Appendix

A Appendix

This appendix contains supplementary theoretical results as well as the proofs of the main results
presented in the main paper. We organize this content as follows.

Sec. A.1 contains the list of the notation used in the paper and the rest of this appendix.

Sec. A.2 contains additional numerical simulations.

Sec. A.3 complements results in Sec. 4.1, establishing guarantees of Algorithm 1 applied to sub-
Gaussian linear regression (Corollary 4) and convex matrix completion (Corollary 3).

Sec. A.4 Contains a more general version of Theorem 2 along with its proof..
Sec. A.6 Contains proofs of Corollaries 1-4

Sec. A.7 Contains some intermediate technical results instrumental for the proofs presented in
Section A 4.

A.1 Notation

Problem size:

Symbols Location Description
d (DO Problem dimension
n 2) Number of local samples
m 3) Number of agents
N =n-m | Section 1 | Total number of samples
Relevant functions:
Symbols | Location Description
fi 2) Local empirical loss
f 3) Global empirical loss
f 21 Stacked empirical risk
F (22) Stacked global empirical risk
Population curvature parameters:
Symbols | Location Description
K Section 1 i\‘:?T"((g; (See Section A.4)
Network quantities:
Symbols Location Description
p Assumption 5 | Network connectivity
W Assumption 5 Gossip matrix
W Section A .4 W® il
J Section 5 J=<1,10
J Section A.4 J=J®I,;
Structure promotion:
Symbols Location Description
R 3) Norm constraint
R 3) Constraint radius
M Assumption 3 Model subspace
M+ Assumption 3 | R — ¢ Lipschitz constant M
R* Section A.4 Dual norm to R

Tolerances:
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Symbols Location Description
Yo, Te Assumption 2 | Local RSM constant and tolerance
y Ty Assumption 1 | Global RSC constant and tolerance
L, 1, Assumption 1 | Global RSM constant and tolerance

Other symbols:
Symbols Location Description
S; 2) Indexes of samples corresponding to agent ¢
o Algorithm 1 Step-size
B Algorithm 1 Momentum term

We boldface stacked quantities of any type, vector and matrices. For vectors, the stacked is obtained
grouping agents’ variables into a single vector; for instance, we write @ = [/, ..., 6], where 6;
is the local variable owned by agent i. For gossip matrices A € R"*™ we define their “augmented”
instance as

AL AR,
where ® denotes the Kronecker product.

Following the same rationale, we define the stacked local empirical risk as

. 1 m
= — (0; 21
£0) £ 5346, @
while the stacked average loss is defined as
1 m
FO) &2 — 0;). 22
(0) ;:1 f(0:) 22)

Other useful notation is the following: 1,, € R™ is the vector of all I’s. We define J = L1,,11;
it is the projection onto the consensus space. Given a matrix X, we denote by A;(3) and ¢;(X) its
i™ largest eigenvalue and singular value, respectively—with Apax (3) and Apin () (resp. omax(X)
and o,in (X)) being the largest and smallest eigenvalues (resp. singular values), respectively. We
denote by R* the dual norm of the norm R. For any © € RP*?, ||©]|; = > "_, 0;(0O) is the nuclear
norm; [|O]|c = max; jepp) |04 1Ol = maxie() > e, [Oi,4l: O], is the spectral norm; and
|©]| 7 is the Frobenius norm. Finally, denote by ||x||% the semi-norm induced by the p.s.d. matrix
Aie. |Ix||4 £ (x, Ax).

A.2 Additional Experiments

This section complements the results presented in Sec. 5. In particular we show the invariance of the

performance of Algorithm 1 under the asymptotic scaling “d/N growing”, as long as = 1}’\,3; < remains
constant and provide details on the results in Fig 1.

Consider the sparse linear regression model as described in Sec. 5, with ¢ = 0, 0% = 0.25 and
R = ||0*||>. The covariates z; ; ~ N(0,1) are i.i.d. leading to 4 = L = 1. All the curves are
averaged over 10 independent Montecarlo simulations. The network is generated using an Erd6s-
Rényi graph, with m = 5 and p = 0.5. To achieve a connectivity p ~ 0.02 we run 14 rounds
of gradient tracking and consensus per iteration. Figure 3 plots the normalized estimation error
m t * (12
;’Eﬂ?‘% versus iterations, generated by Algorithm 1 and NetLASSO (solid lines) solving the
regression problem with d = {10%,10%,10}, n = {80,100,120}, « = 1/2 and 8 = /1/8. We
observe that as predicted by the theory, the achieved statistical precision and convergence rate remain
of the same order, under the scaling % 1. Furthermore, Figure 3 shows a gain using acceleration in

high dimension even when x = 1.

Real data: We test the NetLLASSO and Algorithm 1 on the data set Housing', with d = 13, and total
sample size Niest+train = D00. The network is generated using an Erd6s-Rényi graph with m = 5

'The data set can be found https://www.cs.ubc.ca/ schmidtm/Software/lasso.html
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Figure 3: Estimation error versus interations for different values of %; d = 10%, d°, and d5;
n = 80, 100 and 120, with m = 5. The network has connectivity p = 0.023; p = L = 1, the
stepsize is then set to 1/2, and 8 = 4/1/8. Solid line curves refer to NetLASSO while dotted-
line curves represent the accelerated variant. Observe that even when the population has Kk = 1
acceleration yields a gain (as predicted by the theory). Dotted-line curves indicate statistical precision
achieved using centralized PGD.

and p = 0.5; 14 communication rounds are performed to achieve a connectivity of p ~ 0.02. The
data set is split between training and test samples, Ni;ain = 10 and Niesy = 490, respectively. We
denote by X frain qytrain (regp X test g test) the training (resp. testing) sample pairs assigned to agent
t . Observe that we choose Vi;,;, small to illustrate the performance when the objective function is

not strongly convex. The left plot in Figure 4 reports the performance in terms of
Z 1 HXtralnet traln”2

1 ||Xtraln0 ytrde
z

where 6 is the solution obtained via PGD (centralized), and 67 denote the iterates generated by either
NetLASSO (black-line curves) or Algorithm 1 (red-line curves). The right plot in Figure 4 shows the
performance of the two algorithms in terms of test/prediction error, defined as

S X0 —

Z;Til ||X_train0 _ y‘grainHZ
where 6! are obtained using the NetLASSO and Algorlthm 1 (black-line and red-line curves, respec-
tively) using the train data set, where 0 is obtained using the centralized PGD on the train data set.

Observe that both test and train errors are well behaved while the test error ends up being slightly
larger than the train error.

The experiment in Fig 1 has set-up identical to those in Section 5 with d = 20000, n = 40, m = 5,
p=0.023and 0 = 0.25. 5 = / 8% for both DPAG and our proposed scheme, while the step-size is
set to (2L)~! for all schemes involved.

A.3 Additional Statistical Models and guarantees

This section contains statistical-computation guarantees of Algorithm 1 applied to (i) the sparse linear
regression, with covariantes x; drawn from a sub-Gaussian distribution; and (ii) the convex matrix
completion problem.

o Sparse sub-Gaussian regression: consider the sparse regression model described in Section 4
where z; are i.i.d. and now (72, ¥)—sub-Gaussian, i.e., fulfill Assumption 4.(ii). Denote by X £
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Figure 4: Housing data set. Left panel: normalized training error v.s. iterations; Right panel:
normalized testing error v.s. iterations.
[z];...;x}] the matrix containing the samples z; row-wise, and assume that each column of X has

lo-norm equal to C' > 0. This assumption is standard when dealing with sub-Gaussian measurement
matrices [29]. Finally, define

o o {5 Anin ()} R <1°gd
- q

1-3
) , q€10,1] and Ry = s.

XN )\min(E) N
Corollary 3. Consider the ERM (3) solving the linear regression problem described above, with
RE) =11, 10*|l € R =|0]|1 and Q@ = R?; and let

T4 1
— - . /(1—q/2)
N=Q ((Rq max { o) /\mm(E)}) log d) .

Let {(0%)™ | }+>0 be the sequence generated by Algorithm I with tuning as in Theorem 2, where (17)
becomes
-1

. K
p < C mln{\/}sl7m}7 for some C, Cy > 0.

Then, with probability at least 1 — ¢y exp (—clNrnin{,uQ/T4, 1} + log(m)) , for some ¢y, c1,> 0,
it holds

m t l_g
1 . e 8 /1 o logd 3 ,
m i=1 Hel HH o Amin(E) ( 32K + o XN Rq N + || H

Proof. See Appendix A.6.3. ]

o Matrix Completion: Let y; be a noisy measurement of [9*]a( ),b(5)> Which corresponds to the
a(j),b(j) element of the matrix ©* € RP*P_which is selected uniformly at random from its d = p?
elements. ©* is assumed to be near low-rank, in the sense that [|©*||, < R, with ¢ € (0, 1] where
0%y & 37, 0:(0*)4. Let X; € RP*P, with [X;],(j)5(;) = 1 and remaining entries equal to
zero. Then, y; = (X;,0%) + (o /d)w;, j € S;, 1 € [m], and w; are sub-exponential with parameter
1 and independent from X;. Our goal is to compute an estimate of ©*. To achieve this, we cast the
problem into an ERM of the form (3) where we choose 2 = {© € RP*P : ||0]| < w/p} with
w > 1. Observe that by vectorizing the quantities involved in the inner product, Assumption 4(iii) is
fulfilled.

Corollary 4. Consider the ERM 3 solving the matrix completion described above, with R(-) = || - ||1,
0%y < R = 0] and @ = {© : |0 < 2}, withw > 1; and set N = Q) (plogp) . Let
{(©Y)™  }1>0 be the sequence generated by Algorithm 1 with tuning as in Theorem 2, where (17)
becomes

C
p < m_15’ for some Cy > 0.
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Then, with probability at least 1 — co(m + 1) exp (—c1plog p) for some ¢y, ¢ > 0 it holds

Ly 0 Y plogp\' 2
- 92‘6_92< 1-— 0 > 2—q A*2 ]
méJh H_8< 4ﬁ)L+o<wa < N ) + 1A%

Proof. See Appendix A.6.4. a

A.4 Proof of Theorem 2

Using the notation introduced in Appendix A.1, we start rewriting Algorithm 1 in the “augmented”
vector-matrix form:

t 1 t ﬁ t

w :mB +1+5V (23a)

zt = Ww! (23b)

y =Wy + (V) - VF(ET))) (23¢)

viT™h = argmin {m(yt,v> + B_a”V —(1-p)vt - ,th|2} (23d)
0; €Q:R (vi) <R,Vi 2

Ot = pvitl 4 (1 - )6, (23e)

where z=! = Ww~1, and w~! is any arbitrary vector, with each of the d-component being feasible

for (3). Notice that, with a slight abuse of notation, we still used the (stacked) vector y to denote the
tracking variables as in (23c), although in (23d) they are m times those defined in (14), due to the
1/m factor in the definition of f (see (21)). This explains the coefficient m in front of (y*,v) in
(23d).

We will study convergence leveraging the following Lyapunov-like function along the iterates of the
algorithm:
t A ¢ Bra, *a, s
V£ F(W6') — F(W0) + S 101w + —|| —0|". 24)
For convenience, define

2

g(w) £ F(Ww) + 2wl

It is not difficult to check that, under Assumption 1, g inherits the RSC and RSM properties of f, in
the following sense:

Ba
Lol =yl + Sk = ylowe — 2o y) <90 — gv) — (Vgv)x—y),  @5)
L 2 Ba 2
9(x) —9(y) = (Vg(¥).x = ¥) < ~lx =yl + 5 Ix = ylfws +eulxy),  (25b)

for all x,y € Q™, where

m

colx,y) & 2_# Zm: wa —y;) | and e (x,y) 2 ;—;iRQ zm:wz‘,j(%
i—1 i=1 j=1

(26)
Using the above properties, our first step is to establish descent on the Lyapunov function up to some
error; formally, we have the following.
Proposition 1. For any oo > 2L, the following holds:
Vil < (1 — Vt_i(ﬁ_ 2 ) t_ g2
<(-p V-2 (8- %) |2t -]

+Bee(0,w') + e, (07, wh) + Ble’, 0 — v, @7)

forallt =0,1,... where

Q2
ety + ﬁTaWV ~Dz' - WYF(Ww'). (28)
™m

18



Proof. See Appendix A.7.1. O

The rest of the proof consists of controlling the error terms
Beo(0, W) + £,(0", wh) + B(e", 0 — vIT).

The errors €, (5 ,wt)and £,(0"T, wt) can be controlled using the decomposability of the regularizer—
Lemma 2 below provides the desired bound—whereas (et, 0 — vi*!) requires a suitable analysis of
the tracking variables y*—Proposition 2 below summarizes the result.

Lemma 2. Let
2

V229 (273 (T e (6%)) + 2R(0* — ) + W(M)|10 — 9*||) (29)
The following bounds hold for €,(0, w') and , (07", wt):
~ 1 _ ~
(0. wh) < — 1, 802(N)||z¢ — )% + 02, (30)
2m 2
1 _ ~ ~ —~
20" W) < 24 WAM)B? (V- 012 + B2l — Oy + (1 9) v 01
n %95%2. 3D
Proof. See Appendix A.7.2. O

Proposition 2. The following bound holds for (€',0 — v):

5 A(p) a2 . Al a2 . Bl B(p) 5
0wy < AWy g Ay g BDygp oy B g gy
R(p) = t—1—iy, i _ p|2 c
1 i 0 +1 C 2.
+ 5 ;:O Pl Ol 4 e+ Clp)r”,
foranyv = [v],... v} )T, with feasible vy, . .., v, where v? is defined in (29), and

A(p) £ B*ap + 3my/mp ((3 + %) (270 + 8U2 (M) 1) + 2L + 8\1/2(/\71)TL> ,

s B 3 _
B(p) £ f 5+ Tﬁp (27e + 8TX(M)7e)

R(p) & 6my/mp (2ve + 80 (M)7e) , (32)
O 2 ARimm S R (VE(8%)) + 3my/m(2y, + SE2(M) 6 - 0%,

i=1

C(p) £ 9v/mmp <<3 + %) 7+ TL) :

Proof. See Appendix A.7.3. O
We can now combine the above intermediate results and prove convergence of Algorithm 1, stated in
Theorem 3 below—Theorem 2 (in the main paper) follows as special case (see Remark 1).

To state the theorem, it is convenient to introduce the following quantities:

A 0\ _ /P H IR @ -1 _ P2 | 012
B2 F(0") ~ F(0)+ V" = 0P + Sz =02+ 0" [y (33)

1 1 242 (M) T V8KT(p) 8kT(p)
/\él_ §+(1_\/§)( oL 2Lp)+ T
o 1 _ 24 Y2(M) _ VBrT(p)
2L 2L

(34)
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where
7(p) £ 3m/mp ((4 + 12_—pp> (27 + 8Y*(M)7) + 3L + 12\1/2(/\71)TL> : (35)

Notice that the rate A in (34) matches that of the centralized PGA applied to the ERM (3) [1], with an
improved dependence on x, which gains the square root (typical of accelerated methods).

Theorem 3 (Convergence of Algorithm 1). Given the ERM (3), suppose (i) f satisfies the RSC/RSM
conditions (Assumption 1); (ii) R is a decomposable regularizer with respect to a chosen pair of
subspaces (M, M) (Assumption 3); (iii) f; satisfies the local RSM condition (Assumption 2) for all
i € [m]. Let {(6});c(m) }t>1 be the sequence generated by Algorithm 1, with tuning oo = 2L and

= \/1/(8k) and gossip matrix satisfying W = 0 and Assumption 5, with p such that

o1
< mi , = = . 36
p= { 128" 38t/ (L1167, + 6402 (M) 7, + 1202 (M)7,) + 3) } 36)
If (M, M) and RSC/RSM parameters (j1,7,,) and (L, 1) are such that
£ > 87,0 (M) + 27, P2(M), (37)

then, for any solution é'\of (3) for which R(g) = R, there holds

o1 — oH SOt Pt B

tﬂéﬂ) (4R¢—ZR* V(07) + 32y + 8Y (M)m)|10 - e*|2>

+ (ﬁ (omvmo ((3+ 12 ) ) + 2 )

x 2 (2R(HM¢ (0%)) + 2R(0* — §) + T(M)]|0* — 9|I)

m

+(A+p)

(38)
where B and X are defined in (33) and (34), respectively.

Proof. Combining Proposition 1 with Lemma 2 and Proposition 2 yields

F(W0t+1) _ F(Wé) B « ||0t-i-1||I W (ﬁ « BA(p) _ 62247—14\1]2(-/\;1)) Hvt+1 _ 6”2

2m 2m 2m

A
=4y

(B2 Lawron - 2w - 20 1 g <

2m 2m

= B*a  B(p)B
(1= 5) (Pwo) - FwO)) + (1= 952 + 202N o
Lqy
(1-— ,8)ﬁ2oz 247, 02(M) B(p)3? ~ 5
(2 Mg gy BO v g
Lqn
BR(p) 1 24 BR(p) — —i—1y,,4 24 pC 1y B 2
+ o ||z~ 0|| o 2 ot ||z HH mthr (ﬁC(p) + 3 (Tu + 9TL/3)> v

L
=4qz L5t

(39)
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Introducing

BN £ F(WO™) — F(0) + qpll0" [T_w + ¢y [V = 0| + 22"

=g(0"™) + g, IV — 0% + ¢zt — 6]%,

and
1! 1
X:maX{l—ﬁ,qe,q77q7}y for q,/zaq/g7q'i;>07
(39) yields

Bt+1 < /_\Bt +5t

-0

(40)

(41)

We will enforce shortly conditions on the system parameters via ¢;, q,,, ¢~ and g;, ¢./, ¢7 so that

A € (0,1). Hence, hereafter, we will assume \ € (0, 1).
Using ¢/ < \¢’, due to (41), and the expression of 6 (see (39)), we can write

t—2

3 AN —i— c
B RBP4 D0 (50 + 5 (o om ) @)

i=0
To study the dynamics of (42), define the sequence {S*} as

St=pS=t 4 \/pAB"™', t=1,2...; and S°=0.
Notice that

t—1
= \/pXZpt_l_iBi, t=1,2,....
1=0

Consequently, we can write: for any t = O, 1, ceey

Bt <3+ st + B0+ (50 + () v
St < pst 4 //—\th;
IE

| LR

The matrix above has spectral norm equal to A + p. Consequently, under

A+p<l1,

and

Bt+1
St+1

BC

by telescoping back to t = 0 while using S° = 0, we obtain

+ %pt + (ﬂC’(p) + g(TH + 97L6)> V2

43)

B < (A+p)" B BC Zp”l A+p)" 1 i <ﬂ0( )+ g(m + 9m3)> v
_ C - 1
< ()\ +p)t+1BO + g_m()\+ )tJrlp >\ P ( TM +9TLﬁ>> . (44)

Using (40), we can lower bound B**! as
B! > g(0"") — g(0)

() ,U 0t+1 0 +ﬁ il _ 52_ » — &y 0t+1’§
W2 om I-W

(30) _ ~
2 i—mo‘not“—euu (& - feswrn - 52) 10— 03 -

4m 2m
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where (a) follows from (25a) and (Vg(8),0'"! — ) > 0.

Chaining (44) and (45), we finally obtain

2m
B2a

+ (3 + )it - 354 (43\/— mZR* (V£:(6%)) + 3m/m(2y, + 82 (M)7,)[|0 — 0*||2>

i=1

2m 2 T, + 971 m T
2 9 I+ = p Ty 2, T k2
+ﬁa<1—A—p><mmp<<*1—p>”+”)+ 2 >V+52a2y

||0t+1—§||2+< L 8@2<M>—1) 107~ 2 < 2T (5 4 )10

2f%a 62

(46)

We proceed now to establish sufficient conditions for X in (41) to be strictly less than one as well as
for (43) to hold, which have been subsumed in the above derivations.

Substituting the expressions of gy, ¢,,, ¢. and gy, q,,, ¢”/ (as in (39)), in (41), we have

Fa

2m

FPa _BAlp)  FPULVM)

2m 2m 2m ’

Bu  Ba B o, 247, 51U (M) BA(p)

om  om amen¥ M- e =5 >0

3 — max {1 _p, U=PFPat B(p)S (1-p)Fa+ 24 V2(M)52(1 — ) + B(p) 52
’ B2 ’ B2 — BA(p) — B2241,¥2(M) ’

BR(p) }
B — BB — 87, U2(M) — 247, f1U2 (M) — BA(p)
Sufficient conditions are
Ba— A(p) — B4, T%(M) > 0, (472)

p— B2a — 8(1, + 248%7L) WA (M) — A(p) > 0, (47b)

X = max {1 _ g4 LZB)(BAW) + F224r, T2(M)) + 24T2(M)B*(1 — §)* + B(p)B
B2a — BA(p) — 52241, 92(M) :

R(p)
e S ST | o
By enforcing
R(p)
w— B2a — 87, W2(M) — 2471 B3U2(M) — A(p) <1-5 (48)
we have
S<1_ 54 L=BAp) + Blp) +485(1 — B)T V(M)
AL T A - 2 P (M) @
For (48) to hold it is sufficient that
p— B — 87,03 (M) — 247 U (M) — A(p) > g, (50a)
R(p) < £(1-B). (50b)
Notice that (50a) also implies (47b).
Choose i
2 e
8 = ST (G25)
Sufficient conditions for (50) to hold are
% > max {87, U2(M) + 247, T*(M), A(p), R(p)} - (52)
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Using now the expression of A(p) and R(p) (see (32)) and enforcing

<3 (53)
(52) is implied by
Bap + 3my/mp (7(2y; + 8U*(M)ry) + 2L + 8V3(M)71) < % (54a)
87, U2(M) + 247, B2(M) < %. (54b)
The following additional condition on p is sufficient for (54a):
e (55)

< — = .
= 12m/m (147, + 5692(M)r; + 2L + 82 (M)71) + p

Observe that under (52), 8 given by (51) and @ > 2L, the LHS of (47a) is lower bounded by
\/ %L — 4 — /47 §; therefore (47a) is fulfilled, for any values of y and L.

It remains to show that (43) holds. We claim that, using therein the upper bound of X in (49), with I3

given by (51), (43) holds under

2471, WA(M) < %» (56)

as long as p satisfies (36). In fact, first, notice that using definition of the parameters A(p) and B(p)
it holds

A<,
where ) is given by (34). Then, substituting (36) in (35) and using 7(p) < 755, we deduce
- 7 7T—V8
ASAST- 2B+ B (1-p) <1 8\/_5,

which proves (43).
Finally, notice that (36) is sufficient for (53) and (55).

To summarize, we proved (46), under (36) and (54b), (56), with (54b), (56) implied by (37). The
final convergence as in (38) follows from (46), lower bounding the LHS by - |6 — 6]? and using
(52)and A7 < 2. O

Remark 1 (Theorem 2 as special case of Theorem 3). Using 7(p) < I%’ we can bound X in (34) as

1 1 4871, W2 (M) V8uL /64
Asl—y e+t 5 | == = T 17 N
8k 8K HL — 24TL\I/2(M) HL — 24TL\I/2(M)

Under 24102 (M) < % and p < gl, one gets

1
Adp<l—y)—u.
tes 32k

This yields Theorem 2.

A.5 Proof of Theorem 1

Theorem 1 is proved as special case of the theorem below—Remark 2 to follow elaborate on the
connection.

Theorem 4. Given the ERM (3), suppose (i) f satisfies the RSC/RSM conditions (Assumption 1); (ii)
R is a decomposable regularizer with respect to a chosen pair of subspaces (M, M) (Assumption 3);
(iii) (M, M) and the RSC/RSM parameters (u, 7,) and (L, Tr) are such that

g > 87, U2(M) + 247, T2(M). (57)
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Let {0'}1>1 be the sequence generated by the algorithm in (9) with tuning o« = 2L and 8 = /1/(8k).
Then, it holds

1 A2« Syt 0y e\ o .0 2y2
6 =8I < N (568%) — £0) + 1" - A1) (58)

4 1 9 . P P
+ /: (1 (81, + 9718 )+TM> X 2 (2R(HM¢(9 ) 4+ 2R(0* — 0) + T (M)||6 — 0 ||) ,

Aél_\/g%l—\/g)(%)

1 A2 (M)
2L

with

Proof. We apply Lemma 1, with g = f; we can write

—~ 2 —~ R . 2 N
1) @) + Z8 -0 < (- (70 - 1@ + DT ot

(@ - 'B—a) 16— )% + ﬁ%‘n@— 2+ eu%ﬁ(et“ b,
Using Lemma 2 we have
%‘R2(§— A< e (8@2(/\‘4)”5— A2+ 1/2) :

TR0 — 2 )<—(24ﬂ2\1f2( ) (Il =812 + (1 = B)2llo" = 812 + 821" — 01)%) +96%*) .

Therefore,
et - 5@ + (5 - Bt w0
~ —_ 2 — ~
< (- AU — 1) + ((1 D 2 s ) -0+ (T ) o2
B,U/ /83 24TLB4\IJ2( _) Joky 2 2
(T B )1

Enforcing

B+ 247, BT (M) + 8T2(M)7, g (59)

(1= B)B%a+247,8%(1 — B)*T* (M) < X (BPa — 247, 2T (M), (60)

£2q,

for some \ € [1 — 3,1) (to be determined), yields

f(6t+1) B f(é\) + qU”,Ut-i-l _ 5“2 < X (f(xt) - f((/g\) + qu’Ut _ §||2) + (% + 9%62> 1/2,

whereby telescoping we have: fort =0,1,.. .,

FO)  £B) < X (£6°) — F@) +alle? 8P+ — (% + 97/3) v (6]
Invoking the RSC of f and using optimimality of 5, we can write
FO) = £0) > Ll 87 - R0~ 6)
S Lo -0 - L (5w et -G +). @
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Chaining (61) and (62) under

8, 02(M) < L, (63)

2
and using ¢, < B 5, we obtain

N 8 ~ 20 ~ 8 1 T 97 T,
ot = < 23 (5000 = 10+ S0 -0 )+ (55 (G + 50 4 )

Observe that the smallest X one can choose while satisfying (60) is

s (1—B)a +247,(1 — B)PT2(M)
)\_max{l—ﬁ, o — 24m, U2 (M) }7
and thus
So1 gy Ml gurpny 1TAT0 A (2grt)
o a — 241,02 (M) - 1— 247’L§/§£/\;12

To summarize, the above convergence has been achieved under (63) and (59), implied by (57). The
upper bound on the rate as above is compliant with (60). Notice that (57) also guarantees that the
RHS of (60) is strictly positive. ]

. - N
Remark 2. By further assuming that 249* (M), < =2 it holds that
/1
A<1—4/—.
- 16K
This yields the result in Theorem 1.
A.6 Proofs of Corollaries 1-4

A.6.1 Proof of Corollary 1

In the setting of Corollary 1 the following holds

i} logd\ % logd\ 7
(M) < (2% R, e (0], < (22) R, (642)
N N
logd
Y= (2m + 1)L, e = st = (64b)
= Amin(2), L = Aax(2), (64c)
logd ,log(md)

T, =TI = NxCo Ig[ax] IV fi(0")|; < ey mnso (64d)

N~ N

with probability at least
1 —coexp (—c3N +log(m)),

for some universal constants ¢y, ¢, c2, ¢c3 > 0 and all ¢ € [0, 1]. The proof of the above result
follows from [26], [11] with minor modifications, hence it is omitted.

Invoking Theorem 3 given that

logd\ ™%
Rqcans (%) < u,

and the network

N_l

P = SR amm(L-1(162m + 1)) + cs(m + Dpi +3)°
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for some universal constants Cy, ¢5 > 0, with the parameters (64) yields

t+1

Logter o2 o 8 1 2 B w2 L PE a2
— _ < = Y — Elal zr
o = < = (1) (10— £0) + o 01 + 5210

t+1
N 22 ) 1 KT3/2 y
32k 96m+/m (16(2m + 1))

(4R\/mm\/czmnzo—2 1og§\7/nd) +3vm(2(2m + 1)L + 8) || 0* — §||2>

2v2 K2 logd 4 logd
24 9 08 1)) 42
+ ( o 96my/m((16(2m + 1))) my/m (Conz N (7Tm + )) + ﬂcoﬁz i X
logd\ ' ¢ . lood\ 2 N
x (Rg (%) +R2(0" —0) + < = ) R|0* — e|2> :

whereby noticing that x~! < 1 and invoking Lemma 5 in the supplementary material of [1] which
states

RO — 6%) < 20(M)[|§ — 6*|| + R (ILpgo (6))

yields the desired result.

|
A.6.2 Proof of Corollary 2
In the setting of Corollary 1 we have that for ¢ € [0, 1]
q 1—gq
- AN PNz
M <R (x) Iy (O]l < Ry (%)
Ye=(2m+1)L TE:COUZ%):
M= /\min(E) L= )\max(z):
logd
Ty =TL = conz%, 112[%2{] (IVfi(0M)] < clan;/zm %
The results above follow from small modifications of [1], [29], [26] and applying the union bound.
Then, the desired result follows by taking the same steps as in the proof of Corollary 1. O
A.6.3 Proof of Corollary 3
In the setting of Corollary 3 we have that for ¢ € [0, 1]
logd\ 2 log d =
v Og * Og
v < (“E0) " n, a0l < (<5°) ©
)\max(z) m)\min (Z) T4 lOg d
= = = )\min b )
Ye 5 + 5 ) Te = Cp Mmax o)’ (%) -
H /\maX(E)
= )\min X ) L== )
Iz () 5t
4 logd 1 d
Tu:TL:(:OmaX{ﬁ,)\min(E)}%7 Zlél[ijzi] ||vfl(9*)||oo SCCl %g(m)?

with the probability given in the Corollary’s statement. The above follow from small modifications of

the statistical results in [17], [11], and using the union bound. Then, following the same steps as in
the proof of Corollary 1 yields the desired result. |
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A.6.4 Proof of Corollary 4
The matrix completion case deviates slightly from the other cases as the empirical risk does not fulfill
cxactly Assumptions 1 and 2, but a slightly modified version [1]. Observe that this is consistent with

the results obtained for plain projected gradient descent in [1]. For the described model it holds that
for all i € [m] with probability at least

1 —exp (—plogp) — cymexp(—plogp),

and for all V' € RP*P and V; € RP*P it holds

2
bod plogp plogp
(vectv), ZamveeV) ) < VI + canlV I IV 2522 4 co (V1o 2002 )

(65a)
2
XX lo lo
(vecv), vec(V)) > VI caplV I IVl 25E2 +co <p|V||oo\/pA§p> 7
(65b)
Xs,Xg, 1 1 ’
Sids; plogp plogp
<vec<w>,Tsvec<v;>>s||v;||%+c2pm||m|oom|1\/ ey <pm||vnoo ~ ) :
(65¢)
Xs, X4 1 1 ’
S, plogp plogp
<vec<w>,TSvec<w>>2|m||%—c2pm||vi|oo|vi|1 >~y (pmnvnoo >
(65d)

where the statements involving X are a restatement of Proposition 2 in the supplementary material of
[1] and the remaining can be established by combining the proof of Proposition 2 in [1], the strategy
employed to establish the RSM in [26] and the union bound. By setting V' = ©; — O3 such that both
©1, Oy € Q) one can establish

[(01) = f(O2) = (Vf(02),01 — O2) < |01 — O5]/%

2
1o lo
+cop)|O1 — O2l0||O1 — O2l1 P ng +c3 <p||@1 — O2c/ p—ng7>

and an analogous lower bound. Observe that due to belonging to €2 it holds that

w
191 — O2]l0o < 2—,
p

implying that the RSC and RSS hold upto a tolerance czw?2 ljovgp . For such a model, the procedure
to establish convergence is identical to that in the proof of Theorem 3 with the difference that the
additional tolerance needs to be absorbed with the misspecification error terms (12).

The remaining terms are given by

pbgp>_g

(M) < Rw™1 ( N

1—g

N _ lo 2
IMacs (0% < Ryt~ (25E2) ©

1
max R* (Vf;(0%)) < eymoy L—8L

which can be found in [1],[29].
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A.7 Supporting results in the proof of Theorem 3
A.7.1 Proof of Proposition 1
From (25b) it follows

L
9(0"™") < g(w') + (Vg(w).0' —w') + [0 —w!ys + 2,0 w)

Ba
+ %Hetﬂ —w[[{_we
(Zie) (1 o 6) (g(Wt) + <vg(wt)’9t o Wt>) + 8 (g(Wt) + <vg(wt)’vt+1 - Wt>> (©6)
2
£ 0w+ L0 W s + (07w
<(1-0)g(0") + 5 (g(w') + (Vg(w'), v'* —w))
L
+ 07 — W Ry + h S0 =Wl yys + 2 (07, W),
Using (25a) while subtracting —g(@) on both sides yields
g(0""") —g(6) < (1-B)(g(6") — Q(A)) + B(Vg(w'),v'*! - 6)
Bu 5
I R — I e (0, (67)
L B2
+ )07 - W[y + 5 o 19 0" — W[ f_we + (0, W),
Invoking the optimality of v¢*! in (23d), we have

(Vg(w'), vt - 6)
< (¥ Vol + 22 (v (1= vt ) G- v
_ 52 o t t O‘_ﬁ t+1 (1 t Y p_ o t+l
=(y' (I W)w' — Vg(w’) + - (v (1-B)v' —pw'),0 —v
@ <€t + % (vt — (1 - B)vt - pwt) .0 — vt+1> . (68)

Using (68) in (67) we obtain
o~ o~ 2 o~

9(0") — 9(0) < (1 5) (900 — 9(8) + 22— (1 pv' — w6 v+

va(ena vy B g, 20

im S W w2 + Ber(8.w')

Lo+ T wf||2 (0 ),
m W2 om -w ’

(69)
We use now
BV — (1 BVt — pw') E g — w! (70)
to bound the term
2 o~
E<vt+1 (1 Bt — pwt, 8 — vitY)
3o Ba B0, ~
= —||‘9 (1—=pB)v' —pw'|* - %HVHl —(1=pB)v' = pw'||” - %HG — v an
a0 B2a t 12 A )2 52@ n t+12
= —_— — — 9 — _ — — _— —
e N e [ e R
BPa t 2 (1—@52@ o~ )2 AR - Bra ~ t+112
< —lwt — = e — 7 - .
e [ e 1 |

2m
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Combining (69) and (71) yields
9(0") ~9(0) < (1 - 5) (9(0") ~9(0)) — 5 (4 — 50 I w' — 6]
(1-B)8%

J— o~ 2 ~
T [ e s &

2m
L Ba
- 0t+1 o t112 9t+1 o
20— W + £

+ B, 0 — v 4 Bey(0, wh) + £, (0, wh).

IE-we

Using oI = 2LW? + 32a(I — W?), due to o > 2L, rearranging terms, and using the definitions of
V't, we obtain the desired result as in (27). O

A.7.2 Proof of Lemma 2

Given £,(6, w') as in (26), we notice that the argument points zfand Y70 ) w; ;6] t+1 are feasible for

all t and ¢ € [m]. We can then apply [1, Lemma 1] and conclude
~ 1 - ~ T
g0(0,w') < %TH&PQ(M)Hzt —0|* + ?”1/2.
Consider now 5u(9t+1, wt) (see (26)). Since
WOttt _ 4t @9 ﬁW( t+1 (1 - ﬂ)vt _ [3Wt)

and R is a norm, it holds

wa—(ﬁﬁl — 20| =p*R? Zw” H'l —(1- ﬁ)vj— - Bw§)
j=1

j=1

<3p8% | R? Zw v“‘l 0 +(1- 2’R2 Zw”v -0 —|—62’R2<z§-—§)
7j=1

Again, invoking feasibility of the z, v-iterates and [1, Lemma 1] we deduce (31). ]

A.7.3 Proof of Proposition 2

By definition
~ ~ 2 ~
(e,0 —viTh) = (y! — WVF(Ww?),0 — vi*1) + /%O‘«W? ~W)w 0 —viTh.  (72)
term 1 term II
We bound the two terms separately.
For term II, we have
_ Bra - ¢ - D i+l
term II = - (W -=I)(w"),( W =TJ)(0 —v™))
(@) Bap BPap
< %HWtHiw + 5 IV w
@ fap BPap Bap
7P 19t)2 e s [ t+1
< 2m(1+[3’)” l—w + 2m(1+5)||" l-w + 55— o VIR w

where in (a) we have used the fact that (I — W)'/2 and (W — J)/2 commute.

We work now with term I. Due to the favorable behavior along the consensus direction, we bound
term I considering separately the inner product along the consensus space and its orthogonal
complement, that is,

term T = (y' - WYF(Ww!),J(0 = v'*1)) + (y' - WYF(Ww!), (T 3)(6 - v**),

term I(a) term I(b)
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We will leverage the following properties:

Jy! = IVF(Ww'), (73a)
JVFIw') = IVF(Iw). (73b)

where in (73a) we explicitly used the initialization y~! = Vf (Ww‘l), and (73b) follows by
inspection.

We proceed working with term I(a), as follows:

term I(a) 2 (VF(Ww') — VF(Ww'),J(0 — viTh))

(73b) <Vf(th) — Vf(Jwt) + VF(JWt) _ VF(WWt)”'[(é\_ vt+1)>
(a) <(V2f)(W _ J)(Wt _ é\)’J(é\_ Vt+1)>7

where in (a) we used the following two facts: the functions are quadratic, with V2 f denoting the
Hessian of the quadratic function f; and (I — J)(V2F)J = 0.

We move to term I(b). Using

t—1
y = WVF(Ww') + > (W - W' 'V F(Ww')
1=0

we have:

+ DW= 3 (W(VF(Ww') = VF(8)) + VF(B) - VF(Ww)) 8 - v'+)
1=0
& (W - 3)1V£(6).6 v

H((V2F)(2' — 0),(W —3)(0 —v)) + (V2F)(z' - ), (W — J)(v!*! - 8))
+ DW= J)' (W —T)(V2f)(2' — 0),0 — viH).
1=0

o~ ~

where in (a) we used the fact that the functions are quadratic and that JVF'(0) = VF(0)).

Using the above expressions of term I(a) and term I(b), term I reads

term I = ((V2£)(W —J)(w' —8),3(6 — vIt1)) — (W — D)1V £(6).6 — vt
+((V2F)(2' — 0), (W —3)(0 —v'™)) + (V2F)(z' - 0), (W — J)(v'*! - 8))

+ §<<w —DTHW (V) 6),0 '),
i=0
To properly control term I, we need to bounds terms therein having the following structure:
(V2 ) (w = 0),(W = )"0 —v))| and [((V2F)(I)(w —0).(W —3)*(8 ~ V)],
(V2F)(w = 8), (W~ J)(v — 0))],

(W —2)EV£(8),0 —v),
for w and v with feasible d-blocks, and integer k.

The following lemma provides suitable bounds for these terms.
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Lemma 3. Forany w = [w, ,...,wm| " and v = [v],...,vn]", with w;,v;’s feasible for the
y 1> 1

ERM (3), the following hold:

o~

{(V2F)(w — 8),(W — J)"(0 —

v))|
3m\/_p(2w+ 2(M)7) (

2 m*y/mphTe
o Iw =8 + v - 8]?) + " am? (74)
{(V2F)(w — ), (W —1))0 —v))|
_3 2 2L + 81, W2 (M)
e GLASTVOM) (g - B 4 v - B7) + T2, (rs)
m 2m
and
(W= 2)*V£(9),0 - v) (76)
m * (O* k 2( A/ —~ —~
m 2m
m2
\/—p Te 2. (77)
2m
Proof. See Appendix A.7.4. ]

Using (74), we have

-~

(V2F)(W —T)(w' — 0),3(6 —v'*))
3m\/%p(27£ + 3\11 (M) ) (Hwt _ §||2 + HVt+1 _ §||2> 4 m\/EPTZ 181/2
2m 2m
3m2\/mp(27€+3‘1’2(/\;1)7'€) t B t 2 t+1 P2 m2\/mp7'é 2
2 — — —1 ,
o 10w+ gV = 07 I =0 ) + T s

where in the last inequality we used

8

lw = 8]1” = l|z" = 8]” + [[w* [} _w= < Iz = 6I* + ——16" [ {_w- + 1+ﬁllvt||1 we-

1+ﬁ

Using similar path to bound the other terms in term I and combining together the final bounds of
term I and term II, we obtain

(o,5 - vy < /TR 4 8P (1 10w v O 6||2)
i %181/2’ + 2Ry/mmpttt zm: w
=1
3m\/_pt+1 2;:)14— 8W2(M)Ty) (Hé‘_ 9*H2 4 ||Vt+1 _ §|I2> + —mz\/;_nrstﬂw 1812
N 3m\/ﬁp(2w2;’l;8\ll (M)7y) (”Zt _ Q)2 + vt — §||2) I %1&/2
4 IR S VO) (15 oy e g2 o PV
2m 2m

t—1 2 r
+Z(1 +p),0 <3m\/_(27€ + 802 (M ) 0) (” i §||2 + ||Vt+1 _§||2) + m2—\/,n';77’fl8y2)

. 2m
1=0

ﬂ t)2 5 p t 2 ﬂ /) t+1 2
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By properly grouping terms, we obtain the desired result

(.6 — V™) < 2R /mmp't! i R*(Vrf(@*)) N 3"'L\/Wt+1(2;/;+ BSUEM)T) 5 o

" (ﬂ;:ap * 3m2\n/1mp ((3 - %) (270 + 89*(M)7e) + (2L + 8TL\1:2(/\71))>> Vi — 8|
3";\{7% (2(ve + L) + 8\1/2(./\71)(72 +11)) ||zt - 0]?

N Sm\/_(2w2—|— 8U2 (M) § L+ -l — Bl

(ﬁ;”iﬂ + 3m2\7/n_:0 (27 + 8\112(/\71)74)) (1 " 5||9t||1 w2 + 1LH t §||2>

2
MNP 32 )2 ((3+ i) . +TL) .
2m 1—p

A.7.4 Proof of Lemma 3

For convenience, denote by bf j the ¢, j element of the matrix (W — J )k. Then, it holds

<(V2fi) (w; — 5),2(7%(5— vj)>

j=1

i (720 (i = 8,5 05)]

{(V2F)(w — 8),(W — 3)"(8 —v))| =

3|~
L

1

-
Il

IA
3=
HMg

Then, under Assumption 2 it follows that

{(725) (wi = 0,8 - 0} < 5 [P @ = D = B)] + 5 [{(V21) (5 — 800 - B)|

45 (724 (0 = v — )

< (||w1- = 0112 + vy = B2 + fws = 11

+5 (R2(wi = 8) + R2(v; — B) + R*(v; — wy)) .
Under Assumption 5, it holds |b; ;| < \/mp¥ [26], yielding
|<(V2f)(w —0),(W —3)" (0 —v))|
< ZZ m” i (lwe = 8112 + 1oy - 811 +ZZ m” (3R (w; — ) + 3R*(v; - 0))
i=1 j=1 i=1 j=1

Because w; and v; are feasible for all j,7 € [m], we can use in [1, Lemma 1] and obtain

{(V2F)(w — 8),(W — 3)"(8 —v))|
m m py k R R
<33 S (B + s — 1)

i=1 j*l

3030 B g () — B + o, — 1) + 6°)

1=1j5=1

_ 3m\/mpk(2'yg + 8W2(M)7)

2m

R R 2k
lw— 8|2 + ||v —0]2) + M18u2,
2m
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where 2 is defined in (29).

The proof of (75) follows identical steps as above, with the only difference of using the RSM property
in Assumption 1.

We prove now (77). Denote by b ; the i, j element of the matrix (W — .J)*. We have

(W~ J)ka(“) 0 —v) = (W —J)"VF(0%).0 — v) + (W - J)*(V2£)(0 — 0%),0 —v)

- —ZZb (V87,0 —vi) + (W = D) (V2F)(0 ~ 6%).6 —v). (78)
=1 j=1
We now proceed to upper bound the terms on the RHS. Under Assumption 5 it can be shown that
k k . . 5 s . . el eqe -~
|%tj | < /mp® [26], therefore using Holder’s inequality along with feasibility of each v; and 6, we
obtain

m ZZZ) (V3(07) .0 —v;) < 2Ry/mmp" 2ty R*(Vfi(a*)),

m
=1 j=1

For the second term in (78) we can use the upper bound in (74). O
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