Supplementary Material for

Multi-objective Evolutionary Design of Microstructures using Diffusion Autoencoders

Anirudh Suresh¹ Devesh Shah² Alemayehu Admasu² Devesh Upadhyay² Kalyanmoy Deb¹ ¹Michigan State University ² Ford Motor Company {suresha2,kdeb}@msu.edu

1 Modified datasets

The modified datasets used for evaluating generative and optimization capabilities are shown in Table 1 and Figure 1. The amount of data in these modified datasets is reported in Table 2.

Table 1: Distribution of modified sparse datasets

Figure 1: Distribution of half datasets

³⁷th Conference on Neural Information Processing Systems (NeurIPS 2023).

Table 2: Amount of data in the modified datasets

Objective	Half	$sparse_1$	$sparse_2$	$sparse_3$	$sparse_4$
P_1	22712	23641	17828	22839	7735
FF	19296	23640	31380	23076	11773
J_{sc}	19291	23641	30162	23203	11644

2 DiffAE architecture details

All deep learning models are developed using Pytorch [1] and Pytorch Lightning [2]. DiffAE implementation is based on the original implementation ¹. Most of the architectural details and hyperparameters for training DiffAE models, as shown in Table 3 are based on the original paper [3].

Table 5. Network are intecture and hyperparameters for DiffAL DOW					
Parameter	Unconditional	Conditional			
Batch size	64	64			
Base channels	128	128			
Channel multipliers	[1, 1, 2, 3, 4]	[1, 1, 2, 3, 4]			
Attention resolution	16	16			
Images trained	40M	40M			
encoder attn res	16	16			
encoder ch mult	[1, 1, 2, 3, 4, 4]	[1, 1, 2, 3, 4, 4]			
z_{sem} size	128	112 + 16			
Conditioning size	-	16			
β scheduler	Linear	Linear			
Learning rate	1e-4	1e-4			
Optimizer	Adam	Adam			
Training T	1000	1000			
Diffusion loss	MSE with noise prediction	MSE with noise prediction			

Table 3: Network architecture and hyperparameters for DiffAE DGM

3 Surrogate model

A ResNet18 based surrogate model was trained with two regression outputs - FF and J_{sc} . The hyperparameters are shown below in Table 4.

Table 4: Architecture and hyperparameters for the surrogate models

Parameter	Value
Architecture	ResNet18
Resolution	128
Batch size	128
Learning rate	1e-3
Lr schedule	Cosine annealing
Epochs	200

4 **Results**

In this section, we present some optimal microstructures generated during evolutionary optimization.

Figure 7 shows median progress of hypervolume during multi-objective optimization using NSGA-II. The hypervolume shows continuous improvement and convergence.

¹https://github.com/phizaz/diffae

Figure 2: Targets and optimal solutions for single objective GA for P_1 objectives

(a) $0.1415(sparse_1)$ (b) 0.2 (*Half*) (c) 0.25(Half) (d) F0.3(Half) (e) 0.35(Half)Figure 3: Targets and optimal solutions for single objective GA for FF objectives

(a) $0.3314(sparse_1)$ (b) 0.4(Half)(c) 0.45(Half)(d) 0.5(Half)(e) 0.55(Half)Figure 4: Targets and optimal solutions for single objective GA for J_{sc} objectives

(a) $0.1415(sparse_1)$ (b) 0.2 (*Half*) (c) 0.25 (*Half*) (d) 0.3 (*Half*) (e) 0.35 (*Half*) Figure 5: Target and optimal solutions for conditional single objective GA for *FF* objectives

(a) $0.3314(sparse_1)$ (b) 0.4 (Half) (c) 0.45 (Half) (d) 0.5 (Half) (e) 0.55 (Half) Figure 6: Optimal solutions for conditional single objective GA for J_{sc} objectives

Figure 7: Hypervolume during multi-objective optimization

References

- [1] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep learning library. *Advances in neural information processing systems*, 32, 2019.
- [2] William Falcon and The PyTorch Lightning team. PyTorch Lightning, March 2019.
- [3] Konpat Preechakul, Nattanat Chatthee, Suttisak Wizadwongsa, and Supasorn Suwajanakorn. Diffusion autoencoders: Toward a meaningful and decodable representation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 10619–10629, 2022.