
Under review as a conference paper at ICLR 2024

A EXPERIMENTAL SETUP

A.1 DATASETS AND METRICS.

We perform classification tasks on four popular image classification benchmarks, including CIFAR-
10, CIFAR-100 (Krizhevsky, 2009), Tiny ImageNet (Deng et al., 2009) and ImageNet (Krizhevsky
et al., 2012) datasets. Additionally, we examine our method on the challenging long-tailed dataset,
CIFAR10-LT and CIFAR100-LT datasets (Cao et al., 2019).

• CIFAR10 is a collection of 60,000 32x32 color images spanning 10 different classes, such
as automobiles, birds, and ships, with each class containing 6,000 images. It is commonly
used in machine learning and computer vision tasks for object recognition, serving as a
benchmark to evaluate the performance of various algorithms.

• CIFAR100 is a diverse and challenging image dataset consisting of 60,000 32x32 color
images spread across 100 different classes. Each class represents a distinct object or scene,
making it a comprehensive resource for fine-grained image classification and multi-class
tasks. CIFAR-100 is widely used in machine learning research to evaluate the performance
of models in handling a wide range of object recognition challenges.

• Tiny ImageNet is a compact but diverse dataset containing thousands of small-sized im-
ages, each belonging to one of 200 categories. This dataset serves as a valuable resource
for tasks like image classification, with each image encapsulating a rich variety of objects,
animals, and scenes, making it ideal for training and evaluating machine learning models.

• CIFAR10-LT & CIFAR100-LT are the long-tailed version of CIFAR10 and CIFAR100
datasets with imbalance ratio ρ = 100.

For the out-of-distribution detection task, we use CIFAR-10, and CIFAR-100, Tiny ImageNet as
in-distribution datasets, and use CIFAR-10, CIFAR-100, Tiny ImageNet, SVHN, LSUN, Gaus-
sian Noise, Uniform Noise, as out-of-distribution datasets. Additionally, we adopt a more chal-
lenging OOD detection benchmark, named semantically coherent out-of-distribution detection (SC-
OOD) (Yang et al., 2021).

• SVHN. The Street View House Numbers (SVHN) dataset is a comprehensive collection
of house numbers captured from Google Street View images. It consists of over 600,000
images of house numbers from real-world scenes, making it a critical resource for tasks like
digit recognition and localization. SVHN’s diversity in backgrounds, fonts, and lighting
conditions makes it a challenging but vital dataset for training and evaluating machine
learning algorithms in the domain of computer vision.

• LSUN. The LSUN (Large-scale Scene Understanding) dataset is a vast collection of high-
resolution images, primarily focused on scenes and environments. It encompasses a diverse
range of scenes, including bedrooms, kitchens, living rooms, and more. LSUN serves as a
valuable resource for tasks such as scene recognition and understanding due to its extensive
coverage of real-world contexts and rich visual content.

• Gaussian Noise and Uniform Noise. After introducing Gaussian Noise or Uniform Noise
to the dataset, we obtain a modified dataset, which is then utilized as an OOD dataset for our
experiments. We implement this operation using the library from Kirchheim et al. (2022).

• SC-OOD benchmark. The SC-OOD (Semantically Coherent Out-of-Distribution) bench-
mark is designed for evaluating out-of-distribution detection models by focusing on se-
mantic coherence. This benchmark addresses the limitations of traditional benchmarks that
often require models to distinguish between objects with similar semantics from different
datasets, such as CIFAR dogs and ImageNet dogs.

We use five key metrics to evaluate the performance of ID classification and OOD detection tasks.

• Accuracy. This is defined as the ratio of the number of correct predictions to the total
number of predictions made. We report top-1 classification accuracy on the test(val) sets of
ID datasets.

13

Under review as a conference paper at ICLR 2024

• FPR (95% TPR). This metric stands for ’False Positive Rate at 95% True Positive Rate’.
It measures the proportion of negative instances that are incorrectly classified as positive
when the true positive rate is 95%. A lower FPR at 95% TPR is desirable as it indicates
fewer false alarms while maintaining a high rate of correctly identified true positives.

• Detection Error (95% TPR). Detection Error at 95% TPR is a metric that quantifies the
overall error rate when the model achieves a true positive rate of 95%. It combines false
negatives and false positives to provide a single measure of error. Lower detection error
values indicate better performance, as the model successfully identifies more true positives
with fewer errors.

• AUROC is short for Area Under the Receiver Operating Characteristic Curve(AUROC).
This metric measures the ability of a model to distinguish between in-distribution and OOD
samples. The ROC curve plots the true positive rate against the false positive rate at various
threshold settings. The AUROC is the area under this curve, with higher values (closer to
1.0) indicating better discrimination between in-distribution and OOD samples.

• AURP is short for Area Under the Precision-Recall Curve (AUPR), this metric is partic-
ularly useful in scenarios where there is a class imbalance (a significant difference in the
number of in-distribution and OOD samples). It plots precision (the proportion of true pos-
itives among positive predictions) against recall (the proportion of true positives identified).
Higher AUPR values suggest better model performance, especially in terms of handling the
balance between precision and recall.

Implementation Details. Our Split Ensemble model was trained over 200 epochs using a single
NVIDIA A100 GPU with 80GB of memory, for experiments involving CIFAR-10, CIFAR-100,
and Tiny ImageNet datasets. For the larger-scale ImageNet dataset, we employ 8 NVIDIA A100
GPUs, each with 80GB memory, to handle the increased computational demands. We use an SGD
optimizer with a momentum of 0.9 and weight decay of 0.0005. We also adopt a 200-epoch cosine
learning rate schedule with 10 warm-up epochs and a batchsize of 256. Our experiments typically
run for approximately 2 hours on both CIFAR-10 and CIFAR-100 datasets, whereas on the Tiny
ImageNet and ImageNet datasets, they take approximately 10 hours and 24 hours, respectively. We
employ data augmentation techniques such as rotation and flip during the training phase, while the
testing phase does not involve data augmentation. As for the backbone models in our experiments,
we utilize the standard ResNet-18 and ResNet-34 architectures. We heuristically decide the number
of submodels in the Split-Ensemble via ablation study, where we find 8 submodels for ImageNet-1K
and 5 submodels for other datasets leads to the best performance in both ID and OOD detection. The
classes are grouped based on semantic similarity into subtasks for the submodels to learn.

B PSEUDO CODE FOR SPLIT-ENSEMBLE TRAINING

The Pseudo code of Split-Ensemble training is available in Algorithm 1.

C ADDITIONAL RESULTS AND VISUALIZATIONS

In this section, we provide additional results in comparison with baseline methods in different set-
tings as well as ablation results on our design choices following the discussion in Section 5.3.

Subtask grouping strategy In Section 3.1, we propose to use the group of classes that are
semantically-close to form each subtasks of the complementary task splitting. Here we verify this
intuition against have random assignment of classes to each subtask. As illustrated in Table 5, hav-
ing semantically-close subtask grouping significantly improves the OOD detection ability of the
Split-Ensemble model over that of random grouping. This improvement is more significant with
more subtask splittings. We believe that semantic grouping of subtasks help the submodels to better
learn the difference between ID classes and OOD classes of the subtask, as the semantically-close
ID classes may share more distinct features comparing to other classes.

Number of subtask splittings We conducted an analysis to explore the impact of the number of
splits on the accuracy and OOD detection performance of the Split-Ensemble model. Unlike tradi-

14

Under review as a conference paper at ICLR 2024

Algorithm 1 Training the Split-Ensemble model
1: # Initialization and preparation
2: Load dataset {X,Y }
3: Subtask label conversion Y → Ŷi as Equation (3)
4: Initialize Split-Ensemble F with all submodels fi sharing backbone model
5: # Split ensemble training
6: while Training do
7: Update F to minimize Lens in Equation (4) with SGD
8: # Iterative splitting and pruning
9: if Epoch % Prune Interval == 0 then

10: # Splitting
11: if ∃ branch in F with multiple submodel fi sharing all layers then
12: for Layers in the branch shared only by fi do
13: Compute sensitivity map following Equation (5) for each fi
14: Compute MCT of the layer following Equation (6)
15: if MCT < threshold then
16: Split branch at the layer
17: Break
18: # Pruning
19: if FLOPs > target then
20: for All submodels fi do
21: Compute Ii

S for all S following Equation (7)
22: Rank Ii

S to decide prunable structures with minS IL
S

23: Remove structures prunable for (all) corresponding submodels

Table 5: Ablation on subtask grouping strategy. Models are trained on CIFAR-100. OOD detec-
tion is against the CIFAR-10 dataset.

splits Subtask grouping Accuracy AUROC

2 Random 77.3 78.9
Semantic 77.8 79.6

4 Random 77.3 77.5
Semantic 77.5 79.1

5 Random 77.4 77.3
Semantic 77.9 78.9

tional ensemble that repeatedly learn the same task with more submodels, Split-Ensemble always
learns a complementary subtask splitting corresponding to the original task. Increasing the amount
of splits will therefore enable each submodel to learn a simpler subtasks with less ID classes, in-
tuitively leading to a model architecture with more yet smaller branches. As shown in Table 6,
the Split-Ensemble accuracy is not sensitive to the number of splits, showing the scalability of our
learning algorithm. For OOD detection, a larger number of splits enables each submodel to learn
its OOD-aware objective more easily, therefore leading to better AUROC. Yet the performance may
suffer from aggressive pruning with too much branches in the Split-Ensemble, as observed with a
large MCT threshold in Table 4. An interesting future direction would be automatically design the
amount of subtask splitting and the grouping of each subtask during the training process to better fit
the subtasks to the Split-Ensemble architecture.

Table 6: Ablation on number of splits. Models are trained on CIFAR-100. OOD detection is
against the CIFAR-10 dataset. All models are constrained with single-model computation cost.

splits 2 4 5 8 10

Accuracy 77.7 78.0 77.9 77.5 77.3
AUROC 78.1 78.2 79.9 80.4 77.3

15

Under review as a conference paper at ICLR 2024

Additional classification results on ImageNet We perform classification on the large-scale Ima-
geNet1K dataset to examine our method. As shown in Table. 7, our method continues to outperform
the single and 4× more costly ensemble methods, demonstrating the effectiveness of our design.

Table 7: Classification performance on ImageNet1K dataset. The results are reported for models
with ResNet-18 backbone. Best score in bold.

Method Acc

Single 69.0
Naive Ensemble 69.4

Split-Ensemble (ours) 70.9

Additional classification and OOD detection results on CIFAR10-LT with SC-OOD bench-
mark We assess our method on CIFAR10-LT, a complex long-tailed dataset, to evaluate its robust-
ness. As evidenced in Table 8, our approach consistently outperforms in all four metrics. Remark-
ably, this is achieved with only a quarter of the computational cost compared to baseline methods.
This underscores our model’s efficiency and effectiveness in managing intricate classification and
OOD detection tasks.

Table 8: Comparison between previous state-of-the-art ensemble-based methods and ours on
the SC-OOD CIFAR10-LT benchmarks. The results are reported for models with ResNet-18
backbone. Best score in bold, second best underlined.

Method Accuracy ↑ FPR95 ↓ AUROC ↑ AUPR ↑
Naive Ensemble 12.7 98.4 45.3 50.9
MC-Dropout 63.4 90.6 66.6 66.1
MIMO 35.7 96.3 55.1 56.9
MaskEnsemble 67.7 89.0 66.82 67.4
BatchEnsemble 70.1 87.45 68.0 68.7
FilmEnsemble 72.5 84.32 75.5 76.0

Split-Ensemble (ours) 73.7 80.5 81.7 77.6

Additional OOD detection results on CIFAR10 with SC-OOD benchmark We further com-
pare our methods with previous state-of-the-art methods. In Table. 9, our Split-Ensemble model
outperforms single-model approaches in OOD detection without incurring additional computational
costs or requiring extra training data. Its consistent high performance across key metrics highlights
its robustness and efficiency, underscoring its practical utility in OOD tasks. In Table. 10, our Split-
Ensemble model consistently outshines other ensemble-based methods in both image classification
and OOD detection, achieving top rankings across all key metrics, which underscores the model’s
efficiency and effectiveness.

Table 9: Comparison between previous state-of-the-art single-model-based methods and ours
on the SC-OOD CIFAR10 benchmarks. The results are reported for models with ResNet-18
backbone. Best score in bold, second best underlined.

Method Additional Data FPR95 ↓ AUROC ↑ AUPR ↑
ODIN é 52.0 82.0 85.1
EBO é 50.0 83.8 85.1
OE Ë 50.5 88.9 87.8
MCD Ë 73.0 83.9 80.5
UDG é 55.6 90.7 88.3
UDG Ë 36.2 93.8 92.6
Split-Ensemble (ours) é 45.5 91.1 89.9

16

Under review as a conference paper at ICLR 2024

Table 10: Comparison between previous state-of-the-art ensemble-based methods and ours
on the SC-OOD CIFAR10 benchmarks. The results are reported for models with ResNet-18
backbone. Best score in bold, second best underlined.

Method Additional Data FPR95 ↓ AUROC ↑ AUPR ↑
Naive Ensemble 4x 42.3 90.4 90.6
MC-Dropout 4x 54.9 88.7 88.0
MIMO 4x 73.7 83.5 80.9
MaskEnsemble 4x 53.2 87.7 87.9
BatchEnsemble 4x 50.4 89.2 88.6
FilmEnsemble 4x 42.6 91.5 91.3

Split-Ensemble (ours) 1x 45.5 91.1 89.9

Model activation map visualization We visualize the learned feature map activations of a Split-
Ensemble model across different layers using Score-CAM (Wang et al., 2020) in Figure 4. The
shared feature maps, delineated by dashed lines, represent the common features extracted across dif-
ferent submodels, emphasizing the model’s capacity to identify and leverage shared representations.
The distinct feature maps outside the dashed boundaries correspond to specialized features pertinent
to individual sub-tasks, demonstrating the Split-Ensemble model’s ability to focus on unique aspects
of the data when necessary. This visualization underscores the effectiveness of the Split-Ensemble
architecture, highlighting its dual strength in capturing both shared and task-specific features within
a single, cohesive framework, thereby bolstering its robustness and adaptability in handling diverse
image classification and OOD detection tasks.

Layer1[0].conv1

Sub 1

Layer2[0].conv2

Layer2[1].conv1

Layer2[1].conv2

Layer3[0].conv2

Layer3[1].conv1

Layer3[1].conv2

Layer4[0].conv1

target: Sub 2 Sub 3Sub 4 Sub 5Sub 6Sub 7 Sub 8

Input Image

Figure 4: Visualization of Split-Ensemble’s learned features using Score-CAM. The number of
splits is set to 8 and the model is trained on ImageNet1K with ResNet-18 as backbone. The feature
maps within the dashed lines across the layers indicate shared representations. The input image’s
class is ’Angora’, targeted by submodel 2.

Model architecture visualization We visualize the Split-Ensemble models achieved under differ-
ent MCT thresholds in Figure 5, as discussed in Table 4 of Section 5.3. Models here use 5 splits

17

Under review as a conference paper at ICLR 2024

and are trained on CIFAR-100 dataset with ResNet-18 as backbone. With a larger MCT threshold,
the model will split into more branches at earlier layers. Meanwhile the model will also be pruned
more aggressively to keep the overall computation cost unchanged. We can clearly see that with
a proper MCT threshold, our method can learn a tree-like Split-Ensemble architecture with differ-
ent submodels branching out at different layers, as designed by our iterative splitting and pruning
algorithm in Section 4.

Subtask 1,3,5

Subtask 2

Subtask 4

63 60 64 64 64 64 128 128 127 128 256 256 256 512

512 452

512 452 512

FC

FC

FC

512

512

MCT Threshold=0.1

Subtask 1,3,5

Subtask 2

Subtask 4

61 64 64 64 64 64 128 128 128 128 256 256 256

512 512 440

512 440 512

FC

FC

FC

512

512

MCT Threshold=0.2

512

Subtask 3

Subtask 5

52 63 55 64 128

127

128

FC

113127

FC

113

128

128

254 233 165 83 186

Subtask 2

Subtask 4

Subtask 1

128 254 233 165 83 186

FC128 254 233 165 83 186

FC128 254 233 165 83 186

FC128 254 233 165 83 186

MCT Threshold=0.4

{11: ['layer3.0.conv2', [0, 1, 2, 4], [3]], 12: ['layer3.1.conv1', [0, 1, 4], [2], [3]], 13:
['layer3.1.conv2', [0, 4], [1], [2], [3]], 14: ['layer4.0.conv1', [0], [4], [1], [2], [3]]}

41

{5: ['layer1.1.conv2', [0, 1, 2, 3], [4]], 7: ['layer2.0.conv2', [0, 1, 2], [3], [4]], 8:
['layer2.1.conv1', [0, 2], [1], [3], [4]], 9: ['layer2.1.conv2', [0], [2], [1], [3], [4]]}

Subtask 3

Subtask 5

64 64 64

128

128

127
128 FC

127

FC

128

128

128 128 165 83 186 186 186

Subtask 2

Subtask 4

Subtask 1

128 165 83 186 186 186

FC128 128 128 165 83 186 186 186

FC128 128 127 165 83 186 186

FC128 128 127 165 83 186 186 186

59

128

MCT Threshold=0.7

128

186

MCT Threshold=0 64 64 64 64 64 64 128 128 128 128 256 256 256 FC512 512 512 509 Subtask 1,2,3,4,5

Figure 5: Visualization of Split-Ensemble architectures under different MCT threshold. The
number of splits is set to 5. Number in each block denotes the number of filters in the layer.

18

