2
i , . . . , ω

S
i )T ∈ RS is the

ground-truth causal structure of i-th individual.

For the causal structure reconstruction task, we compare our method with previous causal discovery
methods including linear Granger causality (Granger, 1969; Lütkepohl, 2005) and TCDF (Nauta
et al., 2019), as well as the interpretable neural network based prediction method, i.e., IMV-
LSTM (Guo et al., 2019), using the standard metrics of Area Under the Precision-Recall Curve
(PR-AUC), and Area Under the ROC Curve (ROC-AUC) (Fawcett, 2006).

Since a byproduct of GASER is the time series prediction, we also evaluate the prediction perfor-
mance on the real-world datasets, i.e., PM2.5 and SML:

PM2.5 contains the hourly PM2.5 and meteorological data in Beijing during Jan 2010 to Dec 2014,
includes 7 variables (such as PM2.5 concentration, temperature, pressure and wind speed), and
forms a multivariate time series of length 43,824. The PM2.5 concentration is the target series. the
dataset is split into training (60%), validation (20%) and testing sets (20%).

SML is a monitoring dataset for the temperature forecasting, collected from a monitor system in a
domotic house for approximately 40 days. The data are sampled every minute and smoothed with
the mean of every 15 minutes, forming the MTS of length 4,137. We predict the dinning-room
temperature with 17 relevant variable series. The first 3,200, the following 400 and the last 537 data
points are respectively used for training, validation, and test.

We compare with the state-of-the-art prediction models including DUAL (Qin et al., 2017) and IMV-
LSTM (Guo et al., 2019), and adopt Root Mean Squared Error (RMSE) and Mean Absolute Error
(MAE) as metrics.
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Table 1: Causal structure reconstruction results on Finance and FMRI data.

Methods Finance (9 datasets) FMRI (5 datasets)

PR-AUC ROC-AUC PR-AUC ROC-AUC

IMV-LSTM 0.778±0.222 0.862±0.172 0.593±0.239 0.620±0.136
linear Granger 0.187±0.036 0.652±0.084 0.492±0.310 0.654±0.126

TCDF 0.478±0.263 0.766±0.145 0.540±0.250 0.664±0.099
GASER 1.000±0.000 1.000±0.000 0.641±0.327 0.740±0.122

3.2 EXPERIMENTAL RESULTS

3.2.1 CAUSAL STRUCTURE RECONSTRUCTION PERFORMANCE ON HOMOGENEOUS
MULTIVARIATE TIME SERIES

To evaluate the causal discovery performance on homogeneous multivariate time series, we train
individual models for each dataset with the hyper-parameter α equaling 0.5. We report PR-AUC
and ROC-AUC averaged across all datasets, with the standard deviation reported in Table 1. As can
be seen, the proposed method greatly surpasses other methods. Especially, GASER recovers the
ground-truth causal structure with high score on the Finance data.

3.2.2 CAUSAL STRUCTURE RECONSTRUCTION PERFORMANCE ON HETEROGENEOUS
MULTIVARIATE TIME SERIES

In this part, we evaluate the causal discovery performance on heterogeneous multivariate time series.
We denote the number of common causal structures asC, the number of variables as S and the series
length as T , and generate 100 multivariate time series for each common causal structure according
to Equation (14) and Equation (15), forming 100C datasets. For the inductive methods GASER
and IMV-LSTM, we train one model using all the datasets, while for other methods, we train sepa-
rate models for each dataset. We report PR-AUC and ROC-AUC results w.r.t the variable number,
the series length and the common structure number in Table 2 to 4, respectively. We observe that
GASER outperforms other methods significantly in all cases, and GASER (α = 0.5) (with the Pro-
totypical Granger causal attention) performs better than GASER (α = 1) (only with Granger causal
attention). The observations demonstrate the superior causal discovery performance of GASER, the
effectiveness of the prototypical Granger causal attention in GASER, and the advantages of utilizing
shared commonalities among heterogeneous MTS. Regarding the other competitors, linear Granger
performs the best followed by TCDF and IMV-LSTM at most cases. The possible reason is that
linear Granger can detect Granger causal relations to some extent, though it utilizes linear model,
i.e., Vector autoregression (VAR). TCDF utilizes attention-based CNN to inference potential causals
followed by a causal validation step, but the attention it proposed cannot reflect Granger causality,
thus achieves unsatisfactory performance. Compare to the performance on homogeneous multivari-
ate time series, the performance of IMV-LSTM drops dramatically, which indicates that the attention
mechanism in IMV-LSTM fails given heterogeneous multivariate time series.

In Table 2, we vary the number of variables to generate datasets of different complexity, and we can
see that GASER outperforms other competitors consistently across different S, and achieves good
performance when S is as large as 20, demonstrating our method’s capability to infer complex causal
structures. Since in practice, the size of collected data is often limited, which poses challenges to
recover causal structure, thus we also vary the length of time series to see the model robustness to
data of small sizes. As can be seen in Table 3, GASER outperforms other methods across all cases,
even when T is as small as 20, which demonstrates that advantage of using shared information. We
also observe that GASER (α = 0.5) surpasses GASER (α = 1) by a large margin, which demon-
strates that learning prototypical attention can alleviate the over-fitting problem. In Table 4, we
control the causal heterogeneity by varing the number of common causal structures C = {3, 5, 7}.

Table 2: Causal structure reconstruction results w.r.t the variable number (C=3, T=1000).

Methods S=5 S=10 S=20

PR-AUC ROC-AUC PR-AUC ROC-AUC PR-AUC ROC-AUC

IMV-LSTM 0.511±0.102 0.500±0.236 0.536±0.056 0.514±0.019 0.599±0.087 0.619±0.087
linear Granger 0.666±0.107 0.822±0.075 0.765±0.109 0.889±0.063 0.826±0.106 0.854±0.080

TCDF 0.523±0.103 0.523±0.214 0.548±0.165 0.587±0.180 0.584±0.162 0.642±0.152
GASER (α = 1) 0.886±0.177 0.906±0.143 0.974±0.038 0.975±0.037 0.830±0.108 0.883±0.069

GASER (α = 0.5) 0.911±0.147 0.922±0.122 0.998±0.009 0.999±0.008 0.858±0.103 0.939±0.050
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Table 3: Causal structure reconstruction results w.r.t the series length (K=5, S=10).

Methods T=20 T=100 T=1000

PR-AUC ROC-AUC PR-AUC ROC-AUC PR-AUC ROC-AUC

IMV-LSTM 0.467±0.025 0.541±0.035 0.503±0.081 0.511±0.018 0.536±0.056 0.514±0.019
linear Granger 0.400±0.000 0.500±0.000 0.889±0.152 0.943±0.085 0.765±0.109 0.889±0.063

TCDF 0.518±0.131 0.513±0.112 0.517±0.120 0.544±0.166 0.548±0.165 0.587±0.180
GASER (α = 1) 0.790±0.142 0.793±0.150 0.973±0.038 0.974±0.038 0.974±0.038 0.975±0.037

GASER (α = 0.5) 0.824±0.123 0.833±0.117 0.973±0.040 0.976±0.036 0.998±0.009 0.999±0.008

Table 4: Causal structure reconstruction results w.r.t. the common structure number C (S=10,
T=1000). We set the hyper-parameter of prototype number K in the model as the same as the
ground-truth common structure number C.

Methods C=3 C=5 C=7

PR-AUC ROC-AUC PR-AUC ROC-AUC PR-AUC ROC-AUC

GASER(α = 1) 0.974±0.038 0.975±0.037 0.891±0.118 0.883±0.128 0.838±0.118 0.850±0.113
GASER(α = 0.5) 0.998±0.009 0.999±0.008 0.924±0.091 0.913±0.105 0.851±0.113 0.855±0.099

We observe that the performance of GASER decreases with increasing C. In Figure 2, we map the
learned causal attention vectors to a 2D space by the visualization tool t-SNE (Maaten & Hinton,
2008). Individuals of different causal structures are labeled by different colors. From the results,
we observe that nodes belonging to the same causal structures are clustered together, which also
demonstrates the effectiveness of our method.

3.2.3 PREDICTION PERFORMANCE

We evaluate the prediction performance on the real-world datasets, i.e., PM2.5 and SML. To eval-
uate the robustness of prediction and the accuracy of Granger causal attribution, we also build an-
other datasets that only contain top 50% important variables towards prediction detected from each
method. We report the prediction results in Table 5. As can be seen, GASER achieves the best
performance on both datasets with all features, demonstrating its superior prediction performances.
We also observe that GASER achieves comparable or even better performance using selected vari-
ables, while the others’ performances decrease, which indicates that effective variable selection of
GASER.

3.3 ONLINE A/B TESTS

In order to further evaluate the effectiveness of GASER in practice, an online A/B test is conducted
on an E-commercial platform, and the process is designed as follows:
• We first train GASER on the historical MTS of 30,665 items. Each MTS includes 26 variables

related to searching, recommending and advertising, such as Page View (PV), Gross Merchandise
Volume (GMV) and Impression Position In-Page, etc. Here, we take the item popularity as the
target series, and generate the underlying causal structure for each item.

• We randomly sample 100 items whose impression position in-page Granger-causes the item popu-
larity with high confidence, and divide them into two buckets. For bucket A, we adjust impression
positions in-page of each item by one grid since 2019/08/19 till 2019/08/29, and ensure the inter-
vention has little impact on other variables. For bucket B, we do nothing.

• We compare the improvement rate of item popularity week-on-week on the two bucket in Fig 3.

As shown in Figure 3, four days after the beginning of the intervention, the item popularity im-
provement rate of bucket A consistently outperforms that of bucket B, and the gap between the two
buckets increases significantly since 2019/08/25, which shows that the intervention, i.e., adjusting

Table 5: Predition results under all variables and top 50% important variables on the PM2.5 and
SML datasets.

Methods PM2.5 (all) PM2.5 (top 50%) SML (all) SML (top 50%)

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

DUAL 20.93 11.70 20.90 11.90 0.0778 0.0676 0.0887 0.0752
IMV-LSTM 21.60 11.77 21.62 11.80 0.0747 0.0561 0.1180 0.0857

GASER 18.88 11.03 18.22 10.62 0.0670 0.0540 0.0621 0.0492
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Figure 2: 2D t-SNE projections of
attention vectors from 500 individ-
uals. Color of a node indicates the
underlying causal structures. The
causal groundtruth ωωωi is shown in
the legend (S=10,T=100).
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Figure 3: The result of online A/B test. The interven-
tion starts from 08/19, and results in the item popularity
improvement rate of bucket A consistently outperforming
bucket B after 8/22, and the gap between the two buckets
increases significantly since 08/25.

the impression positions in-page, causes the improvement on item popularities, thus demonstrates
the right causal relationships detected by GASER.

4 RELATED WORK

Recently a considerable amount of work has been proposed for causal inference. Classical meth-
ods, such as constraint-based methods (Pearl, 2000; Spirtes et al., 2000; Peters et al., 2013; Runge
et al., 2017; Zhang et al., 2017), score-based methods (Chickering, 2002) and functional causal
models (FCM) based methods (Shimizu et al., 2006), mainly focus on i.i.d data. Under the scope of
time series, causal inference is commonly based on the notion of Granger causality (Granger, 1969;
1980), and a classical way is to estimate linear Granger causality under the framework of VAR
models (Lütkepohl, 2005). However, existing classicial methods fail to uncover causal structures
inductively. Neural network based methods that infer causal relationships or relations that approach
causality have gained increasing popularity. Lopez-Paz et al. (2015) learns a probability distribution
classifier to unveil causal relations. Kipf et al. (2018) proposes a neural relation inference model
to infer interactions while simultaneously learning the dynamics. Yu et al. (2019) develops a deep
generative model to recover the underlying DAG from complex data. Attention mechanism has
often been adopted to discover relations between variables. For example, Dang et al. (2018) discov-
ers dynamic dependencies with multi-level attention. Nauta et al. (2019) studies causal discovery
through attention-based neural networks with a causal validation step. Guo et al. (2019) proposes an
interpretable multi-variable LSTM with mixture attention to extract variable importance knowledge.
However, these attention mechanisms provide no incentive to yield accurate attributions (Sundarara-
jan et al., 2017; Schwab et al., 2019).

Since our method utilizes the concept of prototype to detect common causal structures, another line
of related research is about prototype learning. Prototype learning is a form of cased-based reason-
ing (Slade, 1991), which solves problems for new inputs based on similarity to prototypical cases.
Recently prototype learning has been leveraged in interpretable classification (Bien et al., 2011; Kim
et al., 2014; Snell et al., 2017; Li et al., 2018; Chen et al., 2018) and sequence learning (Ming et al.,
2019). We incorporate the concept for Granger causal structure reconstruction on time series data
for the first time.

5 CONCLUSION

We formalize the problem of Granger causal structure reconstruction from heterogeneous MTS data
and propose an inductive framework GASER to solve it. In particular, we propose a novel at-
tention mechanism, namely prototypical Granger causal attention, which computes Granger causal
attribution combined with prototype learning, to reconstruct Granger causal structures and uncover
common causal structures. The approach has been successfully evaluated by offline experiments on
real-world and synthetic datasets compared to previous methods, also confirmed by an online A/B
test on an E-commercial platform.
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A TABLE OF NOTATIONS

Table 6: Terms and Notations
Symbol Definition
N the number of individuals
S the number of variables
T the length of time series
K the number of prototypes
C the number of underlying common causal structures
X heterogenous multivariate time series
Xi multivariate time series of individual i
xs
i the s-th time series of individual i

yi the target variable series of individual i
yi,T+1 the T + 1-step value of the target variable
ŷi,T+1 the predicted T + 1-step value of the target variable by the main predictor
ŷsi,T+1 the predicted T + 1-step value of the target variable conditioned on variable s
pk the k-th prototype
ai the prototypical Granger causal attention vector of individual i
qi the Granger causal attention vector of individual i
ri the prototypical attention vector of individual i
α the hyperparameter to control the ratio of different attentions

λ1, λ2 the hyperparameter to control the ratio of loss functions
τ the softmax temperature

B ALGORITHM PSEUDOCODE

The full algorithm is presented in Algorithm 1. The network parameter set Θ includes the param-
eters of sequence encoders and MLPs. We adopt stochastic gradient descent (SGD) to optimize
the network parameters and the prototype parameters. To initialize the prototypes, we first pretrain
GASER for several epochs, and then employ k-means with cosine similarity on the Granger causal
attentions {q}Ni=1, and finally we take the cluster centers as the initial prototypes. Note that the
Gumbel-softmax function is only adopted in the training phase to backpropagate, and replaced by
the argmax function in inference.

Algorithm 1: The algorithm of GASER.
Input:

Input data X = {Xi}Ni=1; Number of prototypes K; Maximum iterations MaxIter;
Hyperparameters α, γ, λ1 and λ2.

Output:
Network parameters Θ; Attention vectors {aaai}Ni=1; Prototypes {p}Kj=1; Prediction results
{ŷi,T+1}Ni=1.

1: Pretrain the model by optimizing Lpred + λ1Laux;
2: Employ k-means on all Granger causal attention vectors {qi}Ni to get initial prototypes
{pj}Kj=1

3: for iter ← 1 to MaxIter do
4: Update network parameters Θ and prototypes {p}Kj=1 by optimizing

L = Lpred + λ1Laux + λ2Ldiv;
5: end for
6: Generate prototypical Granger causal attentions {aaai}Ni=1 by Equation (9) using the argmax

function instead of the Gumbel-softmax function.
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C ADDITIONAL DETAILS ON THE EXPERIMENTAL SETUP

C.1 DATASETS

In this section, we provide some additional dataset details. Finance data are available at http:
//www.skleinberg.org/data.html. We use the processed FMRI data provide by (Nauta
et al., 2019). The source and details of PM2.5 and SML are at https://archive.ics.uci.
edu/ml/datasets/Beijing+PM2.5+Data and https://archive.ics.uci.edu/
ml/datasets/SML2010, respectively.

C.2 IMPLEMENTATION DETAILS

We implement GASER in Tensorflow (Abadi et al., 2016) by the Adam optimizor (Kingma & Ba,
2014) with the learning rate set to 0.001. We adopt LSTMs as the sequence encoders with the hidden
states size set to 128 and the window size set to 5. In all experiments, we first pretrain GASER with
only the Granger causal attention for 40 epochs. The hyperparameters λ1 and λ2 are both set to 1,
and the softmax temperature in Gumbel-softmax is set to 0.1.

C.3 COMPARED METHODS

Linear Granger (Granger, 1969; 1980): We conduct a Granger causality test in the context of Vec-
tor Autoregression (VAR) as described in chapter 7.6.3 in (Lütkepohl, 2005) and implemented by
the Statsmodels package (Seabold & Perktold, 2010). In detail, we perform F-test at 5% significance
level. The maximum number of lags to check for order selection is set to 5, which is larger than the
causal order in the ground-truth.

TCDF (Nauta et al., 2019): TCDF learns causal structure on multivariate time series by attention-
based convolutional neural networks combined with a causal validation step. The codes are available
at https://github.com/M-Nauta/TCDF. In all experiments, we follow the default settings
as described in (Nauta et al., 2019), i.e., the significance number (stating when an increase in loss
is significant enough to label a potential cause as true) as 0.8, the size of kernels as 4, dilation
coefficient as 4, the learning rate as 0.01, and adopting Adam optimizator.

DUAL (Qin et al., 2017): It is an encoder-decoder RNN with an input attention mechanism, which
forces the model pay more attention on certain driving series rather than treating all the input driving
series equally. In the experiment, we use the input-attention factors to detect important variables as
(Guo et al., 2019) did. We set the the size of hidden states for encoder and decoder to 64 and the
window size to 10 as stated in the paper.

IMV-LSTM (Guo et al., 2019): It is a multi-variable attention-based LSTM capable of both pre-
diction and variable importance interpretation, with the attention factors reflecting importance of
variables in prediction. Thus, we take the learnt attention vectors as the Granger causal weights
in the experiment. The codes are available at https://github.com/KurochkinAlexey/
IMV_LSTM. In all experiments, IMV-LSTM is implemented by Adam optimizer with the mini-
batch size 64, hidden layer size 128 and learning rate 0.001.
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