A DATA EXPLORATION

A.1 SYNTHETIC IMAGE GENERATION VIA STABLE DIFFUSION
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Figure 3: Fire/Smoke Dataset Generation Workflow for Underground Parking Scenarios. The pro-
cess breaks down to three stages: Location and mask preparation, fire/smoke object generation,
and image refinement.

Figure [3| depicts our workflow for generating fire/smoke object datasets, tailored to create realistic
synthetic data for car fire scenarios in underground parking zones. The pipeline comprises three
key stages: (1) detecting vehicles within parking zones and identifying the calamity’s location, (2)
generating images of the target vehicle engulfed in smoke or fire using a controllable diffusion
model, and (3) applying blending-based post-processing to maintain original visual reality.

In the first stage, a fire/smoke-free input image serves as the base image. A pretrained YOLOVS
(Redmon, 2016) model detects objects of interest, such as vehicles. Subsequently, random resizing
and padding operations are applied to generate a mask that specifies irregular regions for synthesiz-
ing fire or smoke effects.

In the second stage, a controllable diffusion model generates synthetic fire or smoke images. Canny
edges (Canny}|1986) are extracted from the input image and fed into ControlNet (Zhang et al.,2023)
to ensure structural alignment and create realistic fire- or smoke-engulfed scenes. The edge condition
applies only during the first two-thirds of the diffusion process to preserve the vehicle’s structure,
while the final steps allow flexibility in shaping fire and smoke. For cases requiring specific fire
styles or flame patterns, For specific fire styles or flame patterns, an optional IPAdapter (Ye et al.,
2023) customizes the visual characteristics. Synthesis uses inpainting Stable Diffusion (SDInpaint)
(Rombach et al.,|2022) to generate fire or smoke effects within the designated mask.

Finally, in the image refinement stage, poisson blending(Pérez et al., [2023) seamlessly merges syn-
thetic and original images, eliminating artifacts and ensuring a realistic final output.
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Figure 4: Examples of synthetically generated fire and smoke images.

As shown in Figure[d] our pipeline effectively synthesizes realistic fire- and smoke-engulfed scenes.
However, due to the inherent instability of SDInpaint, failure cases are filtered out before the training
phase. Since diffusion models are known to occasionally misinterpret text prompts despite proper
conditioning, users may manually remove unrealistic samples in the final stage of the pipeline.

A.2 DATASET DETAILS

Dataset Name ‘ Train ‘ Val ‘ Test ‘ Total ‘ Scenario Target Label
Tau_house_40 1782 | 200 | 200 | 2182 indoor car fire,smoke
CCTV-fire_50 1418 | 166 | 168 | 1752 | indoor/outdoor | diverse | fire,smoke
fire and smoke 1607 | 159 | 159 | 1925 outdoor big fires | fire,smoke
firecops 222 21 9 252 outdoor car fire
Synthetic Data - smoke | 2354 | 130 | 130 | 2614 indoor car smoke
cctv-pano_50 4071 | 407 | 407 | 4885 indoor car

Synthetic Data - fire 100 9 8 117 indoor car fire
Total | 1L5K | 1K | 1K | |

Table 3: Details of the datasets used in our experiment, including the total number of samples,
scenarios, targets, and labels for each dataset.

The dataset consists of 13,727 images across seven sub-datasets for fire and smoke detection in var-
ious environments. It includes 11,554 training, 1,092 validation, and 1,081 test images. Covering
indoor, outdoor, and mixed settings, it targets specific objects like cars and diverse items, with an-
notations for fire, smoke, or both.

Real-world datasets, such as Tau_house_40 2024) and ccrv-fire_50 (project eyep8| [2023),

provide annotated images for challenging indoor and mixed environments, whereas fire and smoke
(MiddleEastTechUniversityl, [2023) and firecops focus on outdoor settings, captur-
ing large-scale and car fires, respectively.Additionally, synthetic datasets, including Synthetic Data
- smoke and Synthetic Data - fire, simulate realistic indoor and underground car fire and smoke
scenarios. The largest subset, CCTV-pano_50, comprises 4 885 images, offering extensive data for
indoor car fire scenarios. This dataset provides a well-rounded representation of both real-world
and synthetic conditions, supporting robust model training for early fire and smoke detection across
diverse environments, with a particular focus on confined spaces such as indoor and underground
parking facilities.




B EVALUATION METRICS

B.1 BASIC DEFINITIONS

Let D = {I1,Is,...,In} be the set of all images to be evaluated, and let N = |D|. If the target
object exists in image I;, then G; = 1. Otherwise, G; = 0. Let B; = {b;1, b2, ..., bins, } be the
set of bounding boxes predicted by the model for image I;,. Here, M; is the number of predicted
boxes for I;. Each predicted bounding box b;; is associated with a confidence score s;;. Here, s;;
represents the confidence score of the bounding box b;;, and only boxes with scores exceeding a
predefined confidence threshold 7.4 are considered:

Bi = {bij | sij > Tprea}-

This ensures that only bounding boxes with sufficient confidence score are used for evaluation. The
IoU between a predicted bounding box b;; and the ground truth bounding box b} (in image I;) is
defined as:

_ b 0 b7

b VB[

Let 7,0, be the minimum IoU threshold above which a predicted bounding box is considered a
valid detection (i.e., “matched” with the ground truth). If IoU is not considered at all, detections
in completely different locations may still be recognized as correct answers despite being false
positives.

IOU(bij, b;k)

B.2 PER-IMAGE DETECTION SUCCESS/FAILURE(BINARY CLASSIFICATION)
For each image I;, if there exists at least one predicted box whose IoU with the ground truth box is

> Tiou, We regard this image as having a “successful detection” (d; = 1). Otherwise, we say the
detection failed (d; = 0). Formally:

4 = 1( max_ToU(b;;,b) > nou),
bi;€BT

where 1(-) is the indicator function, returning 1 if the condition is true, and 0 otherwise.

* d; = 1 means “the model claims there is at least one instance of the object in image 1,.”

* d; = 0 means “the model claims no object is found in image I;.”

We can interpret (G, d;) as a binary classification scenario. Thus, the standard definitions of TP,
FP, FN, and TN apply:

TP — XN:[ Gy - d;] Trpe Pos.itive (TP): The total count of imaggs in which the
prt v object exists (G; = 1) and the model detects it (d; = 1).
()
N False Positive (FP): The total count of images in which the
FP = Z[(l —Gy) - dy, object does not exist (G; = 0) but the model claims detec-
i=1 tion (d; = 1).
(2)
N False Negative (FN) The total count of images in which
FN = Z[GZ -(1=4dy)], the object exists (G; = 1), but the model fails to detect it
i=1 (d; = 0).
(3)

N True Negative (TN) The total count of images in which the

TN = Z[(l —G;)-(1—d;)], object does not exist (G; = 0), and the model also does not
i=1 detect it (d; = 0).

“4)



Using the TP, FP, and FN values defined above, we can compute Precision and Recall for the entire
dataset:
TP TP 2 - Precision - Recall
Precision = ——, Recall = —— F1 = .
RO = e ey Y T TP RN Precision + Recall
Precision indicates the fraction of “object-present” predictions that are correct, while recall indicates
the fraction of actual positives (images with the object) that are correctly identified.

In summary, if an image I; contains at least one instance of the target object, then G; = 1; otherwise,
G; = 0. If there is at least one predicted box with IoU > 7;,,, against the ground truth box, then
d; = 1; otherwise, d; = 0. After computing d; for each image I; € D, we sum up to get TP, FP, FN,
and TN. Finally, we calculate the Precision and Recall values using the definitions above.

B.3 PER-IMAGE AVERAGE PRECISION CALCULATION WITH CONFIDENCE THRESHOLDS

To evaluate model performance across different confidence levels, we compute Precision-Recall
(PR) curves by varying the confidence threshold 7.4 from O to 1 with a step size of 0.01. The
Average Precision (AP) is then computed as the area under the PR curve. For each confidence
threshold 7,,..q , we compute the precision and recall using the previously defined formulas. The
Precision-Recall Curve is constructed by plotting Precision against Recall at different confidence
levels 7pcq. The AP is then computed as the area under this curve:

1
AP = / Precision(Recall) d(Recall).
0

In practice, we approximate this integral using discrete summation:

K
AP ~ Z(Rk — kal)Pk-
k=1
where P, and Ry, are precision and recall at different confidence thresholds and K is the total number
of evaluated thresholds.



C MODEL COMPARISON

C.1 VISION-LANGUAGE-MODEL COMPARISON

Model ‘ Initial Detection Time Detection | Params | Latency | Memory
BLIP - IC - base 17.58 s smoke/fire 253M | 0.164 s 3GB
BLIP - IC - large 8.00s | smoke/firee | 580M | 0.211s | 3.8GB
BLIP2 - OTP - COCO X X 2.7B X 17 GB
BLIP2 - FLAN T5 8.87s fire 3B 0.43s | 17.5GB
LLAVA 7B (fp16) 8.1s fire 7B 0.85s | 16.3GB
Florence 2 - base (fp16) unclear smoke/fire 0.23B 0.18s 1.2GB
Florence 2 - large (fp16) 3.03s | smoke/fire | 0.77B 0.28s 2.3GB

Table 4: Comparison of Vision-Language Models (VLMs) based on initial detection time, detected
labels, number of parameters, frame latency, and GPU memory usage in a real underground cark
park fire CCTV footage.

Table |4 presents a comparison of Vision-Language Models (VLMs) for detecting smoke and fire
on a real underground car park fire CCTV footage, evaluating them based on initial detection time,
detected labels, number of parameters, frame latency, and GPU memory usage. Across the models,
Florence 2 - large (fp16) (Xiao et al., 2024) stands out with the best overall performance, featuring
the fastest initial detection time of 3.03 seconds, the ability to detect both fire and smoke, a moderate
latency of 0.28 seconds, and efficient GPU memory usage of 2.3GB, making it highly suitable for
real-time application.

In contrast, BLIP - IC base (L1 et al., 2022) exhibits the slowest detection time at 17.58 seconds,
while LLAVA 7B (Liu et al) [2024) consumes the most GPU memory (16.3GB) and has the highest
latency (0.85 seconds), indicating limitations for deployment in low-resource environments and real-
time. Although Florence 2 - base (fp16) offers the smallest parameter size (0.23B) and the lowest
memory usage (1.2GB), its unclear detection capability makes it less reliable for this specific task.
Similarly, models like BLIP2 - FLAN T5 (L1 et al., [2023)) and LLAVA 7B is only able to identify fire
detection, reducing their versatility.

Overall, this analysis highlights the trade-offs between detection speed, computational requirements,
and model versatility across different VLMs, providing evidence as to why we chose Florence 2 as
our main VLM when merging with the YOLO model.

C.2 YOLO MoDEL COMPARISON

model name | Precision | Recall | mAP50 | mAP50:95

YOLOvS5s 0.651 0.62 0.641 0.377
YOLOv5m 0.664 | 0.634 0.65 0.377
YOLOv6s 0.645 | 0.662 0.645 0.37
YOLOv6m 0.679 | 0.654 0.669 0.377
YOLOv8s 0.681 | 0.634 0.649 0.377
YOLOv8m 0.634 | 0.639 0.643 0.38
YOLOvV10s 0.676 0.62 0.637 0.368
YOLOv10m 0.647 | 0.617 0.625 0.356

Table 5: Performance comparison of YOLO models on standard object detection evaluation metrics.

Table [5] presents a performance comparison of various YOLO models on standard object detec-
tion evaluation metrics including precision, recall, mAP50, and mAP50:95. Among the models,
YOLOvSs achieves the highest precision (0.681), highlighting its accuracy in correctly identifying
objects. YOLOv6m stands out as the most balanced model, achieving the highest mAP50 (0.669)
and AP per-image (0.9227), showcasing its strong object detection and classification capabilities.
YOLOv8m outperforms all models in mAP50:95 (0.38), making it the most robust under stricter
IoU thresholds. YOLOv6s leads in recall (0.662), demonstrating its effectiveness in minimizing
missed detections. YOLOv6m stands out in classification and detection accuracy, while YOLOv8m



performs well under stricter IoU conditions. Assessing broad performance aspects, YOLOv6m and
YOLOVSs exhibit competitive results across all metrics, making them versatile choices for general-
purpose tasks when the object detection model is used independently.

C.3 FuLL YOLO MODEL COMPARISON WITH AND WITHOUT VLM

precision recall F1 Model precision recall F1
fire smoke | fire smoke | Score fire smoke fire smoke | Score
YOLOvVS5s 0.835 | 0.894 | 0.766 | 0.811 | 0.8248 | +VLM | 0.838 | 0.883 | 0.881 | 0.885 | 0.8716
YOLOv5Sm | 0.842 | 0919 | 0.784 | 0.811 | 0.8369 | +VLM | 0.839 | 0.905 | 0.885 0.89 | 0.8797
YOLOVG6s 0.861 | 0915 | 0.853 | 0.797 | 0.8553 | +VLM 0.85 | 0.901 | 0.885 | 0.847 | 0.8707
YOLOv6m 0.86 | 0911 | 0.872 | 0.849 | 0.8728 | +VLM | 0.837 | 0.904 | 0.894 | 0.879 | 0.8784
YOLOVvS8s 0.843 | 0944 | 0.835 | 0.833 | 0.8627 | +VLM | 0.838 | 0.931 | 0.904 | 0.885 | 0.8895
YOLOv8m | 0.843 | 0.936 | 0.839 | 0.838 | 0.8632 | +VLM | 0.839 | 0.918 | 0.908 0.89 | 0.8885
YOLOv10s | 0.851 | 0.934 | 0.789 | 0.814 | 0.8446 | +VLM 0.85 | 0912 | 0.858 | 0.882 | 0.8755

YOLOvIOm | 0.841 | 0.943 | 0.803 | 0.822 | 0.8504 | +VLM | 0.842 | 0.919 | 0.881 | 0.866 | 0.8770

Model

Table 6: Comparison of various YOLO models with and without VLM integration, evaluated using
our proposed per-image binary detection metric.

Table [6] highlights the performance of various YOLO models with and without VLM integration,
focusing on our proposed metric: precision, recall, and F1 score. YOLOv6s achieves the highest
precision for fire detection at 0.861, while YOLOvSs demonstrates the best precision for smoke de-
tection at 0.944, showcasing its strong capability in identifying smoke. Among YOLO models alone,
YOLOv6m records the highest F1 score at 0.8728, indicating its well-rounded effectiveness. With
VLM integration, however, YOLOv8m achieves the highest overall F1 score at 0.8895, demonstrat-
ing the advantages of combining YOLO models with VLM for enhanced detection accuracy. These
results highlight the superior performance of YOLOv8s model, particularly when paired with VLM,
making it the most effective choice for car fire and smoke detection tasks.

C.4 ALGORITHM OF INFERENCE ON REAL-TIME CCTV FEED

Algorithm 1 Real-Time Inference with YOLO and Florence?2 Integration

Input: Trained YOLO model, Florence2 VLM, CCTV feed, initial threshold 7;,,;;, modified thresh-
old T, ‘mod
Output: Alert trigger for fire/smoke detection

Initialize Tpreq < Tinit
for each frame in CCTV feed do
Pass frame to Florence2 VLM with prompt: “Is there smoke or fire?”
if VLM detects smoke or fire then
Tpred < Tmod {Lower threshold for enhanced sensitivity }
else

Tpred < Tinit {Maintain initial threshold to reduce false positives}
end if
Perform object detection using YOLO model with confidence threshold 7p,cq
if YOLO predicts fire or smoke then

if Validated by VLM then

Trigger alert to notify security

end if

end if
end for
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D QUALITATIVE RESULTS

YOLOvVS8s ‘

GT

Figure 5: Qualitative results on our constructed test set. The first row presents the YOLOv8s pre-
dictions, while the second row displays the corresponding ground truth annotations. We present
examples of successful cases, where the predicted bounding boxes closely match the ground truth,
achieving an IoU exceeding the threshold 7 ;,,, and demonstrating high confidence scores.
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