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Abstract

We consider the problem of learning models for risk-sensitive reinforcement learn-1

ing. We theoretically demonstrate that proper value equivalence, a method of2

learning models which can be used to plan optimally in the risk-neutral setting, is3

not sufficient to plan optimally in the risk-sensitive setting. We leverage distribu-4

tional reinforcement learning to introduce two new notions of model equivalence,5

one which is general and can be used to plan for any risk measure, but is intractable;6

and a practical variation which allows one to choose which risk measures they may7

plan optimally for. We demonstrate how our framework can be used to augment8

any model-free risk-sensitive algorithm, and provide both tabular and large-scale9

experiments to demonstrate its ability.10

1 Introduction11

Reinforcement learning is a general framework where agents learn to sequentially make decisions to12

optimize an objective, such as the expected value of future rewards (risk-neutral objective) or the13

conditional value at risk of future rewards (risk-sensitive objective). It is a popular belief that a truly14

general agent must have a world model to plan with and limit the number of environment interactions15

needed (Russell, 2010). One way this is achieved is through model-based reinforcement learning,16

where an agent learns a model of the environment as well as its policy which it uses to act.17

As opposed to learning models which are accurate in modelling every aspect of the environment18

(such as through maximum likelihood estimation), recent works have advocated for learning models19

with the decision problem in mind, known as decision-aware model learning (Farahmand et al.,20

2017; Farahmand, 2018; D’Oro et al., 2020; Abachi et al., 2020; Grimm et al., 2020, 2021). In21

particular, Farahmand et al. (2017) introduced value-aware model learning, which uses a model22

loss that weighs model errors based on the effect the errors have on potential value functions. This23

framework has since been iterated on and improved upon in later works such as Farahmand (2018);24

Abachi et al. (2020); Voelcker et al. (2021). Complementarily, Grimm et al. (2020) introduced the25

value equivalence principle, a method of partitioning the space of models based on the properties of26

the Bellman operators they induce. This framework has been extended in Grimm et al. (2021), where27

the authors introduce a related partitioning, called proper value equivalence, based on which models28

induce the same value functions. They substantiate this approach by demonstrating that any model in29

the same equivalence class as the true model is sufficient for optimal planning.30

While standard reinforcement learning maximizes the expected return achieved by an agent, this31

may not suffice for many real-life applications. When environments are highly stochastic or where32

safety is important, a trade-off between the expected return and its variability is often desired. This33

concept is well-established in finance, and is the basis of modern portfolio theory (Markowitz, 1952).34

Recently this approach has been used in reinforcement learning, and is referred to as risk-sensitive35

reinforcement learning. In this setting, agents learn to maximise a risk measure of the return which is36
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possibly different from expectation (in the case it is expectation, it is referred to as risk-neutral), and37

may penalize or reward risky behaviour (Howard & Matheson, 1972; Heger, 1994; Tamar et al., 2015,38

2012; Chow et al., 2015; Tamar et al., 2016). In particular, Grimm et al. (2021, 2022) has explored39

when optimal risk-neutral planning in an approximate model translates to optimal behaviour in the40

true environment. However, it is not clear when this holds for risk-sensitive planning.41

In this paper, we propose a framework that consolidates risk-sensitive reinforcement learning and42

decision-aware model learning. Specifically, we address the following question: if we can perform43

risk-sensitive planning in an approximate model, does it translate to risk-sensitive behaviour in the44

true environment? To this end, our work provides the following contributions:45

• We prove that proper value equivalence only suffices for optimal planning in the risk-neutral case,46

and the performance of risk-sensitive planning decreases with risk-sensitivity (Section 3).47

• We introduce the distribution equivalence principle, and show that this suffices for optimal48

planning with respect to any risk measure (Section 4).49

• We introduce an approximate version of distribution equivalence, which is applicable in practice,50

that allows one to choose which risk measures they may plan optimally for (Section 5).51

• We discuss how these methods may be learnt via losses, and how it can be combined with any52

existing model-free algorithm (Section 6).53

• We demonstrate our framework empirically in both tabular and large scale domains (Section 7).54

Notation55

We write P(Z) to represent the set of probability measures on a measurable set Z . For a probability56

measure ν ∈ P(Z), we write X ∼ ν to denote a random variable X with law ν, meaning for57

all measurable subsets A ⊆ Z , P(X ∈ A) = ν(A). For a probability measure ν ∈ P(Z)58

and a measurable function f : Z → Y , the pushforward measure f#ν ∈ P(Y) is defined by59

f#ν(Y ) = ν(f−1(Y )) for all measurable sets Y ⊆ Y . For arbitrary sets X and Y , we write Y X for60

the space of functions from X to Y .61

2 Background62

We consider a Markov decision process (MDP) represented as a tuple (X ,A,P,R, γ) where X63

is the state space, A is the action space, P : X × A → P(X ) is the transition kernel, R :64

X × A → P(R) is the reward kernel, and γ ∈ [0, 1) is the discount factor. We define a policy to65

be a map π : X → P(A), and write the set of all policies as Π. Given a policy π ∈ Π, we can66

sample trajectories (Xt, At, Rt)t≥0, where for all t ≥ 0, At ∼ π(· |Xt), Rt ∼ R(Xt, At), and67

Xt+1 ∼ P(Xt, At). For a trajectory from π beginning at X0 = x, we associate to it the return68

random variable Gπ(x) =
∑
t≥0 γ

tRt. The expected return across all trajectories starting from a69

state x is the value function V π(x) = Eπ[Gπ(x)]. The value function is the unique fixed point of the70

Bellman operator Tπ : RX → RX , defined by71

TπV (x) ≜ Eπ [R+ γV (X ′)] , (1)
where Eπ is written to indicate A ∼ π(· |x), R ∼ R(x,A), and X ′ ∼ P(x,A).72

2.1 Model-based reinforcement learning and the value equivalence principle73

Estimating (1) in the RL setting is not possible directly, as generally an agent does not have access to74

R nor P , but only samples from them. There are two common approaches to address this: model-free75

methods estimate the expectations through the use of stochastic approximation or related methods76

(Sutton, 1988), while model-based approaches learn an approximate model R̃, P̃ (Sutton, 1991).77

We will refer to a tuple m̃ = (R̃, P̃) as a model, and write M for the set of all models. In turn, each78

model m̃ induces an approximate MDP (X ,A, P̃, R̃, γ). For a policy π, we write Tπm̃ : RX → RX79

for the Bellman operator in this approximate MDP, and we write V πm̃ for the unique fixed point of this80

operator. We write m∗ = (R,P) for the true model, and keep Tπ = Tπm∗ . Throughout the paper, we81

will write M ⊆ M to represent a set of models which we are considering.82
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Traditional methods of model-based reinforcement learning learn a model m̃ using task-agnostic83

methods such as maximum likelihood estimation (Sutton, 1991; Parr et al., 2008; Oh et al., 2015).84

More recent approaches have focused on learning models which are accurate in aspects which are85

necessary for decision making (Farahmand et al., 2017; Farahmand, 2018; Schrittwieser et al., 2020;86

Grimm et al., 2020, 2021). Of importance to us is Grimm et al. (2021), which introduced proper87

value equivalence, and defined the set M∞(Π) ≜ {m̃ ∈ M : V π = V πm̃, ∀π ∈ Π}. They proved88

that any model m̃ ∈ M∞(Π) suffices for optimal planning, that is, a policy which is optimal in m̃ is89

also optimal in the true environment.90

2.2 Distributional reinforcement learning91

Distributional reinforcement learning (Morimura et al., 2010; Bellemare et al., 2017, 2023) studies92

the return Gπ as a random variable, rather than focusing only on its expectation. For x ∈ X , we93

define the return distribution ηπ(x) as the law of the random variable Gπ(x). The return distribution94

is the unique fixed point of the distributional Bellman operator T π : P(R)X → P(R)X given by95

T πη(x) ≜ Eπ [(bR,γ)#η(X ′)] ,

where bR,γ : x 7→ R + γ x and Eπ is as in (1). As was the case in Section 2.1, any approximate96

model m̃ induces a distributional Bellman operator T π
m̃ , and we write ηπm̃ for the unique fixed point97

of this operator.98

2.3 Risk-sensitive reinforcement learning99

We define a risk measure to be a function ρ : Pρ(R) → [−∞,∞), where Pρ(R) ⊆ P(R) is its100

domain1. A classic example is ρ = E, which we refer to as the risk-neutral case. When ρ depends101

on more than only the mean of a distribution, we refer to ρ as being risk-sensitive. The area of102

risk-sensitive reinforcement learning is concerned with maximizing various risk measures of the103

random return, rather than the expectation as done classically. We now present two examples of104

commonly used risk measures.105

Example 2.1. For λ > 0, the mean-variance risk criterion is given by ρλMV(µ) = EZ∼µ[Z] −106

λVarZ∼µ(Z) (Markowitz, 1952; Tamar et al., 2012). This forms the basis of modern portfolio theory107

(Elton & Gruber, 1997).108

Example 2.2. The conditional value at risk at level τ ∈ [0, 1] is defined as109

CVaRτ (µ) ≜
1

τ

∫ τ

0

F−1
µ (u) du,

where F−1
µ (u) = inf{z ∈ R : µ(−∞, z] ≥ u} is the quantile function of µ. If F−1

µ is a strictly110

increasing function, we equivalently have111

CVaRτ (µ) = E
Z∼µ

[
Z
∣∣Z ≤ F−1

µ (τ)
]
,

so that CVaRτ (µ) can be understood as the expectation of the lowest (100 · τ)% of samples from µ.112

We say that a policy π∗
ρ is optimal with respect to ρ if113

ρ (ηπ
∗
ρ (x)) = max

π∈Π
ρ (ηπ(x)), ∀x ∈ X .

Since we define the space of policies as Π = P(A)X , we implicitly only considering the class of114

stationary Markov policies (Puterman, 2014). For a general risk measure, an optimal policy in this115

class may not exist (Bellemare et al., 2023). We discuss more general policies in Appendix D.116

3 Limitations of value equivalence for risk-sensitive planning117

Grimm et al. (2021) proved that any proper value equivalent model is sufficient for optimal risk-118

neutral planning. In this section, we investigate whether this holds for risk-sensitive planning as well,119

or is limited to the risk-neutral setting.120

1We use the definition of risk measure used in Bellemare et al. (2023). In earlier financial mathematics
literature such as Artzner et al. (1999), risk measures were defined as functions of random variables, rather
than probability measures. By defining the domain to be a subset of probability measures, we are implicitly
considering law-invariant risk measures (Kusuoka, 2001).
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Figure 1: An MDP with a single state and two actions (left), and a proper value equivalent model m̃
for it (right).

As an illustrative example, let us consider the MDP and approximate model m̃ in Figure 1. It is121

straightforward to verify that m̃ is a proper value equivalent model for the true MDP, as the value122

for any policy is 0 in both m̃ and the true environment. However, for a risk-sensitive agent m̃ is not123

sufficient: the variability of return when choosing action b in m∗ is much higher than the variability124

of return when choosing action b in m̃. Formally, let us fix γ = 1
2 , and let πb be the policy which125

chooses action b with probability 1. Then ηπ
b

(x) = U([−2, 2]) (Bellemare et al., 2023, Example126

2.10), while ηπ
b

m̃ (x) = δ0 (where δx refers to the Dirac distribution concentrated at x). This difference127

prevents m̃ from planning optimally for risk-sensitive risk measures. For example, the optimal policy128

with respect to ρλMV in m∗ is to choose a with probability 1, while in m̃ any policy is optimal. It is129

straightforward to validate that similar phenomena happen for CVaRτ when τ < 1.130

As demonstrated in the example above, proper value equivalence is not sufficient for planning with131

respect to the risk measures introduced in Section 2.3. We now formalize this, and demonstrate132

that the only risk measures which proper value equivalence can plan for exactly are those which are133

functions of expectation.134

Proposition 3.1. Let ρ be a risk measure such that for any MDP and any set M of models, a policy135

optimal for ρ for any m̃ ∈ M∞(Π) is optimal in the true MDP. Then ρ must be risk-neutral, in the136

sense that there exists an increasing function g : R → R such that ρ(ν) = g(EZ∼ν [Z]).137

The previous proposition demonstrates that in general, the only risk measures we can plan for in a138

proper value equivalent model are those which are transformations of the value function. However, it139

does not address the question of how well proper value equivalent models can be used to plan with140

respect to other risk measures.141

To investigate this question, we turn our attention to a class of risk measures known as spectral risk142

measures (Acerbi, 2002). Let φ : [0, 1] → R be a non-negative, non-increasing, right-continuous,143

integrable function such that
∫ 1

0
φ(u) du = 1. Then the spectral risk measure corresponding to φ is144

defined as145

ρφ(ν) ≜
∫ 1

0

F−1
ν (u)φ(u)du,

where F−1
ν is as in Example 2.2. Spectral risk measures encompass many common risk measures, for146

example choosing φ = 1[0,1] corresponds to expectation, while φ = 1
τ 1[0,τ ] corresponds to CVaRτ .147

We say that a spectral risk measure ρ is ε-strictly risk-sensitive if it corresponds to a function φ such148

that φ(x) = 0 for x ∈ [1 − ε, 1]. This requires that there must be no weight applied to the top ε149

quantiles, hence, a larger ε ensures a certain degree of risk-sensitivity.150

With this definition, we now demonstrate that when using proper value equivalent models to plan for151

strictly risk-sensitive spectral risk measures, there exists a tradeoff between the level of risk-sensitivity152

and the performance achieved.153

Proposition 3.2. Let ρ be an ε-strictly risk-sensitive spectral risk measure, and suppose that rewards154

are almost surely bounded by Rmax. Then there exists an MDP with a proper value equivalent model155

m̃ with the following property: letting π∗
ρ be an optimal policy for ρ in the original MDP, and π̃∗

ρ an156

optimal policy for ρ in m̃, we have157

inf
x∈X

{
ρ
(
ηπ

∗
ρ (x)

)
− ρ

(
ηπ̃

∗
ρ (x)

)}
≥ Rmax

1− γ
ε.

The fact that we take an infimum over X is important to note: there exists an MDP such that for any158

state x, the performance gap due to planning in the proper value equivalent model is at least Rmax
1−γ ε.159

This weakness motivates us to introduce a new notion of model equivalence.160
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4 The distribution equivalence principle161

We now introduce a novel notion of equivalence on the space of models, which can be used for162

risk-sensitive learning. Intuitively, proper value equivalence ensures matching of the means of the163

approximate and true return distributions, which is why it can only produce optimal policies for164

risk measures which depend on the mean. In order to plan for any risk measure, we leverage the165

distributional perspective of RL, to partition models based on their entire return distribution.166

Definition 4.1. Let Π ⊆ Π be a set of policies and D ⊆ P(R)X be a set of distribution functions.167

We say that the space of distribution equivalent models with respect to Π and D is168

Mdist(Π,D) ≜ {m̃ ∈ M : T πη = T π
m̃η, ∀π ∈ Π, η ∈ D} .

We can extend this concept to equivalence over multiple applications of the Bellman operator.169

Following this, for k ∈ N we define the order k distribution-equivalence class as170

Mk
dist(Π,D) ≜

{
m̃ ∈ M : (T π)kη = (T π

m̃)kη, ∀π ∈ Π,∀η ∈ D
}
.

Taking the limit as k → ∞, we retrieve the set of proper distribution equivalent models.171

Definition 4.2. Let Π ⊆ Π be a set of policies. We define the set of proper distribution equivalent172

models with respect to Π as173

M∞
dist(Π) ≜ {m̃ ∈ M : ηπm̃ = ηπ, ∀π ∈ Π} .

As discussed in Section 3, models in M∞(Π) are sufficient for optimal planning with respect174

to expectation, but generally not with respect to other risk measures. We now show that proper175

distribution equivalence removes this problem: choosing a model in M∞
dist(Π) is sufficient for optimal176

planning with respect to any risk measure.177

Theorem 4.3. Let ρ be any risk measure. Then an optimal policy with respect to ρ in m̃ ∈ M∞
dist(Π)178

is optimal with respect to ρ in m∗.179

At this point, it appears that distribution equivalence addresses nearly all of the limitations of value180

equivalence discussed in Section 3. However, the nature of distributions brings inherent challenges,181

in particular they are infinite dimensional. As a result of this, for computational purposes one must182

use a parametric family of distributions F ⊆ P(R) (Rowland et al., 2018; Dabney et al., 2018) to183

represent return distributions. However, an additional challenge is that the distributional Bellman184

operator may bring return distributions out of the parametric representation space: for a general185

η ∈ FX , T πη ̸∈ FX . Hence, we also require a projection operator2 ΠF : P(R)X → FX , and in186

practice we must use ΠFT πη. This also implies that it may not be feasible to learn a model m̃ in187

Mk
dist(Π,D) or M∞

dist(Π): they rely on matching T πη or ηπ, while one would only have access to188

ΠFT πη and ΠFη
π . We address this issue next, through the perspective of statistical functionals.189

5 Statistical functional equivalence190

Following the intractability of learning a distribution equivalent model in practice, we now study191

model equivalence through the lens of statistical functionals, a framework introduced by Rowland192

et al. (2019) to describe a variety of distributional reinforcement learning algorithms. We begin with193

a review of statistical functionals (Section 5.1), and then introduce statistical functional equivalence,194

demonstrate its equivalence to projected distribution equivalence, and study which risk measures it195

can plan optimally for (Section 5.2).196

5.1 Background on statistical functionals197

Definition 5.1. A statistical functional is a function ψ : Pψ(R) → R, where Pψ(R) ⊆ P(R) is its198

domain. A sketch is a collection of statistical functionals, written as a mapping ψ : Pψ(R) → Rm,199

where ψ = (ψ1, . . . , ψm), and Pψ(R) =
⋂m
i=1 Pψi(R).200

2Further details on the necessity of the projection operator and a discussion of various projections can be
found in Chapter 5 of Bellemare et al. (2023).
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Example 5.2. Suppose i > 0, and let Pi(R) be the set of probability measures with finite ith201

moment. Moreover, let µi(ν) be the ith moment of a measure ν ∈ Pi(R). Then for m > 0, the m202

moment sketch ψmµ : Pm(R) → Rm is defined by ψmµ (ν) = (µ1(ν), . . . , µm(ν)).203

For a given sketch ψ, we define its image as Iψ = {ψ(ν) : ν ∈ Pψ(R)} ⊆ Rm. An imputation204

strategy for a sketch ψ is a map ι : Iψ → Pψ(R), and can be thought of as an approximate inverse205

(a true inverse may not exist as ψ is generally not injective). We say ι is exact for ψ if for any206

(s1, . . . , sm) ∈ Iψ we have (s1, . . . , sm) = ψ(ι(s1, . . . , sm)). In general, an exact imputation207

strategy always exists, however it may not be efficiently computable (Bellemare et al., 2023).208

Example 5.3. Suppose ψ is a sketch given by ψ(ν) = (EZ∼ν [Z],VarZ∼µ[Z]), and ι is given by209

ι(µ, σ2) = N (µ, σ2) (that is, the normal distribution with mean µ and variance σ2). One may verify210

that ι is exact, since for any (µ, σ2) ∈ R2 = Iψ , we have ψ(ι(µ, σ2)) = (µ, σ2).211

We now extend the notion of statistical functionals to return-distribution functions. For η ∈ Pψ(R)X212

we write ψ(η) = (ψ(η(x)) : x ∈ X ). We say that a set Ω ⊆ P(R) is closed under T π if whenever213

η ∈ ΩX , we have T πη ∈ ΩX . A sketch ψ is Bellman-closed (Rowland et al., 2019; Bellemare et al.,214

2023) if whenever its domain is closed under T π, there exists an operator T π
ψ : IXψ → IXψ such that215

for any η ∈ Pψ(R)X ,216

ψ(T πη) = T π
ψ ψ(η).

We refer to T π
ψ as the Bellman operator for ψ. Similarly to Section 2.1, we denote T π

ψ,m̃ as the217

Bellman operator for ψ in an approximate model m̃.218

We will write sπψ = ψ(ηπ) as a shorthand, and refer to it as the return statistic for a policy π. If T π
ψ219

exists, then sπψ is its fixed point: sπψ = T π
ψ s

π
ψ . For an approximate model m̃, we write sπψ,m̃ = ψ(ηπm̃).220

We further have sπψ,m̃ = T π
ψ,m̃ s

π
ψ,m̃, that is, it is a fixed point of the Bellman operator T π

ψ,m̃.221

The task of policy evaluation for a statistical functional ψ is that of computing the value sπψ . Statistical222

functional dynamic programming (Bellemare et al., 2023) aims to do this by computing the iterates223

sk+1 = ψ(T πι(sk)), with s0 ∈ IXψ initialized arbitrarily. If ι is exact and ψ is Bellman-closed, then224

the updates satisfy sk = ψ(ηk), where η0 = ι(s0) and ηk+1 = T πηk. If ψ is a continuous sketch3,225

then the iterates (sk)k≥0 converge to sπψ .226

5.2 Statistical functional equivalence227

We now introduce a notion of model equivalence through the lens of statistical functionals. Intuitively,228

this allows us to interpolate between value equivalence and distribution equivalence, as we can choose229

exactly which aspects of the return distributions we would like to capture.230

Definition 5.4. Let ψ be a sketch, and ι be an imputation strategy for ψ. Let I ⊆ IXψ and Π ⊆ Π.231

We define the class of ψ equivalent models with respect to Π and I as232

Mψ(Π, I) ≜
{
m̃ ∈ M : ψ (T πι(s)) = ψ (T π

m̃ι(s)) ,∀π ∈ Π,∀s ∈ I
}
.

In the case that ψ is Bellman-closed and ι is exact, this set can be described in a form similar to that233

of value equivalence and distribution equivalence.234

Proposition 5.5. If ψ is Bellman-closed and ι is exact, we have that235

Mψ(Π, I) =
{
m̃ ∈ M : T π

ψ s = T π
ψ,m̃s, ∀π ∈ Π,∀s ∈ I

}
.

We can extend the above to k applications of the projected Bellman operator, and define the set of236

order-k ψ equivalent models as237

Mk
ψ(Π, I) ≜

{
m̃ ∈ M : (ψT πι)

k
s = (ψT π

m̃ι)
k
s,∀π ∈ Π,∀s ∈ I

}
,

where ψT πι : IXψ → IXψ is shorthand for s 7→ ψ(T πι(s)). As in Proposition 5.5, if ψ is Bellman-238

closed and ι is exact, it holds that239

Mk
ψ(Π, I) =

{
m̃ ∈ M : (T π

ψ )ks = (T π
ψ,m̃)ks, ∀π ∈ Π,∀s ∈ I

}
.

3We define this notion in Appendix A.2.
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Following Section 4, we can consider the set of models which agree on return statistics, and have no240

dependence on the set I. However, one difference in the case of statistical functionals is that it is241

not true in general that this is equal to the limit of Mk
ψ(Π, I). Intuitively, this is for the same reason242

that the iterates (sk)k≥0 of statistical functional dynamic programming do not always converge to sπψ243

(Section 5.1). We first introduce the definition of proper statistical functional equivalence, and then244

demonstrate when it is the limiting set in Proposition 5.7.245

Definition 5.6. Let Π ⊆ Π be a set of policies, and ψ be a sketch. We define the class of proper246

statistical functional equivalent models with respect to ψ and Π as247

M∞
ψ (Π) ≜

{
m̃ ∈ M : sπψ,m̃ = sπψ, ∀π ∈ Π

}
.

Proposition 5.7. If ψ is both continuous and Bellman-closed and ι is exact, then4248

lim
k→∞

Mk
ψ(Π, I) = M∞

ψ (Π), for any I ⊆ IXψ .

Remark 5.8. Value equivalence (Grimm et al., 2020, 2021) can be seen as a special case of statistical249

functional equivalence, in the sense that if we choose ψ = E, then we have Mk
ψ(Π) = Mk(Π), for250

any Π ⊆ Π and k ∈ [1,∞].251

Connection to projected distribution equivalence252

In Section 4, we remarked that distribution equivalence was difficult to achieve in practice, due to the253

fact that the space P(R)X was infinite dimensional, and we generally rely on a parametric family254

F . We now demonstrate that the statistical functional perspective provides us a way to address this.255

Let ψ be a sketch and ι an imputation strategy. These induce the implied representation (Bellemare256

et al., 2023) given by Fψ = {ι(s) : s ∈ Iψ}, and the projection operator ΠFψ
: Pψ(R) → Fψ257

given by ΠFψ
= ι ◦ ψ. We now show that through this construction, we can relate statistical258

functional model learning to projected distributional model learning with the projection ΠFψ
.259

Proposition 5.9. Suppose ι is injective, Π ⊆ Π, I ⊆ IXψ , and let DI = {ι(s) : s ∈ I} ⊆ Pψ(R)X .260

Then261

Mψ(Π, I) =
{
m̃ ∈ M : ΠFψ

T πη = ΠFψ
T π
m̃η,∀π ∈ Π,∀η ∈ DI

}
,

and262

M∞
ψ (Π) =

{
m̃ ∈ M : ΠFψ

ηπ = ΠFψ
ηπm̃, ∀π ∈ Π

}
.

Risk-sensitive learning263

We now study which risk measures we can plan optimally for using a model in M∞
ψ (Π). Intuitively,264

we will not be able to plan optimally for all risk measures (as was the case in Theorem 4.3), since265

this set only requires models to match the aspects of the return distribution captured by ψ. Indeed,266

we now show that the choice of ψ exactly determines which risk measures can be planned for.267

Proposition 5.10. Let ρ be a risk measure and let ψ = (ψ1, . . . , ψm) be a sketch, and suppose that ρ268

is in the span of ψ, in the sense that there exists α0, . . . αm ∈ R such that for all ν ∈ Pψ(R)∩Pρ(R),269

ρ(ν) =
∑m
i=1 αiψi(ν) + α0. Then any optimal policy with respect to ρ in m̃ ∈ M∞

ψ (Π) is optimal270

with respect to ρ in m∗.271

6 Learning statistical functional equivalent models272

We now analyze how we may learn models in these classes in practice. As we have introduced a273

number of concepts and spaces of models, we only discuss here the spaces of models that are used in274

the empirical evaluation which follow, and we discuss the remainder of the spaces in Appendix B.275

We focus on the case of learning a proper ψ-equivalent model. We know that such a model must276

satisfy sπψ = (ψT π
m̃ι)

ksπψ for any policy π, so that we can construct a loss by measuring the amount277

4This is a set theoretic limit, and we review its definition in Definition C.1. Further details can be found in
many texts on analysis or probability, for example Resnick (1999).
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that this equality is violated by. However, the size of Π is exponential in |X |, so we can approximate278

this by only measuring the amount of violation over a subset of policies Π ⊆ Π. We can now279

formalize this concept as a loss.280

Definition 6.1. Let ψ be a sketch, ι an imputation strategy. We define the loss for learning a proper281

ψ equivalent model as282

Lkψ,Π,∞(m̃) ≜
∑
π∈Π

∥∥∥sπψ − (ψT π
m̃ι)

k
sπψ

∥∥∥2
2
.

If ψ is Bellman-closed this can be written without the need for ι, by replacing ψT π
m̃ι with T π

ψ,m̃.283

This loss is amenable to tabular environments, as it requires knowledge of sπψ, which can be learnt284

approximately using statistical functional dynamic programming. Despite this, the above approach285

can be further adapted to the deep RL setting, which we now discuss, and describe how our approach286

can be combined with existing model-free risk-sensitive algorithms.287

We will assume the existence of a model-free risk-sensitive algorithm which satisfies the following288

properties: (i) it learns a policy π using a replay buffer D, and (ii) it learns an approximate statistical289

functional function sπψ,ω (for example, any algorithm based upon C51 (Bellemare et al., 2017) or290

QR-DQN (Dabney et al., 2018) satisfies these assumptions), where we write ω to refer to the set291

of parameters it depends on, and to emphasize its difference with the true return statistic sπψ. We292

will introduce a loss which learns an approximate model m̃, which can then be combined with the293

replay buffer D to use both experienced transitions and modelled transitions to learn π, as was done294

in e.g. Sutton (1991) or Janner et al. (2019). Following this, for a learnt model m̃ we introduce the295

approximate loss296

LD,ψ,ω(m̃) = E
(x,a,r,x′)∼D
x̃′∼m̃(·|x,a)

[
(sπψ,ω(x

′)− sπψ,ω(x̃
′))2

]
.

7 Empirical evaluation297

We now empirically study our framework, and examine the phenomenon discussed in the previous298

sections. We focus on two sets of experiments: the first is in tabular settings where we use dynamic299

programming methods to perform an analysis without the noise of gradient-based learning. The300

second builds upon Lim & Malik (2022), where we augment their model-free algorithm with our301

framework, and evaluate it on an option trading environment. We discuss training and environments302

details in Appendix E. We provide the code used to run our experiments at [Github redacted].303

7.1 Experimental details304

Tabular experiments305

For each environment, we learn a proper value equivalent model using the method introduced in306

Grimm et al. (2021), and learn a ψ2
µ equivalent model using Lkψ2

µ,Π,∞
, where ψmµ is the first m307

moment functional (cf. Example 5.2), and Π is a set of 1000 randomly sampled policies. For each308

model, we performed CVaR value iteration (Bellemare et al., 2023), and further performed CVaR309

value iteration in the true model, to produce three policies. We repeat the learning of the models310

across 20 independent seeds, and report the performance of the policies in Figure 2.311

Option trading312

Lim & Malik (2022) introduced a modification of QR-DQN which attempts to learn CVaR optimal313

policies, that they evaluate on an option trading environment (Chow & Ghavamzadeh, 2014; Tamar314

et al., 2017). We augment their method using the method described in Section 6, and we learn optimal315

policies for 10 CVaR levels between 0 and 1. We compare our adapted method to their original316

method as well as their original method adapted with a PVE model (Grimm et al., 2021), and discuss317

implementation details in Appendix E. In particular, we evaluate the models in a low-sample regime,318

so the sample efficiency gains of using a model are apparent.319
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Figure 2: Left: CVaR(0.5) of returns obtained across the three tabular environments. We computed
the values across 1000 trajectories from each of the 20 learnt models. Error bars indicate 95%
confidence intervals. The orange bar for Frozen Lake appears missing because the value obtained is
0. Right: CVaR of returns for the policies learnt for various CVaR levels after 10,000 environment
interactions. Shaded regions indicate 95% confidence intervals across 10 independent seeds.

7.2 Discussion320

In Figure 2 (Left), we can see that across all three tabular environments, planning in a proper statistical321

functional equivalent model achieves stronger results over planning in a proper value equivalent322

model. This provides an empirical demonstration of Proposition 3.2 and Proposition 5.10: proper323

value equivalence is limited in its ability to plan risk-sensitively, while risk-sensitive planning in a324

statistical functional equivalent model approximates risk-sensitive planning in the true environment.325

In Figure 2 (Right), we can see that Lim & Malik (2022)’s algorithm augmented with a statistical326

functional equivalent model achieved significantly improved performance for all CVaR levels below327

τ ≈ 0.8. The fact that our augmentation improves upon the original method reflects the improved328

sample efficiency which comes from using an approximate model for planning. This difference is329

more apparent for lower values of τ , which reflects the phenomenon that learning more risk-sensitive330

policies are less sample efficient (Greenberg et al., 2022). On the other hand, the method augmented331

with the PVE model has the same sample efficiency gains from using an approximate model, so the332

fact that it is not performant for lower values of CVaR is a demonstration of Proposition 3.2: the333

more risk-sensitive the risk measure being planned for, the more the performance is affected.334

8 Conclusion335

In this work, we studied the intersection of model-based reinforcement learning and risk-sensitive336

reinforcement learning. We demonstrated that recent approaches to model learning produce poli-337

cies which can only plan optimally for the risk-neutral setting, and in risk-sensitive settings their338

performance degrades with the level of risk being planned for. We then introduced distributional339

model equivalence, and demonstrated that distribution equivalent models can be used to plan for any340

risk measure, however they are intractable to learn in practice. To account for this, we introduced341

statistical functional equivalence; an equivalence which is parameterized by the choice of a statistical342

functional. We proved that the choice of statistical functional exactly determines which risk measures343

can be planned for optimally, and provided a loss with which these models can be learnt. We further344

demonstrated how our method can be combined with any existing model-free risk-sensitive algorithm,345

and supported our theory and method with strong empirical results.346
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A Additional results436

A.1 Additional properties of statistical functional equivalence437

We begin by discussion some additional properties of statistical functional equivalence.438

Proposition A.1. If the reward from a state is almost surely bounded, the m-moment functional ψmµ439

is continuous on return distributions.440

Proof. Let Rmax be the maximum absolute reward from a state, equivalently let us suppose the441

support of R(·, ·) is a subset of [−Rmax, Rmax]. Then for any x ∈ X and any policy π we have that442

the support of ηπ(x) is a subset of [−Rmax/(1− γ), Rmax/(1− γ)].443

We now leverage a result of Billingsley (1986), which states that for any m > 0, if a sequence444

of measures (νn)n≥0 ⊆ Pm(R) is uniformly integrable, then µm(νn) converges to µm(ν) in445

R whenever (νn)n≥0 weakly converges to ν. Applying this in our setting, we first fix x ∈ X ,446

then by the previous paragraph we have that the support of each ηn(x) is a subset of the interval447

[−Rmax/(1− γ), Rmax/(1− γ)], which implies uniform integrability of (ηn(x))n≥0. Hence we have448

that µm(ηn(x)) → µm(η), which gives convergence of ψmµ .449

Example A.2. Let ψmµ be the sketch of the firstmmoments (Example 5.2). Then by Proposition 5.10,450

whenever m ≥ 2 we have that any proper ψmµ equivalent model is sufficient for optimal planning451

with respect to the mean-variance risk criterion ρλMV (Example 2.1).452

We now demonstrate that the m-moment sketch ψmµ introduced in Example 5.2 suffices for risk-453

sensitive learning with respect to a large collection of risk measures.454

Proposition A.3. Suppose ψ = (ψ1, . . . , ψm) is a Bellman-closed sketch and for each i = 1, . . . ,m,455

∃fi : R → R such that for each ν ∈ Pψ(R), ψi(ν) = EZ∼ν [fi(Z)]. Then any risk measure ρ which456

can be planned for exactly using a proper ψ equivalent model can be planned for exactly using a457

proper ψmµ equivalent model.458

A.2 On the continuity of statistical functionals459

In Section 5, we said that a sketch ψ was continuous if whenever a sequence (νn)n≥0 ⊆ Pψ(R)460

converges to ν ∈ Pψ(R), we have that ψ(νn) converges to ψ(ν). We now formalize this notion. We461

will use various quantities from topology, Munkres (2000) may be used a reference for further details.462

We will write Cb(R) for the set of bounded continuous functions from R to R. We recall that a463

sequence of measures (νn)n≥0 ⊆ P(R) converges weakly to ν ∈ P(R) if464 ∫
fdνn →

∫
fdν,

for all f ∈ Cb(R). We refer to the topology induced by this convergence as the weak topology on465

P(R) (to be precise, specifying convergence is sufficient to induce the entire topology since this466

topology is metrizable).467

With this definition, we endow P(R)X with the product topology generated by the weak topology468

on P(R). Then by definition of the product topology, a sequence (ηn)n≥0 ⊆ P(R)X converges to469

η ∈ P(R)X if and only if for each x ∈ X , (ηn(x))n≥0 converges weakly to η(x) (note this is weak470

convergence in P(R)).471

We can now define a sketch ψ : Pψ(R) → Rm to be (sequentially) continuous if whenever a472

sequence (ηn)n≥0 ⊆ Pψ(R)X converges to η ∈ Pψ(R)X with the topology we defined above, we473

have that ψ(ηn) converges to ψ(η) in the usual topology on Rm.474

To see that this continuity of ψ implies convergence of the iterates (sk)k≥0 to sπψ , we can recall that475

we had sk = ψ(ηk), where η0 = ι(s0) and ηk+1 = T πηk. The sequence (ηk)k≥0 converges to ηπ in476

the weak product topology on P(R)X (Bellemare et al., 2023), which then immediately gives that if477

ψ is continuous as above, ψ(ηk) → ψ(ηπ), and hence sk → sπψ .478
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B Learning statistical functional equivalent models479

To learn a model m̃ ∈ Mk(Π, I), we can define the loss of a model as the total deviation from the480

definition of Mk(Π, I). To this end, we define481

Lk,pψ,Π,I(m̃) ≜
∑
π∈Π

∑
s∈I

∥∥∥(ψT πι)
k
s− (ψT π

m̃ι)
k
s
∥∥∥p
p
,

where for s = (s1, . . . , sm) ∈ Rm, ∥s∥pp =
∑m
i=1 |si|p. If the Bellman operator for ψ exists and is482

readily available, we can alternatively define the loss working directly on statistics, without needing483

to impute into distribution space:484

Lk,pψ,Π,I(m̃) =
∑
π∈Π

∑
s∈I

∥∥(T π
ψ )ks− (T π

ψ,m̃)ks
∥∥p
p
.

To learn a proper value equivalent model, Grimm et al. (2021) leverages the fact that for any k ∈ N the485

proper value equivalent class can be deconstructed into an intersection of one proper value equivalent486

class per policy it matches over:487

M∞(Π) =
⋂
π∈Π

Mk ({π}, {V π}) ,

so that minimizing
∣∣V π − (Tπm̃)kV π

∣∣ across all π ∈ Π is sufficient to learn a model in M∞(Π). We488

now show that the same argument can be used to learn proper statistical functional equivalent models.489

Proposition B.1. If ψ is both continuous and Bellman-closed and ι is exact, for any k ∈ N and490

Π ⊆ Π, it holds that491

M∞
ψ (Π) =

⋂
π∈Π

Mk
ψ

(
{π},

{
sπψ

})
.

With this in mind, we can now propose a loss for learning proper statistical functional equivalent492

models.493

Definition B.2. Let ψ be a sketch and ι an imputation strategy. We define the loss for learning a494

proper ψ equivalent model as495

Lk,pψ,Π,∞(m̃) ≜
∑
π∈Π

∥∥∥sπψ − (ψT π
m̃ι)

k
sπψ

∥∥∥p
p
.

If ψ is Bellman-closed this loss can be written in terms of its Bellman operator, given by496

Lk,pψ,Π,∞(m̃) =
∑
π∈Π

∥∥sπψ − (T π
ψ,m̃)ksπψ

∥∥p
p
.

C Proofs497

C.1 Section 3 Proofs498

Proposition 3.1. Let ρ be a risk measure such that for any MDP and any set M of models, a policy499

optimal for ρ for any m̃ ∈ M∞(Π) is optimal in the true MDP. Then ρ must be risk-neutral, in the500

sense that there exists an increasing function g : R → R such that ρ(ν) = g(EZ∼ν [Z]).501

Proof. To begin, note that this condition implies that for probability measures ν1, ν2 with502

EZ1∼ν1 [Z1] = EZ2∼ν2 [Z2], it must hold that ρ(ν1) = ρ(ν2). To see why, suppose this weren’t503

the case. Then there exists a pair of probability measures ν1, ν2 ∈ P(R) such that EZ1∼ν1 [Z1] =504

EZ2∼ν2 [Z2], and ρ(ν1) < ρ(ν2). Then let us construct an MDP M∗ where X = {x}, A = {a, b},505

γ = 0, R(x, a) = ν1, R(x, b) = ν2 (P is defined implicitly since there is a single state). Moreover506

let us define a second MDP M̃ defined by X = {x}, A = {a, b}, γ = 0, R(x, a) = EZ1∼ν1 [Z1],507

R(x, a) = EZ2∼ν2 [Z2]. Then it is immediate to see that M∗ and M̃ are proper value equivalent,508

however the policy πa defined by πa(a |x) = 1 is optimal in M̃ , but not in M∗, contradicting the509

original statement.510

This in turn implies that ρ(ν) = f(EZ∼ν [Z]) for some function f . It remains to show that f must511

be increasing. To see this, suppose not: then there exists µ1, µ2 ∈ P(R) such that EZ1∼ν1 [Z1] >512
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EZ2∼ν2 [Z2] but ρ(ν1) < ρ(ν2). Then we can construct another pair of MDPs: M∗ is defined by513

setting X = {x}, A = {a, b}, γ = 0, R(x, a) = ν1, R(x, b) = ν2, and M̃ is defined by X = {x},514

A = {a, b}, γ = 0, R(x, a) = EZ1∼ν1 [Z1], R(x, a) = EZ2∼ν2 [Z2]. Then once again we can see515

that M∗ and M̃ are proper value equivalent, but the the policy πa defined by πa(a |x) = 1 is optimal516

in M̃ , but not in M∗, giving us our contradiction.517

Hence we must have that ρ(ν) = f(EZ∼ν [Z]) for some increasing function f , as desired.518

519

Proposition 3.2. Let ρ be an ε-strictly risk-sensitive spectral risk measure, and suppose that rewards520

are almost surely bounded by Rmax. Then there exists an MDP with a proper value equivalent model521

m̃ with the following property: letting π∗
ρ be an optimal policy for ρ in the original MDP, and π̃∗

ρ an522

optimal policy for ρ in m̃, we have523

inf
x∈X

{
ρ
(
ηπ

∗
ρ (x)

)
− ρ

(
ηπ̃

∗
ρ (x)

)}
≥ Rmax

1− γ
ε.

Proof. Let φ be the function which ρ corresponds to (so that ρ(µ) =
∫ 1

0
F−1
µ (u)φ(u) du). As ρ is524

strictly risk-sensitive, let ε > 0 be such that φ is almost surely 0 on [1− ε, 1]. Next, note that since φ525

is constrained to be positive, non-increasing, almost surely 0 on [1− ε, 1], and integrating to 1, we526

have that527 ∫ 1

0

F−1
µ (u)φ(u) du ≤ 1

1− ε

∫ 1

0

F−1
µ (u)1[0,1−ε] du

=
1

1− ε

∫ 1−ε

0

F−1
µ (u) du.

Figure 3: An MDP m∗ (left) and a proper value equivalent model m̃ (right).

Let us now consider the MDPs m∗ and m̃ as given in Figure 3. Following Example 2.10 in Bellemare528

et al. (2023), we have that ηπ
b

(x) = U([−2c, 2c]), so that F−1

ηπb (x)
(u) = 4cu− 2c. We can use this529

to calculate530

ρ(ηπ
b

(x)) =

∫ 1

0

F−1
µ (u)φ(u) du

≤ 1

1− ε

∫ 1−ε

0

F−1

ηπb (x)
(u) du

=
1

1− ε

∫ 1−ε

0

(4cu− 2c) du

= −2cε.

With this calculation done, we can remark that πa is optimal in m∗, as we have ρ(πa(x)) = 0.531

Moreover, πb is an optimal policy in m̃, as ρ(πam̃(x)) = ρ(πbm̃(x)) = 0.532

We can then see that533

ρ(πa(x))− ρ(πb(x)) ≥ 2cε,

which completes the proof.534

C.2 Section 4 Proofs535

Theorem 4.3. Let ρ be any risk measure. Then an optimal policy with respect to ρ in m̃ ∈ M∞
dist(Π)536

is optimal with respect to ρ in m∗.537
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Proof. Let π∗
ρ be an optimal policy for ρ in m∗, and let π̃∗

ρ be an optimal policy for ρ in m̃. For538

contradiction, suppose that π̃∗
ρ is not optimal in m∗. Then for all x ∈ X we have that539

ρ(ηπ̃
∗
ρ (x)) ≤ ρ(ηπ

∗
ρ (x)),

and for at least one x ∈ X we have540

ρ(ηπ̃
∗
ρ (x)) < ρ(ηπ

∗
ρ (x)).

Let us choose this x, and note that this implies541

ρ
(
ηπ̃

∗
ρ (x)

)
< ρ

(
ηπ

∗
ρ (x)

)
⇐⇒ ρ

(
η
π̃∗
ρ

m̃ (x)
)
< ρ

(
η
π∗
ρ

m̃ (x)
)
,

since by assumption of m̃ ∈ M∞
dist(Π) we have that ηπ = ηπm̃ for any π ∈ Π. But this contradicts the542

assumption that π̃∗
ρ was optimal for ρ in m̃, and we are complete.543

C.3 Section 5 Proofs544

Proposition 5.5. If ψ is Bellman-closed and ι is exact, we have that545

Mψ(Π, I) =
{
m̃ ∈ M : T π

ψ s = T π
ψ,m̃s, ∀π ∈ Π,∀s ∈ I

}
.

Proof. Recall that546

Mψ(Π, I) =
{
m̃ ∈ M : ψ (T πι(s)) = ψ (T π

m̃ι(s)) ∀π ∈ Π, s ∈ I
}
.

Note that ψ (T πι(s)) = T π
ψ ψ(ι(s)) since ψ is Bellman-closed, and since ι is exact we have that547

ψ(ι(s)) = s. Combining these we have that ψ (T πι(s)) = T π
ψ s, which then gives us equality of the548

sets as desired.549

Definition C.1. Let (Ak)∞k=1 be a sequence of sets. Then we have550

lim inf
k→∞

Ak =
⋃
k≥1

⋂
j≥k

Aj , and lim sup
k→∞

Ak =
⋂
k≥1

⋃
j≥k

Aj .

If both of these sets are equal, then we say that limk→∞Ak exists and is equal to that common set.551

Proposition 5.7. If ψ is both continuous and Bellman-closed and ι is exact, then552

lim
k→∞

Mk
ψ(Π, I) = M∞

ψ (Π), for any I ⊆ IXψ .

Proof. We can begin by recalling that for k > 0,553

Mk
ψ(Π, I) =

{
m̃ ∈ M : (ψT πι)

k
s = (ψT π

m̃ι)
k
s ∀π ∈ Π, s ∈ I

}
,

We can also note that if m̃ ∈ Mk
ψ(Π, I), then m̃ ∈ Mnk

ψ (Π, I) for n > 0, since if (ψT πι)
k
s =554

(ψT π
m̃ι)

k
s, then by setting both sides to the power n we have that (ψT πι)

nk
s = (ψT π

m̃ι)
nk
s. This555

implies that Mk
ψ(Π, I) ⊆ Mnk

ψ (Π, I). Since this is true for any n, we can set n→ ∞ to obtain556

Mk
ψ(Π, I) ⊆

{
m̃ ∈ M : lim

n→∞
(ψT πι)

nk
s = lim

n→∞
(ψT π

m̃ι)
nk
s ∀π ∈ Π, s ∈ I

}
.

Since ι is exact and ψ is Bellman-closed, we have that for any n ≥ 0, (ψT πι)
nk
s = ψ((T π)nkι(s))557

(Proposition 8.9 in Bellemare et al. (2023)). Since ψ is continuous, we have thatψ((T π)nkι(s)) → sπ558

as n→ ∞ (justification for this can be found in Appendix A.2). We can then use this to rewrite the559

above as560

Mk
ψ(Π, I) ⊆

{
m̃ ∈ M : sπψ = sπψ,m̃ ∀π ∈ Π, s ∈ I

}
= M∞(Π).

This immediately gives us that561 ⋃
j≥k

Mj
ψ(Π, I) ⊆ M∞(Π).
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Since this expression is independent of k, we can take the intersection over all k to see that562

lim sup
k→∞

Mk
dist(Π) =

⋂
k≥1

⋃
j≥k

Mj
ψ(Π, I) ⊆ M∞(Π).

Moreover it is immediate to see that563

M∞(Π) ⊆
⋂
k≥1

⋃
j≥k

Mj
ψ(Π, I),

which together gives us564

lim sup
k→∞

Mk
dist(Π) = M∞

dist(Π).

We now focus on the limit inferior. We take k > 0, and see that565 ⋂
j≥k

Mj
ψ(Π, I) =

{
m̃ ∈ M : (ψT πι)

j
s = (ψT π

m̃ι)
j
s ∀j ≥ k, π ∈ Π, s ∈ I

}
⊆

{
m̃ ∈ M : lim

j→∞
(ψT πι)

j
s = lim

j→∞
(ψT π

m̃ι)
j
s π ∈ Π, s ∈ I

}
.

As argued above for the limit superior, we have that limj→∞ ψ((T π)jι(s)) = sπψ . Using this fact in566

the original expression above, we have567 {
m̃ ∈ M : lim

j→∞
(ψT πι)

j
s = lim

j→∞
(ψT π

m̃ι)
j
s π ∈ Π, s ∈ I

}
=

{
m̃ ∈ M : sπψ,m̃ = sπψ π ∈ Π, s ∈ I

}
.

Conversely, it is immediate to see that568 {
m̃ ∈ M : sπψ,m̃ = sπψ π ∈ Π, s ∈ I

}
⊆

{
m̃ ∈ M : (ψT πι)

j
s = (ψT π

m̃ι)
j
s ∀j ≥ k, π ∈ Π, s ∈ I

}
,

so that we can combine with our work above and conclude that569 ⋂
j≥k

Mj
ψ(Π, I) ⊆

{
m̃ ∈ M : sπψ,m̃ = sπψ π ∈ Π, s ∈ I

}
= M∞

dist(Π).

Since this expression is independent of k, we can take the union over k to obtain570

lim inf
k→∞

Mk
ψ(Π, I) =

⋃
k≥1

⋂
j≥k

Mj
ψ(Π, I) ⊆ M∞

dist(Π).

Moreover it is immediate to see that571

M∞
dist(Π) ⊆

⋃
k≥1

⋂
j≥k

Mj
ψ(Π, I),

which together give572

lim inf
k→∞

Mk
ψ(Π, I) = M∞

dist(Π).

Since the limit inferior and limit superior are equal, we have the existence of the limit573

lim
k→∞

Mk
ψ(Π, I) = M∞

dist(Π).

574

Proposition 5.9. Suppose ι is injective, Π ⊆ Π, I ⊆ IXψ , and let DI = {ι(s) : s ∈ I} ⊆ Pψ(R)X .575

Then576

Mψ(Π, I) =
{
m̃ ∈ M : ΠFψ

T πη = ΠFψ
T π
m̃η,∀π ∈ Π,∀η ∈ DI

}
,

and577

M∞
ψ (Π) =

{
m̃ ∈ M : ΠFψ

ηπ = ΠFψ
ηπm̃, ∀π ∈ Π

}
.
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Proof. We can write out578

Mψ(Π, I) =
{
m̃ ∈ M : ψ (T πι(s)) = ψ (T π

m̃ι(s)) ∀π ∈ Π, s ∈ I
}

=

{
m̃ ∈ M : ψ (T πη) = ψ (T π

m̃η) ∀π ∈ Π, s ∈ D
}

=

{
m̃ ∈ M : ι(ψ (T πη)) = ι(ψ (T π

m̃η)) ∀π ∈ Π, s ∈ D
}

=

{
m̃ ∈ M : ΠFψ

T πη = ΠFψ
T π
m̃η ∀π ∈ Π, s ∈ D

}
,

where the second to last inequality follows from the injectivity of ι. Similarly we have that579

M∞
ψ (Π, I) =

{
m̃ ∈ M : ψ (ηπ) = ψ (ηπm̃) ∀π ∈ Π

}
=

{
m̃ ∈ M : ι(ψ (ηπ)) = ψ (ι(ηπm̃)) ∀π ∈ Π

}
=

{
m̃ ∈ M : ΠFψ

ηπ = ΠFψ
ηπm̃ ∀π ∈ Π

}
,

where the second equality follows by injectivity of ι.580

Proposition 5.10. Let ρ be a risk measure and let ψ = (ψ1, . . . , ψm) be a sketch, and suppose that ρ581

is in the span of ψ, in the sense that there exists α0, . . . αm ∈ R such that for all ν ∈ Pψ(R)∩Pρ(R),582

ρ(ν) =
∑m
i=1 αiψi(ν) + α0. Then any optimal policy with respect to ρ in m̃ ∈ M∞

ψ (Π) is optimal583

with respect to ρ in m∗.584

Proof. Let π∗
ρ be an optimal policy for ρ in m∗, and let π̃∗

ρ be an optimal policy for ρ in m̃. For585

contradiction, suppose that π̃∗
ρ is not optimal in m∗. Then for all x ∈ X we have that586

ρ(ηπ̃
∗
ρ (x)) ≤ ρ(ηπ

∗
ρ (x)),

and for at least one x ∈ X we have587

ρ(ηπ̃
∗
ρ (x)) < ρ(ηπ

∗
ρ (x)).

Let us choose this x, and note that this implies588

ρ
(
ηπ̃

∗
ρ (x)

)
< ρ

(
ηπ

∗
ρ (x)

)
⇐⇒

m∑
i=1

αiψi

(
ηπ̃

∗
ρ (x)

)
<

m∑
i=1

αiψi

(
ηπ

∗
ρ (x)

)
⇐⇒

m∑
i=1

αiψi

(
η
π̃∗
ρ

m̃ (x)
)
<

m∑
i=1

αiψi

(
η
π∗
ρ

m̃ (x)
)

⇐⇒ ρ
(
η
π̃∗
ρ

m̃ (x)
)
< ρ

(
η
π∗
ρ

m̃ (x)
)
,

which contradicts the assumption that π̃∗
ρ was optimal for ρ in m̃.589

C.4 Appendix Proofs590

Proposition A.3. Suppose ψ = (ψ1, . . . , ψm) is a Bellman-closed sketch and for each i = 1, . . . ,m,591

∃fi : R → R such that for each ν ∈ Pψ(R), ψi(ν) = EZ∼ν [fi(Z)]. Then any risk measure ρ which592

can be planned for exactly using a proper ψ equivalent model can be planned for exactly using a593

proper ψmµ equivalent model.594

Proof. This proof relies on a theorem introduced by Rowland et al. (2019), which we restate here.595
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Theorem C.2 (Rowland et al. (2019)). Let ψ = (ψ1, . . . , ψm) be a Bellman closed sketch such that596

for each i = 1, . . . ,m, there exist fi : R → R such that for all ν ∈ Pψ(R), ψi(ν) = EZ∼ν [fi(Z)].597

Then there exists real numbers (bij)mi,j=1 such that for all ν ∈ Pψ(R),598

ψi(ν) =

m∑
j=1

bijµj(ν) + bi0,

where µj is the jth moment functional (Example 5.2).599

Next, let us suppose that ρ can be planned for optimally by any m̃ ∈ M∞
ψ (Π), then there must600

exist (αi)mi=1 such that for all ν ∈ Pψ(R)
⋂

Pρ(R), ρ(ν) =
∑m
i=1 αiψi(ν). Using the coefficients601

(bij)
m
i,j=1 introduced in the theorem statement above, we have that602

ρ(ν) =

m∑
i=1

αi(ψi(ν)

=

m∑
i=1

αi

 m∑
j=1

bijµj(ν) + bi0


=

m∑
i=1

αi

m∑
j=1

bijµj(ν) +

m∑
i=1

αibi0

=

m∑
j=1

βjµj(ν) + β0,

where βj =
∑m
i=1 αibij for j = 0, . . . ,m. We can then apply Proposition 5.10, and we are complete.603

604

Proposition B.1. If ψ is both continuous and Bellman-closed and ι is exact, for any k ∈ N and605

Π ⊆ Π, it holds that606

M∞
ψ (Π) =

⋂
π∈Π

Mk
ψ

(
{π},

{
sπψ

})
.

Proof. We begin by rewriting the definition607

M∞
ψ (Π) =

{
m̃ ∈ M : sπψ,m̃ = sπψ for all π ∈ Π

}
=

⋂
π∈Π

{
m̃ ∈ M : sπψ,m̃ = sπψ

}
=

⋂
π∈Π

M∞
ψ ({π}).

Next, note that for any π and any k ∈ N we have M∞
ψ ({π}) ⊆ Mk

ψ({π}, {sπψ}), since if sπψ = sπψ,m̃608

we can write out609

sπψ = sπψ,m̃

=⇒ (T π
ψ,m̃)ksπψ = (T π

ψ,m̃)ksπψ,m̃

=⇒ (T π
ψ,m̃)ksπψ = sπψ,m̃

=⇒ (T π
ψ,m̃)ksπψ = sπψ

=⇒ (T π
ψ,m̃)ksπψ = (T π

ψ )ksπψ,

and hence m̃ ∈ Mk
ψ({π}, {sπψ}). Conversely, if we let m̃ ∈ Mk

ψ({π}, {sπψ}), we can write out610

(T π
ψ,m̃)ksπψ = (T π

ψ )ksπψ

=⇒ (T π
ψ,m̃)ksπψ = sπψ

=⇒ (T π
ψ,m̃)2ksπψ = (T π

ψ )ksπψ

=⇒ (T π
ψ,m̃)2ksπψ = sπψ,
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which we can repeat n times to obtain (T π
ψ,m̃)nksπψ = sπψ. Sending n → ∞ and using the fact611

that ψ is continuous gives us sπψ = limn→∞(T π
ψ,m̃)nksπψ = sπψ,m̃, which then gives us m̃ ∈612

Mk
ψ({π}, {sπψ}).613

D General classes of policies614

In Section 2, we considered stationary Markov policies. One can further consider history-dependent615

policies, which don’t have to be stationary nor Markov, but simply measurable with respect to the616

filtration Ft given by Ft = σ
((∏t−1

i=0(X ×A)
)
×X

)
(where for a collection of sets A, σ(A) is617

the σ-algebra generated by A). This is a much larger class of policies, and learning a policy in this618

class is infeasible in general (Puterman, 2014).619

In the risk-neutral setting, the difficulties associated with learning a history-dependent policies can be620

avoided: for every history-dependent policy, there exists a Markov stationary policy which achieves621

the same expected return. In particular, no history-dependent policy achieves a return higher than a622

Markov stationary policy, and thus it suffices to solely consider learning a Markov stationary policy.623

Unfortunately, such a result does not exist for the risk-sensitive setting: for a general risk measure,624

there exists history-dependent policies which achieve a higher objective of return than all Markov625

stationary policies. Moreover, a Markov stationary policy which is optimal as defined in Section 2626

may not exist in general. Despite this negative result, the standard approach in practice is nonethe-627

less to learn an approximately optimal Markov stationary policy (Bäuerle & Ott, 2011; Chow &628

Ghavamzadeh, 2014; Lim & Malik, 2022), and this is the approach taken in this work as well.629

Due to the fact that an optimal policy may not exist, Theorem 4.3 may seem to not generally apply, as630

it only addresses the case when a Markov stationary optimal policy exists. We now present a weaker631

version of this theorem, which addresses the case in which such an optimal policy does not exist.632

To state the proposition, we first introduce the notion of policy domination. Suppose π1, π2 ∈ Π. We633

say that π1 dominates π2 with respect to ρ if634

ρ (ηπ1(x)) ≥ ρ (ηπ2(x)), ∀x ∈ X .
It is straightforward to see that policy domination provides a partial order over the set of Markov635

stationary policies Π. With this in mind, we present the proposition.636

Proposition D.1. Let ρ be any risk measure, and let π1, π2 be policies such that π1 dominates π2637

with respect to ρ in an approximate model m̃ ∈ M∞
dist(Π). Then π1 dominates π2 with respect to ρ638

in m∗.639

Proof. Let π1, π2 satisfy the statement of the proposition. For contradiction, suppose that π1 does640

not dominate π2 in m∗. Then for all x ∈ X we have that641

ρ(ηπ1(x)) ≤ ρ(ηπ2(x)),

and for at least one x ∈ X we have642

ρ(ηπ1(x)) < ρ(ηπ2(x)).

Let us choose this x, and note that this implies643

ρ(ηπ1(x)) < ρ(ηπ2(x))

⇐⇒ ρ (ηπ1

m̃ (x)) < ρ (ηπ2

m̃ (x)) ,

since by assumption of m̃ ∈ M∞
dist(Π) we have that ηπ = ηπm̃ for any π ∈ Π. But this contradicts the644

assumption that π1 dominated π2 in m̃, and we are complete.645

We note that this proposition should be interpreted as follows: suppose one learns an approximately646

optimal policy in m̃ ∈ M∞
dist(Π), in the sense that it dominates a set of other candidate policies.647

Then this policy will be approximately optimal in m∗, in the sense that it will still dominate this same648

set of policies in m∗. We note that it is straightforward to adapt Proposition 5.10 in the same way.649
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E Empirical details650

We begin with a detailed description of the environments used, followed by details on the compute651

resources used.652

E.1 Environment descriptions653

E.1.1 Tabular environments654

Four rooms655

We adapt the stochastic four rooms domain used in Grimm et al. (2021) by making certain states risky.656

In the original domain, an agent attempts to navigate from the start state (bottom left) to the goal state657

(top right), by moving up, down, left, or right. At each step however, there is a 20% chance that the658

agent slips and moves in a random direction, rather than the intended one. A reward of 1 is achieved659

for reaching the goal state, and the reward is 0 elsewhere. We then select certain states to become660

‘risky’ states. These states have the same transition dynamics, but modified reward: if they transition661

in the intended direction they receive a small, positive reward, and if they transition in a random662

direction they receive a large negative reward. The rewards are chosen so that the expected reward663

from a state has a slightly positive expectation, so that risk-neutral policies would pass through the664

state, but risk-averse ones would not.665

Windy cliffs666

We consider the stochastic adaptation of the cliff walk environment (Sutton & Barto, 2018) as667

introduced in Bellemare et al. (2023). An agent must walk along a cliff to reach its goal, but at every668

step, it has a 1/3 probability of moving in a random direction. A reward of −1 is obtained for falling669

off the cliff, and a reward of 1 is obtained for reaching the goal state.670

Frozen lake671

We use the 8 by 8 frozen lake domain as specified in Brockman et al. (2016). There are four actions672

corresponding to walking in each direction, however taking an action has a 1/3 probability of moving673

in the intended direction, and a 1/3 probability of moving in each of the perpendicular directions.674

The agent begins in the top left corner, and attempts to reach the goal at the bottom right corner, at675

which point the agents receives a reward of 1 and the episode ends. Within the environment there are676

various holes in the ice, entering a hole will provide a reward of -1 and the episode ends. Episodes677

will also end after 200 timesteps. Following this, there are 3 possible returns for an episode: −1 for678

falling in a hole, 1 for reaching the goal, and 0 for reaching the 200 timesteps without reaching a hole679

state or the goal.680

E.1.2 Option trading environment681

We use the option trading environment as implemented in Lim & Malik (2022). In particular, the682

environment simulates the task of learning a policy of when to exercise American call options. The683

state space is given as X = R2, where for a given X ∋ x = (p, t), p represents the price of the684

underlying stock, and t represents the time until maturity. The two actions represent holding the stock685

and executing, and at maturity all options are executed. The training data is generated by assuming686

that stock prices follows geometric Brownian motion (Li et al., 2009). For evaluation, real stock687

prices are used, using the data of 10 Dow instruments from 2016-2019.688

E.2 Compute time and infrastructure689

For the tabular experiments, each model took roughly 1 hour to train on a single GPU, for an690

approximate total of 120 GPU hours for the tabular set of experiments. For the option trading691

experiments, training a policy for a given CVaR level took roughly 40 minutes on a single GPU on692

average, for an approximate total of 200 GPU hours for this set of experiments. All experiments were693

run on NVIDIA Tesla P100 GPUs.694
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F Limitations and future work695

While we introduced a novel framework and demonstrated strong theoretical and empirical results,696

our work has limitations, which we now discuss and present as possible directions for future work.697

The first is investigating how well the statistical functional ψ used can plan for general risk measures698

not covered by Proposition 5.10, and deriving bounds on its performance. A second is that our theory699

relies on the set M∞
dist(Π), while in practice we use M∞

dist(Π), where Π ⊆ Π is a uniformly random700

subset. Investigating how this affects the theoretical results, along with investigating whether there is701

a better way to choose the set Π, are interesting questions in this direction.702

21


	Introduction
	Background
	Model-based reinforcement learning and the value equivalence principle
	Distributional reinforcement learning
	Risk-sensitive reinforcement learning

	Limitations of value equivalence for risk-sensitive planning
	The distribution equivalence principle
	Statistical functional equivalence
	Background on statistical functionals
	Statistical functional equivalence

	Learning statistical functional equivalent models
	Empirical evaluation
	Experimental details
	Discussion

	Conclusion
	Additional results
	Additional properties of statistical functional equivalence
	On the continuity of statistical functionals

	Learning statistical functional equivalent models
	Proofs
	Section 3 Proofs
	Section 4 Proofs
	Section 5 Proofs
	Appendix Proofs

	General classes of policies
	Empirical details
	Environment descriptions
	Tabular environments
	Option trading environment

	Compute time and infrastructure

	Limitations and future work

