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A Supplementary Material1

The supplementary material presents additional designing and explaining details of our Unpervised2

pretext task for end-to-end Autonomous Driving (UAD) in the manuscript.3

• Different Partition Angles4

We explore the influence of different partition angles in angular pretext to learn better5

spatio-temporal knowledge.6

• Different Direction Thresholds7

We explore the influence of different thresholds in direction prediction to enhance planning8

robustness in complex driving scenarios.9

• Different Backbones and Pre-trained Weights10

We compare the performance of different backbones and pre-trained weights on our method.11

• Objectness Label Generation with GT Boxes12

We compare the generated objectness label between using the pseudo ROIs from Ground-13

ingDINO [10] and ground-truth boxes on different backbones.14

• Settings for ROI Generation15

We ablate different settings for the open-set 2D detector GroundingDINO, which provides16

ROIs for the label generation of angular perception pretext.17

• Different Image Sizes and BEV Resolution18

We compare the performance with different input sizes of multi-view images and BEV19

resolutions.20

• Runtime Analysis21

We evaluate the runtime of each module of UAD and compare with modularized UniAD [6],22

which demonstrates the efficiency of our method.23

• Classification of Angular Perception24

We evaluate the objectness prediction in the angular perception pretext, which demonstrates25

the enhanced perception capability in complex driving scenarios.26

• Influence of Pre-training27

We evaluate the influence of pre-training by detailing the training losses and planning28

performances with different pre-trained weights.29

• More Visualizations30

We provide more visualizations for the predicted angular-wise objectness and planning re-31

sults in the open-loop evaluation of nuScenes [1] and closed-loop simulation of CARLA [3].32

A.1 Different Partition Angles33

The proposed angular perception pretext divides the BEV space into multiple sectors. We explore the34

influence of partition angle θ in Tab 1. Experimental results show that the L2 error and inference35
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Table 1: Ablation on different partition angles
in the proposed angular pretext.

# Partition
Angle

L2 (m) ↓ Collision (%) ↓ FPS1s 2s 3s Avg. 1s 2s 3s Avg.

① 1◦ 0.35 0.78 1.42 0.85 0.01 0.28 0.68 0.32 5.0
② 2◦ 0.34 0.77 1.46 0.86 0.01 0.22 0.48 0.24 6.3
③ 4◦ 0.39 0.81 1.50 0.90 0.01 0.12 0.43 0.19 7.2
④ 8◦ 0.38 0.85 1.55 0.93 0.01 0.18 0.55 0.25 7.7
⑤ 15◦ 0.47 0.94 1.69 1.03 0.03 0.20 0.60 0.28 8.1
⑥ 30◦ 0.48 1.00 1.75 1.08 0.05 0.28 0.63 0.32 8.4

Table 2: Ablation on different thresholds of direc-
tion prediction in the directional augmentation.

# Threshold
(m)

L2 (m) ↓ Collision (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

① 0.5 0.35 0.79 1.43 0.86 0.03 0.18 0.71 0.31
② 0.8 0.35 0.77 1.46 0.86 0.01 0.12 0.68 0.27
③ 1.2 0.39 0.81 1.50 0.90 0.01 0.12 0.43 0.19
④ 1.5 0.40 0.82 1.52 0.91 0.02 0.15 0.42 0.20
⑤ 2.0 0.38 0.85 1.55 0.93 0.01 0.08 0.48 0.19

Table 3: Ablation on different backbones and pre-trained weights.

# Backbone Pretrained
Weight

L2 (m) ↓ Collision (%) ↓ FPS1s 2s 3s Avg. 1s 2s 3s Avg.

① Res50 None 0.43 0.94 1.65 1.01 0.03 0.37 0.86 0.42 9.6
② ImageNet 0.41 0.90 1.66 0.99 0.03 0.32 0.80 0.38

③

Res101

None 0.40 0.87 1.59 0.95 0.02 0.23 0.59 0.28

7.2④ ImageNet 0.37 0.84 1.53 0.91 0.01 0.18 0.50 0.23
⑤ COCO 0.36 0.83 1.51 0.90 0.01 0.16 0.45 0.21
⑥ NuImages 0.39 0.81 1.50 0.90 0.01 0.12 0.43 0.19

speed gradually increase with the partition angle. The model with partition angle of 1◦(①) achieves36

the best average L2 error of 0.85m. And the partition angle of 4◦ contributes to the best average37

collision rate of 0.19% (③). This reveals that a smaller partition angle helps learn more fine-grained38

environmental representations, eventually benefiting planning. In contrast, the model with a large39

partition angle sparsely perceives the scene. Despite reducing the computation cost, it will also40

degrade the safety of the end-to-end autonomous driving system.41

A.2 Different Direction Thresholds42

The direction prediction that the ego car intends to maneuver (i.e., left, straight and right) is proposed43

to enhance the steering capability for autonomous driving. The label is generated with the threshold δ44

(see Eq. 7 in the manuscript), which determines the ground-truth direction of each waypoint in the45

expert trajectory. Here we explore the influence by ablating different thresholds, as shown in Tab. 2.46

Experimental results show that the L2 error gradually increases with the direction threshold. The47

model with δ of 0.5m (①) achieves the lowest L2 error of 0.86m. It reveals that a smaller threshold48

will force the planner to fit the expert navigation, leading to a closer distance between the predicted49

trajectory and the ground truth. In contrast, the collision rate benefits more from larger thresholds.50

The model with δ of 2.0m obtains the best collision rate at 2s of 0.08% (⑤), showing the effectiveness51

for robust planning. Notably, the threshold of 1.2m contributes to a great balance with the average L252

error of 0.90m and average collision rate of 0.19%.53

A.3 Different Backbones and Pre-trained Weights54

As a common sense, pre-training the backbone network with fundamental tasks like image clas-55

sification on ImageNet [2] will benefit the sub-tasks. The previous method UniAD [6] uses the56

pre-trained weights of BEVFormer [8]. What surprised us is that when replacing the pre-trained57

weights with the one learned on ImageNet, the performance of UniAD dramatically degraded (see58

“Influence of Pre-training” for more details). This inspires us to explore the influence of backbone59

settings on our framework. As shown in Tab. 3, interestingly, even without any pre-training, our60

model still outperforms UniAD with pre-trained ResNet101 and VAD with pre-trained ResNet50.61

This verifies the effectiveness of our unsupervised pretext task on modeling the driving scenes. We62

also use publicly available pre-trained weights on detection datasets like COCO [9] and nuImages [1]63

to train our model, which shows better performance. These experimental results and observations64

demonstrate that a potentially promising topic is how to pre-train a model for end-to-end autonomous65

driving. We leave this to future research.66
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Table 4: Ablation on 2D object boxes in pretext label generation.

# Backbone 2D Object
Box

L2 (m) ↓ Collision (%) ↓ FPS1s 2s 3s Avg. 1s 2s 3s Avg.

① Res50 Pseudo 0.41 0.90 1.66 0.99 0.03 0.32 0.80 0.38 9.6
② GT 0.41 0.87 1.61 0.96 0.03 0.30 0.71 0.35

③ Res101 Pseudo 0.39 0.81 1.50 0.90 0.01 0.12 0.43 0.19 7.2
④ GT 0.37 0.79 1.45 0.84 0.01 0.13 0.39 0.18

Table 5: Ablation on the settings of ROI generation. The Conf. Thresh denotes the confidence
threshold in GroundingDINO [10] to filter unreliable predictions. vehicle,pedestrian,barrier represent
the used prompt words to obtain ROIs of corresponding classes. Rule Filter indicates filtering the
ROIs that are more than half of the length or width of the image.

# Conf.
Thresh

Prompt
Words

Rule
Filter

L2 (m) ↓ Collision (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

① 0.35 {vehicle} - 0.48 0.98 1.75 1.07 0.08 0.38 0.80 0.42
② 0.35 {vehicle,pedestrian} - 0.47 0.94 1.69 1.03 0.04 0.27 0.71 0.34
③ 0.35 {vehicle,pedestrian,barrier} - 0.43 0.88 1.60 0.97 0.03 0.23 0.60 0.29
④ 0.35 {vehicle,pedestrian,barrier} ✓ 0.39 0.81 1.50 0.90 0.01 0.12 0.43 0.19
⑤ 0.30 {vehicle,pedestrian,barrier} ✓ 0.39 0.82 1.45 0.89 0.01 0.21 0.51 0.24
⑥ 0.40 {vehicle,pedestrian,barrier} ✓ 0.46 0.90 1.57 0.98 0.01 0.13 0.37 0.17

A.4 Objectness Label Generation with GT Boxes67

As mentioned in the manuscript, the essence of generating the angular objectness label lies in the68

2D ROIs, which come from the open-set 2D detector GroundingDINO [10]. Here we explore the69

influence of using the ground-truth 2D boxes as ROIs, which provide more high-quality samples for70

the representation learning in the angular perception pretext. Tab. 4 shows that training with GT boxes71

achieves consistent performance gains on both ResNet50 [4] and ResNet101 [4] (②,④ v.s. ①,③). This72

reveals that accurate annotation does help to learn better spatio-temporal knowledge and improve ego73

planning. Considering the cost in real-world deployment, training with accessible pseudo labels is a74

more efficient way compared with the manual annotation, which also shows comparable performance75

in autonomous driving (① v.s. ② and ③ v.s. ④).76

A.5 Settings for ROI Generation.77

The quality of learned spatio-temporal knowledge highly relies on the generated ROIs by the open-set78

2D detector GroundingDINO [10], which are then projected as the BEV objectness label for training79

the angular perception pretext. We explore the influence of generated ROIs with different settings,80

as shown in Tab. 5. We take the setting with the confidence score of 0.35, prompt word of vehicle81

and without the Rule Filter, as the baseline (①). By appending more prompt words (e.g., pedestrian,82

barrier), the planning performance gradually improves (③,② v.s.①), showing the enhanced perception83

capability with more diversified objects. Filtering the ROIs with overlarge size (i.e., Rule Filter)84

brings considerable gains for the average L2 error of 0.07m and average collision rate of 0.10%85

(④v.s.③). One interesting observation is that decreasing the confidence threshold would slightly86

improve the L2 error while causing higher collision rate (⑤v.s.④). In contrast, increasing the threshold87

obtains lower average collision rate of 0.17% and higher average L2 error of 0.98m. This reveals the88

importance of providing diversified ROIs for angular perception learning as well as ensuring high89

quality. The model with the confidence score of 0.35, all prompt words and Rule Filter achieves90

balanced performance with the average L2 error of 0.90m and average collision rate of 0.19%.91

A.6 Different Image Sizes and BEV Resolution92

For safe autonomous driving, increasing the input size of the multi-view images and the resolution93

of the built BEV representation is an effective way, which provide more detailed environmental94

information. While benefiting perception and planning, it inevitably brings heavy computation cost.95

We then ablate the image size and BEV resolution of our UAD to find a balanced version between96

performance and efficiency, as shown in Tab. 6. The results show that our UAD with ResNet-101 [4],97
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Table 6: Comparison with different backbones, image sizes and BEV resolutions.

# Method Backbone Image
Size

BEV
Resolution

L2 (m) ↓ Collision (%) ↓ FPS1s 2s 3s Avg. 1s 2s 3s Avg.

① UniAD [6] R101 1600×900 200×200 0.48 0.96 1.65 1.03 0.05 0.17 0.71 0.31 2.1

② VAD-Tiny [7] R50 640×360 100×100 0.60 1.23 2.06 1.30 0.33 1.33 2.21 1.29 17.6
③ VAD-Base [7] R50 1280×720 200×200 0.54 1.15 1.98 1.22 0.10 0.24 0.96 0.43 5.3

④ UAD (Ours) R50 640×360 100×100 0.47 0.99 1.71 1.06 0.08 0.39 0.90 0.46 18.9
⑤ UAD (Ours) R50 1600×900 200×200 0.41 0.90 1.66 0.99 0.03 0.32 0.80 0.38 9.6
⑥ UAD (Ours) R101 1600×900 200×200 0.39 0.81 1.50 0.90 0.01 0.12 0.43 0.19 7.2

Table 7: Module runtime comparison between
UniAD [6] and our UAD. The inference is mea-
sured on an NVIDIA Tesla A100 GPU.

Model
Partition

UniAD UAD (Ours)

Module Latency
(ms)

Proportion
(%) Module Latency

(ms)
Proportion

(%)

Feature
Extraction

Backbone 38.1±0.5 8,2% Backbone 36.0±0.3 26.0%
BEV

Encoder 83.4±0.5 17.9% BEV
Encoder 81.5±0.4 58.9%

Det&Track 145.3±1.3 31.2%
Map 92.1±0.7 19.8%

Angular
Partition 1.1±0.1 0.8%

Motion 50.6±0.6 10.9%
Sub-
Task

Occupancy 45.9±0.4 9.9%
Dreaming
Decoder 18.2±0.2 13.2%

Prediction Planning
Head 9.7±0.3 2.1% Planning

Head 1.5±0.1 1.1%

Total - 465.1±4.3 100% - 138.3±1.1 100.0%

Figure 1: Visualization of the PR and ROC curves
for the angular-wise objectness prediction in differ-
ent driving scenes.

image size of 1600×900, BEV resolution of 200×200, achieves the best performance compared with98

previous methods UniAD [6] and VAD-Base [7] while running faster with 7.2FPS (⑥). By replacing99

the backbone with ResNet-50, our UAD is more efficient with little performance degradation (⑤100

v.s. ⑥). We further align the settings of VAD-Tiny, which has an inference speed of outstanding101

17.6FPS (②), to explore the influence of much smaller input sizes. Tab. 6 shows that our UAD still102

achieves excellent performance even compared with VAD-Base of high-resolution inputs (④ v.s. ③).103

Notably, our UAD of this version has the fastest inference speed of 18.9FPS. This again proves the104

effectiveness of our method in performing fine-grained perception, as well as the robustness to fit the105

inputs of different sizes.106

A.7 Runtime Analysis107

Tab. 7 compares the runtime of each module between the modularized method UniAD [6] and our108

UAD. As we adopt the Backbone and BEV Encoder from BEVFormer [8] that are the same in UniAD,109

the latency of feature extraction is similar with little difference due to different pre-processing. The110

modular sub-tasks in UniAD consume most of the runtime, i.e., significant 71.8% for Det&Track111

(31.2%), Map (19.8%), Motion (10.9%) and Occupancy (9.9%), respectively. In contrast, our UAD112

performs simple Angular Partition and Dreaming Decoder, which take only 14.0% (19.3ms) to model113

the complex environment. This demonstrates our insight that it’s a necessity to liberate end-to-end114

autonomous driving from costly modularization. The downstream Planning Head takes negligible115

1.5ms to plan the ego trajectory, compared with 9.7ms in UniAD. Finally, our UAD finishes the116

inference with a total runtime of 138.3ms, 3.4× faster than the 465.1ms of UniAD, showing the117

efficiency of our design.118

A.8 Classification of Angular Perception119

The proposed angular perception pretext learns spatio-temporal knowledge of the driving scene120

by predicting the objectness of each sector region, which is supervised by the generated binary121

angular-wise label. We show the perception ability by evaluating the classification metrics based on122

the validation split of the nuScenes [1] dataset. Fig. 1 draws the Precision-Recall (PR) curve and123

Receiver-Operating-Characteristic (ROC) curve in different driving scenes (i.e., turn left, go straight124

and turn right). In the PR curve, our UAD achieves balanced precision and recall scores in different125

driving scenes, showing the effectiveness of our pretext task to perceive the surrounding objects.126

Notably, the performance of go straight scenes is slightly better than the steering ones under all127

thresholds. This proves our insight to design tailored direction-aware learning strategy for improving128
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(a) (b)
Figure 2: Optimization of UniAD (a) and our UAD (b) with different pre-trained backbone weights.

Figure 3: Visualization of the angular perception.

the safety-critical turn left and turn right scenes. The ROC curve shows the robustness of our angular129

perception pretext to classify the objects from complex environmental observations.130

A.9 Influence of Pre-training131

Pre-training the backbone network with fundamental tasks is a commonly used metric to benefit132

representation learning. As mentioned in “Different Backbones and Pre-trained Weights” of Sec. 4.4133

in the manuscript, the performance of the previous SOTA method UniAD [6] dramatically degrades134

without the pre-trained weights from BEVFormer [8]. Here we further detail the influence by135

comparing the training losses and planning performances with different pre-trained weights in Fig. 2.136

Fig. 2a shows that the training losses increase by about 20 on average when replaced with the137

pre-trained weights from ImageNet [2]. Correspondingly, the average L2 error is significantly higher138

than the one with the pre-trained weights from BEVFormer. This reveals that UniAD heavily relies139

on the perceptive pre-training in BEVFormer to optimize modularized sub-tasks. In contrast, our140

UAD performs comparably even without any pre-training (see Fig. 2b), proving the effectiveness of141

our designs for robust optimization.142

A.10 More Visualizations143

Open-loop Planning We provide more visualizations about the predicted angular-wise objectness144

and planning results on nuScenes [1]. Fig. 3 compares the discrete objectness scores and ground145

truth, proving the effectiveness of our angular perception pretext to perceive the objects in each sector146

region. The planning results of previous SOTA methods (i.e., UniAD [6] and VAD [7]) and our UAD147

are shown in Fig. 4. With the designed pretext and tailored training strategy, our method could plan a148

more reasonable ego trajectory under different driving scenarios, proving the effectiveness of our149

work. The third row shows the failure case of our planner. In this case, the ego car is given the “Turn150

Right” command when t=0 (i.e., the first frame of the driving scenario), leading to ineffectiveness of151

our planner in learning helpful temporal information. A possible solution to deal with this is to apply152

an auxiliary trajectory prior for the first several frames, and we leave this to future work.153
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Figure 4: Visualization of the planning results. The first two rows show the success of our method in
safe planning in complex scenarios, while the third row exhibits a failure case of our planner when no
temporal information could be acquired when t=0.

Figure 5: Visualization of angular perception and planning in Carla.

Closed-loop Simulation Fig. 5 visualizes the predicted objectness and planning results in the154

Town05 Long benchmark of CARLA [3]. Following the setting of ST-P3 [5] in closed-loop evalua-155

tion, we collect visual observations from the cameras of “CAM_FRONT”, “CAM_FRONT_LEFT”,156

“CAM_FRONT_RIGHT” and “CAM_BACK”. It shows that the sector regions in which the surround-157

ing objects exist are successfully captured by our UAD, proving the effectiveness and robustness of158

our design. Notably, the missed objects by GroundingDINO [10], e.g., the black car in the camera of159

“CAM_FRONT_LEFT” at t = 145, are surprisingly perceived and marked in the corresponding sector.160

This demonstrates our method has the capability of learning perceptive knowledge in a data-driven161

manner, even with coarse supervision by the generated 2D pseudo boxes from GroundingDINO.162
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