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A DATA EXPLORATION

A.1 SYNTHETIC IMAGE GENERATION VIA STABLE DIFFUSION
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Figure 3: Fire/Smoke Dataset Generation Workflow for Underground Parking Scenarios. The pro-
cess breaks down to three stages: Location and mask preparation, fire/smoke object generation,
and image refinement.

Figure 3 depicts our workflow for generating fire/smoke object datasets, tailored to create realistic
synthetic data for car fire scenarios in underground parking zones. The pipeline comprises three
key stages: (1) detecting vehicles within parking zones and identifying the calamity’s location, (2)
generating images of the target vehicle engulfed in smoke or fire using a controllable diffusion
model, and (3) applying blending-based post-processing to maintain original visual reality.

In the first stage, a fire/smoke-free input image serves as the base image. A pretrained YOLOv5
(Redmon, 2016) model detects objects of interest, such as vehicles. Subsequently, random resizing
and padding operations are applied to generate a mask that specifies irregular regions for synthesiz-
ing fire or smoke effects.

In the second stage, a controllable diffusion model generates synthetic fire or smoke images. Canny
edges (Canny, 1986) are extracted from the input image and fed into ControlNet (Zhang et al., 2023)
to ensure structural alignment and create realistic fire- or smoke-engulfed scenes. The edge condition
applies only during the first two-thirds of the diffusion process to preserve the vehicle’s structure,
while the final steps allow flexibility in shaping fire and smoke. For cases requiring specific fire
styles or flame patterns, For specific fire styles or flame patterns, an optional IPAdapter (Ye et al.,
2023) customizes the visual characteristics. Synthesis uses inpainting Stable Diffusion (SDInpaint)
(Rombach et al., 2022) to generate fire or smoke effects within the designated mask.

Finally, in the image refinement stage, poisson blending(Pérez et al., 2023) seamlessly merges syn-
thetic and original images, eliminating artifacts and ensuring a realistic final output.
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Figure 4: Examples of synthetically generated fire and smoke images.

As shown in Figure 4, our pipeline effectively synthesizes realistic fire- and smoke-engulfed scenes.
However, due to the inherent instability of SDInpaint, failure cases are filtered out before the training
phase. Since diffusion models are known to occasionally misinterpret text prompts despite proper
conditioning, users may manually remove unrealistic samples in the final stage of the pipeline.

A.2 DATASET DETAILS

Dataset Name Train Val Test Total Scenario Target Label

Tau house 40 1782 200 200 2182 indoor car fire,smoke
CCTV-fire 50 1418 166 168 1752 indoor/outdoor diverse fire,smoke
fire and smoke 1607 159 159 1925 outdoor big fires fire,smoke
firecops 222 21 9 252 outdoor car fire
Synthetic Data - smoke 2354 130 130 2614 indoor car smoke
cctv-pano 50 4071 407 407 4885 indoor car
Synthetic Data - fire 100 9 8 117 indoor car fire

Total 11.5K 1K 1K

Table 3: Details of the datasets used in our experiment, including the total number of samples,
scenarios, targets, and labels for each dataset.

The dataset consists of 13,727 images across seven sub-datasets for fire and smoke detection in var-
ious environments. It includes 11,554 training, 1,092 validation, and 1,081 test images. Covering
indoor, outdoor, and mixed settings, it targets specific objects like cars and diverse items, with an-
notations for fire, smoke, or both.
Real-world datasets, such as Tau house 40 (Bekbol, 2024) and cctv-fire 50 (project eyep8, 2023),
provide annotated images for challenging indoor and mixed environments, whereas fire and smoke
(MiddleEastTechUniversity, 2023) and firecops (firecops, 2024) focus on outdoor settings, captur-
ing large-scale and car fires, respectively.Additionally, synthetic datasets, including Synthetic Data
- smoke and Synthetic Data - fire, simulate realistic indoor and underground car fire and smoke
scenarios. The largest subset, CCTV-pano 50, comprises 4 885 images, offering extensive data for
indoor car fire scenarios. This dataset provides a well-rounded representation of both real-world
and synthetic conditions, supporting robust model training for early fire and smoke detection across
diverse environments, with a particular focus on confined spaces such as indoor and underground
parking facilities.
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B EVALUATION METRICS

B.1 BASIC DEFINITIONS

Let D = {I1, I2, . . . , IN} be the set of all images to be evaluated, and let N = |D|. If the target
object exists in image Ii, then Gi = 1. Otherwise, Gi = 0. Let Bi = {bi1, bi2, . . . , biMi} be the
set of bounding boxes predicted by the model for image Ii. Here, Mi is the number of predicted
boxes for Ii. Each predicted bounding box bij is associated with a confidence score sij . Here, sij
represents the confidence score of the bounding box bij , and only boxes with scores exceeding a
predefined confidence threshold τpred are considered:

Bτi = {bij | sij ≥ τpred}.

This ensures that only bounding boxes with sufficient confidence score are used for evaluation. The
IoU between a predicted bounding box bij and the ground truth bounding box b∗i (in image Ii) is
defined as:

IoU(bij , b
∗
i ) =

| bij ∩ b∗i |
| bij ∪ b∗i |

.

Let τiou be the minimum IoU threshold above which a predicted bounding box is considered a
valid detection (i.e., “matched” with the ground truth). If IoU is not considered at all, detections
in completely different locations may still be recognized as correct answers despite being false
positives.

B.2 PER-IMAGE DETECTION SUCCESS/FAILURE(BINARY CLASSIFICATION)

For each image Ii, if there exists at least one predicted box whose IoU with the ground truth box is
≥ τiou, we regard this image as having a “successful detection” (di = 1). Otherwise, we say the
detection failed (di = 0). Formally:

di = 1
(
max
bij∈Bτ

i

IoU(bij , b
∗
i ) ≥ τiou

)
,

where 1(·) is the indicator function, returning 1 if the condition is true, and 0 otherwise.

• di = 1 means “the model claims there is at least one instance of the object in image Ii.”

• di = 0 means “the model claims no object is found in image Ii.”

We can interpret (Gi, di) as a binary classification scenario. Thus, the standard definitions of TP,
FP, FN, and TN apply:

TP =

N∑
i=1

[Gi · di ],
True Positive (TP): The total count of images in which the
object exists (Gi = 1) and the model detects it (di = 1).

(1)

FP =

N∑
i=1

[(1−Gi) · di],
False Positive (FP): The total count of images in which the
object does not exist (Gi = 0) but the model claims detec-
tion (di = 1).

(2)

FN =

N∑
i=1

[Gi · (1− di)],
False Negative (FN) The total count of images in which
the object exists (Gi = 1), but the model fails to detect it
(di = 0).

(3)

TN =

N∑
i=1

[(1−Gi) · (1− di)],
True Negative (TN) The total count of images in which the
object does not exist (Gi = 0), and the model also does not
detect it (di = 0).

(4)
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Using the TP, FP, and FN values defined above, we can compute Precision and Recall for the entire
dataset:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
, F1 =

2 · Precision · Recall
Precision + Recall

.

Precision indicates the fraction of “object-present” predictions that are correct, while recall indicates
the fraction of actual positives (images with the object) that are correctly identified.

In summary, if an image Ii contains at least one instance of the target object, then Gi = 1; otherwise,
Gi = 0. If there is at least one predicted box with IoU ≥ τiou against the ground truth box, then
di = 1; otherwise, di = 0. After computing di for each image Ii ∈ D, we sum up to get TP, FP, FN,
and TN. Finally, we calculate the Precision and Recall values using the definitions above.

B.3 PER-IMAGE AVERAGE PRECISION CALCULATION WITH CONFIDENCE THRESHOLDS

To evaluate model performance across different confidence levels, we compute Precision-Recall
(PR) curves by varying the confidence threshold τpred from 0 to 1 with a step size of 0.01. The
Average Precision (AP) is then computed as the area under the PR curve. For each confidence
threshold τpred , we compute the precision and recall using the previously defined formulas. The
Precision-Recall Curve is constructed by plotting Precision against Recall at different confidence
levels τpred. The AP is then computed as the area under this curve:

AP =

∫ 1

0

Precision(Recall) d(Recall).

In practice, we approximate this integral using discrete summation:

AP ≈
K∑

k=1

(
Rk −Rk−1

)
Pk.

wherePk and Rk are precision and recall at different confidence thresholds and K is the total number
of evaluated thresholds.
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C MODEL COMPARISON

C.1 VISION-LANGUAGE-MODEL COMPARISON

Model Initial Detection Time Detection Params Latency Memory
BLIP - IC - base 17.58 s smoke/fire 253M 0.164 s 3 GB
BLIP - IC - large 8.00 s smoke/firee 580M 0.211 s 3.8 GB
BLIP2 - OTP - COCO X X 2.7 B X 17 GB
BLIP2 - FLAN T5 8.87 s fire 3B 0.43 s 17.5GB
LLAVA 7B (fp16) 8.1 s fire 7B 0.85 s 16.3 GB
Florence 2 - base (fp16) unclear smoke/fire 0.23B 0.18s 1.2GB
Florence 2 - large (fp16) 3.03s smoke/fire 0.77B 0.28s 2.3 GB

Table 4: Comparison of Vision-Language Models (VLMs) based on initial detection time, detected
labels, number of parameters, frame latency, and GPU memory usage in a real underground cark
park fire CCTV footage.

Table 4 presents a comparison of Vision-Language Models (VLMs) for detecting smoke and fire
on a real underground car park fire CCTV footage, evaluating them based on initial detection time,
detected labels, number of parameters, frame latency, and GPU memory usage. Across the models,
Florence 2 - large (fp16) (Xiao et al., 2024) stands out with the best overall performance, featuring
the fastest initial detection time of 3.03 seconds, the ability to detect both fire and smoke, a moderate
latency of 0.28 seconds, and efficient GPU memory usage of 2.3GB, making it highly suitable for
real-time application.
In contrast, BLIP - IC base (Li et al., 2022) exhibits the slowest detection time at 17.58 seconds,
while LLAVA 7B (Liu et al., 2024) consumes the most GPU memory (16.3GB) and has the highest
latency (0.85 seconds), indicating limitations for deployment in low-resource environments and real-
time. Although Florence 2 - base (fp16) offers the smallest parameter size (0.23B) and the lowest
memory usage (1.2GB), its unclear detection capability makes it less reliable for this specific task.
Similarly, models like BLIP2 - FLAN T5 (Li et al., 2023) and LLAVA 7B is only able to identify fire
detection, reducing their versatility.

Overall, this analysis highlights the trade-offs between detection speed, computational requirements,
and model versatility across different VLMs, providing evidence as to why we chose Florence 2 as
our main VLM when merging with the YOLO model.

C.2 YOLO MODEL COMPARISON

model name Precision Recall mAP50 mAP50:95
YOLOv5s 0.651 0.62 0.641 0.377
YOLOv5m 0.664 0.634 0.65 0.377
YOLOv6s 0.645 0.662 0.645 0.37
YOLOv6m 0.679 0.654 0.669 0.377
YOLOv8s 0.681 0.634 0.649 0.377
YOLOv8m 0.634 0.639 0.643 0.38
YOLOv10s 0.676 0.62 0.637 0.368
YOLOv10m 0.647 0.617 0.625 0.356

Table 5: Performance comparison of YOLO models on standard object detection evaluation metrics.

Table 5 presents a performance comparison of various YOLO models on standard object detec-
tion evaluation metrics including precision, recall, mAP50, and mAP50:95. Among the models,
YOLOv8s achieves the highest precision (0.681), highlighting its accuracy in correctly identifying
objects. YOLOv6m stands out as the most balanced model, achieving the highest mAP50 (0.669)
and AP per-image (0.9227), showcasing its strong object detection and classification capabilities.
YOLOv8m outperforms all models in mAP50:95 (0.38), making it the most robust under stricter
IoU thresholds. YOLOv6s leads in recall (0.662), demonstrating its effectiveness in minimizing
missed detections. YOLOv6m stands out in classification and detection accuracy, while YOLOv8m
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performs well under stricter IoU conditions. Assessing broad performance aspects, YOLOv6m and
YOLOv8s exhibit competitive results across all metrics, making them versatile choices for general-
purpose tasks when the object detection model is used independently.

C.3 FULL YOLO MODEL COMPARISON WITH AND WITHOUT VLM

Model precision recall F1
Score

Model precision recall F1
Scorefire smoke fire smoke fire smoke fire smoke

YOLOv5s 0.835 0.894 0.766 0.811 0.8248 +VLM 0.838 0.883 0.881 0.885 0.8716
YOLOv5m 0.842 0.919 0.784 0.811 0.8369 +VLM 0.839 0.905 0.885 0.89 0.8797
YOLOv6s 0.861 0.915 0.853 0.797 0.8553 +VLM 0.85 0.901 0.885 0.847 0.8707
YOLOv6m 0.86 0.911 0.872 0.849 0.8728 +VLM 0.837 0.904 0.894 0.879 0.8784
YOLOv8s 0.843 0.944 0.835 0.833 0.8627 +VLM 0.838 0.931 0.904 0.885 0.8895
YOLOv8m 0.843 0.936 0.839 0.838 0.8632 +VLM 0.839 0.918 0.908 0.89 0.8885
YOLOv10s 0.851 0.934 0.789 0.814 0.8446 +VLM 0.85 0.912 0.858 0.882 0.8755
YOLOv10m 0.841 0.943 0.803 0.822 0.8504 +VLM 0.842 0.919 0.881 0.866 0.8770

Table 6: Comparison of various YOLO models with and without VLM integration, evaluated using
our proposed per-image binary detection metric.

Table 6 highlights the performance of various YOLO models with and without VLM integration,
focusing on our proposed metric: precision, recall, and F1 score. YOLOv6s achieves the highest
precision for fire detection at 0.861, while YOLOv8s demonstrates the best precision for smoke de-
tection at 0.944, showcasing its strong capability in identifying smoke. Among YOLO models alone,
YOLOv6m records the highest F1 score at 0.8728, indicating its well-rounded effectiveness. With
VLM integration, however, YOLOv8m achieves the highest overall F1 score at 0.8895, demonstrat-
ing the advantages of combining YOLO models with VLM for enhanced detection accuracy. These
results highlight the superior performance of YOLOv8s model, particularly when paired with VLM,
making it the most effective choice for car fire and smoke detection tasks.

C.4 ALGORITHM OF INFERENCE ON REAL-TIME CCTV FEED

Algorithm 1 Real-Time Inference with YOLO and Florence2 Integration
Input: Trained YOLO model, Florence2 VLM, CCTV feed, initial threshold τinit, modified thresh-
old τmod

Output: Alert trigger for fire/smoke detection
Initialize τpred ← τinit
for each frame in CCTV feed do

Pass frame to Florence2 VLM with prompt: “Is there smoke or fire?”
if VLM detects smoke or fire then
τpred ← τmod {Lower threshold for enhanced sensitivity}

else
τpred ← τinit {Maintain initial threshold to reduce false positives}

end if
Perform object detection using YOLO model with confidence threshold τpred
if YOLO predicts fire or smoke then

if Validated by VLM then
Trigger alert to notify security

end if
end if

end for
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D QUALITATIVE RESULTS
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Figure 5: Qualitative results on our constructed test set. The first row presents the YOLOv8s pre-
dictions, while the second row displays the corresponding ground truth annotations. We present
examples of successful cases, where the predicted bounding boxes closely match the ground truth,
achieving an IoU exceeding the threshold τ iou and demonstrating high confidence scores.
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