
Appendix Outline490

This Appendix is organized as follows:491

• In Appendix A we describe various dispatch rules including the base rules, the composition492

rules and rules derived from other rules.493

• In Appendix B we provide an extended discussion of several noteworthy features of CoLA,494

such as doubly stochastic estimators and memory-efficient autograd implementation.495

• In Appendix C we include pseudo-code on various of the iterative methods incorporated in496

CoLA and discuss modifications to improve lower precision performance.497

• In Appendix D we expand on the details of the experiments in the main text.498

• In Appendix E we show some code examples of how the dispatch rules are implemented in499

CoLA.500

A Dispatch Rules501

We now present the linear algebra identities that we use to exploit structure in CoLA.502

A.1 Core Functions503

A.1.1 Inverses504

We incorporate several identities for the compositional operators: product, Kronecker product, block505

diagonal and sum. For product we have (AB)−1 = (B−1A−1) and for Kronecker product we have506

(A⊗B)−1 = A−1 ⊗B−1. In terms of block compositions we have the following identities:507

[
A 0

0 D

]−1

=

[
A−1 0

0 D−1

]
and

[
A B

0 D

]−1

=

[
A−1 −A−1BD−1

0 D−1

]
508 [

A B

C D

]−1

=

[
I −A−1B

0 I

][
A 0

0 D−CA−1B

]−1[
I 0

−CA−1 I

]
Finally, for sum we have the Woodbury identity and its variants. Namely, for Woodbury we have509

(A+UBV)
−1

= A−1 −A−1U
(
B−1 +VA−1U

)−1
VA−1,

the Kailath variant where510

(A+BC)
−1

= A−1 −A−1B
(
I+CA−1B

)
CA−1

and the rank one update via the Sherman-Morrison formula511

(A+ bc⊺)
−1

= A−1 − 1

1 + c⊺Ab
A−1bc⊺A−1.

Besides the compositional operators, we have some rules for some special operators. For example,512

for A = Diag (a) we have A−1 = Diag
(
a−1

)
. Also, if Q is unitary then Q−1 = Q∗ or if Q is513

orthonormal then Q−1 = Q⊺. In Appendix E we show how these dispatch rules are implemented in514

Python.515

A.1.2 Eigendecomposition516

We now assume that the matrices in this section are diagonalizable. That is, Eigs (A) = ΛA,VA,517

where A = VAΛAV−1
A . In terms of the compositional operators, there is not a general rule for518

product or sum. However, for the Kronecker product we have Eigs(A⊗B) = ΛA⊗ΛB, VA⊗VB519

and for the Kronecker sum we have Eigs(A ⊕ B) = ΛA ⊕ ΛB, VA ⊗VB. Finally, for block520

diagonal we have521

Eigs
([

A 0

0 D

])
=

[
ΛA 0

0 ΛD

]
,

[
VA 0

0 VD

]
.

14

A.1.3 Diagonal522

As a base case, if we need to compute Diag (A) for a general matrix A we may compute each523

diagonal element by e⊺i Aei. Additionally, if A is large enough we switch to randomized estimation524

Diag(A) ≈ (Z⊙AZ)1/N with Z ∼ N (0, 1)d×N where N is the number of samples used to ap-525

proximate the diagonal. In terms of compositional operators, we have that for sum Diag (A+B) =526

Diag (A) + Diag (B). For Kronecker product we have Diag(A⊗B) = vec
(
Diag(A)Diag(B)⊺

)
527

and for Kronecker sum Diag(A ⊕ B) = vec
(
Diag (A)1⊺ + 1Diag (B)

⊺). Finally, for block528

composition we have529

Diag
([

A B

C D

])
= [Diag(A), Diag(D)].

A.1.4 Transpose / Adjoint530

As explained in Section 3.1, as a base case we have an automatic procedure to compute the transpose or531

adjoint of any operator A via autodiff. However, we also incorporate the following rules. For sum we532

have (A+B)
∗
= A∗ +B∗ and (A+B)

⊺
= A⊺ +B⊺. For product we have (AB)

∗
= B∗A∗ and533

(AB)
⊺
= B⊺A⊺. For Kronecker product we have (A⊗B)

∗
= A∗⊗B∗ and (A⊗B)

⊺
= A⊺⊗B⊺.534

For the Kronecker sum we have (A⊕B)
∗
= A∗ ⊕ B∗ and (A⊕B)

⊺
= A⊺ ⊕ B⊺. In terms of535

block composition we have536 ([
A B

C D

])∗

=

[
A∗ C∗

B∗ D∗

]
and

([
A B

C D

])⊺

=

[
A⊺ C⊺

B⊺ D⊺

]
.

Finally for the annotated operators we have the following rules. A∗ = A if A is self-adjoint and537

A⊺ = A if A is symmetric.538

A.1.5 Pseudo-inverse539

As a base case, if we need to compute A+, we may use SVD (A) = U,Σ,V and therefore set540

A+ = UΣ+V∗, where Σ+ inverts the nonzero diagonal scalars. If the size of A is too large,541

then we may use randomized SVD. Yet, it is uncommon to simply want A+, usually we want to542

solve a least-squares problem and therefore we can use solvers that are not as expensive to run as543

SVD. For the compositional operators we have the following identities. For product (AB)
+

=544 (
A+AB

)+ (
ABB+

)+
and for Kronecker product we have (A⊗B)

+
= A+ ⊗ B+. For block545

diagonal we have546 ([
A 0

0 D

])+

=

[
A+ 0

0 D+

]
.

Finally, we have some identities that are mathematically trivial but that are necessary when recursively547

exploiting structure as that would save computation. For example, if Q is unitary we know that548

Q+ = Q and similarly when Q is orthonormal. If A is self-adjoint, then A+ = A−1 and also if it is549

symmetric and PSD.550

A.2 Derived Functions551

Interestingly, the previous core functions allow us to derive multiple rules from the previous ones.552

To illustrate, we have that Tr (A) =
∑

i Diag (A)i. Additionally, if A is PSD we have that553

f (A) = VAf (ΛA)V−1
A and if A is both symmetric and PSD then f (A) = VAf (ΛA)V⊺

A.554

where in both cases we used Eigs (A) = ΛA,VA. Some example functions for PSD matrices are555

Sqrt (A) = VAΛ
1/2
A V−1

A or Log (A) = VA logΛAV−1
A . Which also this rules allow us to define556

LogDet (A) = Tr (Log (A)).557

A.3 Other matrix identities558

We emphasize that there are a myriad more matrix identities that we do not intentionally include559

such as Tr(A+B) = Tr(A) + Tr(B) or Tr(AB) = Tr(BA) when A and B are squared. These560

15

additional cases are not part of our dispatch rules as either they are automatically computed from561

other rules (as in the first example) or they do not yield any computational savings (as in the second562

example).563

B Features in CoLA564

B.1 Doubly stochastic diagonal and trace estimation565

Singly Stochastic Trace Estimator Consider the traditional stochastic trace estimator:566

Tr[Base](A) = 1
n

n∑
j=1

z⊺jAzj (1)

with each zj ∼ N (0, ID) where A is a D ×D matrix. When A is itself a sum A = 1
m

∑m
i=1 Ai,567

we can expand the trace as Tr[Base](A) = 1
mn

∑n
j=1

∑m
i=1 z

⊺
jAizj , with probe variables shared568

across elements of the sum.569

Consider the quadratic form Q := z⊺Az, which for Gaussian random variables has a cumulant570

generating function of KQ(t) = logE[etQ] = − 1
2 log det(I− 2tA). From the generating function571

we can derive the mean and variance of this estimator: E[Q] = K ′
Q(0) = Tr(A) and Var[Q] =572

K ′′
Q(0) = 2Tr(A2). Since Tr[Base](A) is a sum of independent random draws of Q, we see:573

E
[
Tr[Base](A)

]
= Tr(A) and Var

[
Tr[Base](A)

]
=

2

n
Tr(A2). (2)

Doubly Stochastic Trace Estimator For the doubly stochastic estimator, we choose probe vari-574

ables which are sampled independently for each element of the sum:575

Tr[Sum](A) = 1
nm

n∑
j=1

m∑
i=1

z⊺ijAizij . (3)

Separating out the elements of the sum, we can write the estimator as Tr[Sum](A) = 1
n

∑n
j=1Rj576

where Rj are independent random samples of the value R = 1
m

∑m
i=1 z

⊺
i Aizi. The cumulant577

generating function is merely KR(t) =
∑m

i=1KQi(t/m) where Qi = z⊺Aiz. Taking derivatives578

we find that,579

E[R] = K ′
R(0) =

1
m

m∑
i=1

Tr(Ai) = Tr(A), (4)

580

Var[R] = K ′′
R(0) =

1
m2

m∑
i=1

2Tr(A2
i) =

2
mTr(1

m

m∑
i=1

A2
i) (5)

Assuming bounded moments on Ai, then both A = 1
m

∑
i Ai and S(A) = 1

m

∑
i A

2
i will converge581

to fixed values as m→∞. Given that Tr[Sum](A) = 1
n

∑n
j=1Rj , we can now write the mean and582

variance of the doubly stochastic estimator:583

E
[
Tr[Sum](A)

]
= Tr(A) and Var

[
Tr[Sum](A)

]
=

2

mn
Tr(S(A)). (6)

As the error of the estimator can be bounded by the square root of the variance, showing that while584

the error for Tr[Base] is O(1/
√
n) (even when applied to sum structures), whereas the error for585

Tr[Sum] is O(1/
√
nm), a significant asymptotic variance reduction.586

The related stochastic diagonal estimator587

Diag[Sum](A) = 1
nm

n∑
j=1

m∑
i=1

zij ⊙Aizij . (7)

achieves the same O(1/
√
nm) convergence rate, though we omit this derivation for brevity as it is588

follows the same steps.589

16

102 103 104

CG iters

100

101

102

Ru
nt

im
e

(s
ec

)

iterative
CoLA

102 103 104

CG iters

100

101

102

M
em

or
y

(M
B)

iterative
CoLA

(a) Backwards pass runtime (b) Backwards pass memory

Figure 4: Our autograd rules allow for fast and memory efficient backpropagation. (a) Runtime
required to compute ∂θA−1

θ b for different solves, each requiring an increasing number of CG
iterations. (a) Peak memory utilization required to compute ∂θA−1

θ b for different solves, each
requiring an increasing number of CG iterations.

B.2 Autograd rules for iterative algorithms590

For machine learning applications, we want to seamlessly interweave linear algebra operations with591

automatic differentiation. The most basic strategy is to simply let the autograd engine trace through592

the operations and backpropagate accordingly. However, when using iterative methods like conjugate593

gradients or Lanczos, this naive approach is extremely memory inefficient and, for problems with594

many iterations, the cost can be prohibitive (as seen in Figure 4). However, the linear algebra595

operations corresponding to inverse, eigendecomposition and trace estimation have simple closed596

form derivatives which we can implement to avoid the prohibitive memory consumption and reduce597

runtime.598

Simply put, for an operation like f = CGSolve, CGSolve(A,b) = A−1b we must define a Vector599

Jacobian Product: VJP(f, (A,b),v) =
(
v⊺ ∂f

∂A ,v
⊺ ∂f
∂b

)
. However, for matrix-free linear operators,600

we cannot afford to store the dense matrix A, and thus neither can we store the gradients with601

respect to each of its elements! Instead we must (recursively) consider how the linear operator602

was constructed in terms of its differentiable arguments. In other words, we must flatten the tree603

structure of possibly nested differentiable arguments into a vector: θ = flatten[A]. For example604

for A = Kron
(
Diag(θ1), Conv(θ2)

)
, flatten[A] = [θ1, θ2]. From this perspective, we consider A605

as a container or tree of its arguments θ, and define v⊺ ∂f
∂A := unflatten[v⊺ ∂f

∂θ] which coincides606

with the usual definition for dense matrices. Applying to inverses, we can now write a simple VJP:607

v⊺ ∂f
∂A = unflatten[VJP

(
θ 7→ unflatten(θ)A−1b, θ,A−1v

)
] (8)

for v⊺ ∂f
∂θ = v⊺(A−1)⊺(∂θAθ)A

−1b, and we will adopt this notation below for brevity. Doing so608

gives a memory cost which is constant in the number of solver iterations, and proportional to the609

memory used in the forward pass. Below we list the autograd rules for some of the iterative routines610

that we implement in CoLA with their VJP definitions.611

1. y = Solve(A,b) : w⊺ ∂y
∂θ = −(A−1w)⊺(∂θAθ)(A

−1b)612

2. λ,V = Eigs(A) : w⊺ ∂λ
∂θ = w⊺Diag

(
V⊺(∂θAθ)V

)
613

3. λ,V = Eigs(A) : w⊺ ∂vi

∂θ = w⊺(λiI−A)+∂θAθvi614

4. y = log |A| : ∂y
∂θ = Tr

(
A−1∂θAθ

)
615

5. y = Diag(A) : w⊺ ∂y
∂θ = w⊺Diag (∂θAθ)616

In Figure 4 we show the practical benefits of our autograd rules. We take gradients of different617

linear solves A−1
θ b that were derived using conjugate gradients (CG), where each solve required an618

increasing number of CG iterations.619

17

C Algorithmic Details620

In this section we expand upon three different points introduced in the main paper. For the first point621

we argue why SVRG leads to gradients with reduced variants. For the second points we display all622

the iterative methods that we use as base algorithms in CoLA. Finally, for the third point we expand623

upon CoLA’s strategy for dealing with the different numerical precisions that we support.624

C.1 SVRG625

In simplest form, SVRG [21] performs gradient descent with the varianced reduced gradient626

w← w − η(gi(w)− gi(w0) + g(w0)) (9)
where gi represents the stochastic gradient evaluated at only a single element or minibatch of the sum,627

and g(w0) is the full batch gradient evaluated at the anchor point w0 which is recomputed at the end628

of each epoch with an updated anchor.629

With different loss functions, we can use this update rule to solve symmetric or asymmetric linear630

systems, to compute the top eigenvectors or even find the nullspace of a matrix. Despite the fact that631

the corresponding objectives are not strongly convex in the last two cases, it has been shown that632

gradient descent and thus SVRG will converge at this exponential rate [51, 14]. Below we list the633

gradients that enable us to solve different linear algebra problems: In each of the three cases listed

Symmetric Solve Aw = b Top-k Eigenvectors AW = WΛ Nullspace AW = 0

gi(w) Aiw − b −AiW +WW⊺W [51] AiW [14]

Table 4: SVRG gradients for solving different linear algebra problems.

634
above, we can recognize that if the average of all the gradients g(w) is 0, then the corresponding635

linear algebra solution has been recovered.636

While it may seem that we need to take three complete passes through {Ai} per SVRG epoch (due to637

the three terms in Equation 9), we can reduce this cost to two complete passes exploiting the fact that638

the gradients are linear in the matrix object, replacing AiW −AiW0 with Ai(W −W0) where639

appropriate. In all of the Sum structure experiments where we leverage SVRG, the x-axis measures640

the total number of passes through {Ai}mi=1, two for each epoch for SVRG.641

C.2 Iterative methods642

In Table 5 we list the different iterative methods (base cases) that we use for different linear algebraic643

operations as well as for different types of linear operators. As seen in Table 5, there are many644

alternatives to our base cases, however we opted for algorithms that are known to be performant, that645

are well-studied and that are popular amongst practitioners. A comprehensive explanation of our646

bases cases and their alternatives can be found in Golub and Loan [19] and Saad [40].647

C.3 Lower precision linear algebra648

The accumulation of round-off error is usually the breaking point of several numerical linear algebra649

(NLA) routines. As such, it is common to use precisions like float64 or higher, especially when650

running these routines on a CPU. In contrast, in machine learning, lower precisions like float32 or651

float16 are ubiquitously used because more parameters and data can be fitted into the GPU memory652

(whose memory is usually much lower than CPUs) and because the MVMs can be done faster (the653

CUDA kernels are optimized for operations on these precisions). Additionally, the round-off error654

incurred on MVMs is not as detrimental when training machine learning models (as we are already655

running noisy optimization algorithms) as when solving linear algebra problems (where round-off656

error can lead us to poor solutions). Thus, it is an active area of research in NLA to derive routines657

which utilize lower precisions than float64 or that mix precisions in order to achieve better runtimes658

without a complete degradation of the quality of the solution.659

In CoLA we take a two prong approach to deal with lower precisions in our NLA routines. First, we660

incorporate additional variants of well-known algorithms that propagate less round-off error at the661

18

Linear Algebra Op Base Case Alternatives

Ax = b (asymmetric) GMRES BiCGSTAB, CR, QMR

Ax = b (self-adjoint) MINRES GMRES

Ax = b (PSD) CG GMRES

Eigs(A) (asymmetric) Arnoldi IRAM, QR algorithm

Eigs(A) (self-adjoint) Lanczos LOBPCG, Rayleigh-Ritz, Bi-Lanczos

A+ CG CGS, LSQR, LGMRES

A = UΣV∗ Lanczos, rSVD Jacobi-Davidson

f(A) (self-adjoint) SLQ SVD, Rational Krylov Subspaces

Table 5: CoLA’s base case iterative algorithm and some alternatives. We now expand on the
acronyms. GMRES: Generalized Minimum RESidual, BiCGSTAB: BiConjugate Gradient STABi-
lized, CR: Conjugate Residuals, QMR: Quasi-Minimal Residual, MINRES: MINimum RESidual,
CG: Conjugate Gradients, IRAM: Implicitly Restarted Arnoldi Method, LOBPCG: Locally Optimal
Block Preconditioned Conjugate Gradients, Bi-Lanczos: Bidiagonal Lanczos, CGS: Conjugate Gra-
dient Squared, LSQR: Least-Squares QR, LGMRES: Least-sqaures Generalized Minimum RESidual,
SVD: Singular Value Decomposition, rSVD: randomized Singular Value Decomposition, and SLQ:
Stochastic Lanczos Quadrature.

expense of requiring more computation, as seen in Figure 5. Second, we integrate novel variants of662

algorithms that are designed to be used on lower precisions such as the CG modification found in663

Maddox et al. [28]. We now discuss the first approach.664

As discussed in Section C.2, there are two algorithms that are key for eigendecompositions. The first665

is Arnoldi (applicable to any operator), and the second is Lanczos (for symmetric operators) — where666

actually Lanczos can be viewed as a simplified version of Arnoldi. Central to these algorithms is the667

use of an orthogonalization step which is well-known to be a source of numerical instability. One668

approach to aggressively ameliorate the propagation of round-off error during orthogonalization is to669

use Householder projectors, which is the strategy that we use in CoLA. Given a unitary vector u, a670

Householder projector (or Householder reflector) is defined as the following operator R = I− 2uu∗.671

When applied to a vector x the result Rx is basically a reflection of x over the u⊺ space. To easily672

visualize this, suppose that x ∈ R2 and u = e1. Hence,673

Rx =

(
x1

x2

)
− 2

(
x1

0

)
=

(
−x1
x2

)
which is exactly the reflection of the vector across the axis generated by e2. Most notably, R is unitary674

RR∗ = I which can be easily verified from the definition. Being unitary is crucial as under the usual675

round-off error model, applying R to another matrix A does not worsen the already accumulated676

error E. Mathematically, ∥R (A+E)−RA∥ = ∥RE∥ = ∥E∥, where the last equality results from677

basic properties of unitary matrices. We are going to use Arnoldi as an example of how Householder678

projectors are used during orthogonalization. In Figure 5 we have an example of two different variants679

of Arnoldi present in CoLA. The implementations are notably different and also it is easy to see how680

Algorithm 2 is more expensive than Algorithm 1. First, note that for Algorithm 2 we have two for681

loops (line 6 and line 8) whereas for Algorithm 1 we only have one (line 4-6). Worse, the two for682

loops in Algorithm 2 require more flops than the only for loop in Algorithm 1. Note that we do not683

always favor the more expensive but robust implementation of an algorithm as in some cases, like684

when running GMRES, the round-off error is not as impactful to the quality of the solution, and685

shorter runtimes are actually more desirable.686

D Experimental Details687

In this section we expand upon the details of all the experiments ran in the paper. Such details include688

the datasets that were used, the hyperparameters of different algorithms and the specific choices689

19

Algorithm 1 Arnoldi iteration
1: Inputs: A, q0 = ν0/ ∥ν0∥ where possibly

ν0 ∼ N (0, I), maximum number of itera-
tions T and tolerance ϵ ∈ (0, 1).

2: for j = 0 to T − 1 do
3: νj+1 ← Aqj
4: for i = 0 to j do
5: hi,j = q∗

i (Aqj)
6: νj+1 ← νj+1 − hi,jqi
7: end for
8: hj+1,j = ∥νj+1∥
9: if hj+1,j < ϵ then

10: stop
11: else
12: qj+1 = νj+1/hj+1,j

13: end if
14: end for
15: return H,Q =

(
q0| . . . |qT−1|qT

)

Algorithm 2 Householder Arnoldi iteration
1: Inputs: A, ν0 ̸= 0 where possibly ν0 ∼
N (0, I), and maximum number of iterations
T .

2: for j = 0 to T do
3: uj = GET_HOUSEHOLDER_VEC(νj , j)
4: Rj = I− 2uju

∗
j

5: hj = Rjνj

6: qj = R0 · · ·Rjej+1

7: if j < T then
8: νj+1 = Rj · · ·R0(Aqj)
9: end if

10: end for
11: return H,Q = (q0| . . . |qT)
12: function GET_HOUSEHOLDER_VEC(w, k)
13: ui = 0 for i < k and ui = wi for i > k.
14: uk = wk − ∥w∥
15: return u
16: end function

Figure 5: Different versions of the same algorithm, but the Householder variant being more numeri-
cally robust.

of algorithms used both for CoLA but also for the alternatives. We run each of the experiments 3690

times and compute the mean dropping the first observation (as usually the first run contains some691

compiling time much is not too large). We do not display the standard deviation as those numbers692

are imperceptible for each experiment. In terms of hardware, the CPU experiments were run on an693

Intel(R) Core(TM) i5-9600K CPU @ 3.70GHz and the GPU experiments were run on a NVIDIA694

GeForce RTX 2080 Ti.695

D.1 Datasets696

Below we enumerate the datasets that we used in the various applications. Most of the datasets are697

sourced from the University of California at Irvine’s (UCI) Machine Learning Respository that can698

be found here: https://archive.ics.uci.edu/ml/datasets.php. Also, a community repo699

hosting these UCI benchmarks can be found here: https://github.com/treforevans/uci_700

datasets (we have no affiliation).701

1. Elevators. This dataset is a modified version of the Ailerons dataset, where the goal is to702

to predict the control action on the ailerons of the aircraft. This UCI dataset consists of703

N = 14K observations and has D = 18 dimensions.704

2. Kin40K. The full name of this UCI dataset is Statlog (Shuttle) Data Set. This dataset contains705

information about NASA shuttle flights and we used a subset that consists of N = 40K706

observations and has D = 8 dimensions.707

3. Buzz. The full name of this UCI dataset is Buzz in social media. This dataset consists of708

examples of buzz events from Twitter and Tom’s Hardware. We used a subset consisting of709

N = 430K observations and has D = 77 dimensions.710

4. Song. The full name of this UCI dataset is YearPredictionMSD. This dataset consists of711

N = 386.5K observations and it has D = 90 audio features such as 12 timbre average712

features and 78 timbre covariance features.713

5. cit-HepPh. This dataset is based on arXiv’s HEP-PH (high energy physics phenomenology)714

citation graph and can be found here: https://snap.stanford.edu/data/cit-HepPh.715

html. The dataset covers all the citations from January 1993 to April 2003 of |V | = 34, 549716

papers, ultimately containing |E| = 421, 578 directed edges. The notion of relationship717

that we used in our spectral clustering experiment creates a connection between two papers718

20

https://archive.ics.uci.edu/ml/datasets.php
https://github.com/treforevans/uci_datasets
https://github.com/treforevans/uci_datasets
https://github.com/treforevans/uci_datasets
https://snap.stanford.edu/data/cit-HepPh.html
https://snap.stanford.edu/data/cit-HepPh.html
https://snap.stanford.edu/data/cit-HepPh.html

when at least one cites another (undirected symmetric graph). Therefore the dataset that we719

used has the same number of nodes but instead |E| = 841, 798 undirected edges.720

D.2 Compositional experiments721

This section pertains to the experiments of Section 3.2 displayed in Figure 1. We now elaborate on722

each of Figure 1’s panels.723

(a) The multi-task GP problem exploits the structure of the following Kronecker operator724

KT ⊗KX , where KT is a kernel matrix containing the correlation between the tasks and725

KX is a RBF kernel on the data. For this experiment, we used a synthetic Gaussian dataset726

where the train data xi ∼ N (0, ID) which has dimension D = 33, N = 1K and we used727

T = 11 tasks (where the tasks basically set the size of KT). We used conjugate gradients728

(CG) as the iterative method, where we set the hyperparameters to a tolerance of 10−6 and729

to a maximum number of iterations to 1K. We used the exact same hyperparameters for730

CoLA.731

(b) For the bi-poisson problem we set up the maximum grid to be N = 10002. Since this PDE732

problem involves solving a symmetric linear system, we used CG as the iterative method733

with a tolerance of 10−11 and a maximum number of iterations of 10K. The previous734

parameters also apply for CoLA. We note that PDE problems are usually solved to higher735

tolerances as the numerical error compounds as we advance the PDE.736

(c) For the EMLP experiment we consider solving the equivariance constraints to find the737

equivariant linear layers of a graph neural network with 5 nodes. To solve this problem,738

we need to find the nullspace of a large structured constraint matrix. We use the uniformly739

channel heuristic from [14] which distributes the N channels across tensors of different740

orders. We consider our approach which exploits the block diagonal structure, separating741

the nullspaces into blocks, as opposed to the direct iterative approach exploiting only the742

fast MVMs of the constraint matrix. We use a tolerance of 10−5.743

D.3 Sum structure experiments744

This section pertains to the experiments of Section 3.3 contained in Figure 2. We now elaborate on745

each of Figure 2’s panels.746

(a) In this experiment we computed the first principal component of the Buzz dataset. For the747

iterative method we used power iteration with a maximum number of iterations of 300 and a748

stop tolerance of 10−7. CoLA used SVRG also with the same stop tolerance and maximum749

number of iterations. Additionally, we set SVRG’s batch size to 10K and the learning rate750

to 0.0008. We note that a single power iteration roughly contains 43/2 = 21.5 times more751

MVMs than a single iteration of SVRG. In this particular case, the length of the sum is given752

by the number of observations and therefore SVRG uses 430/10 = 43 times less elements753

per iteration, where 10 comes from the 10K batch size. Finally, the 2 is explained by noting754

that SVRG incurs in a full sum update on every epoch.755

(b) In this experiment we trained a GP by estimating the covariance RBF kernel with J = 1K756

random Fourier features (RFFs). The hyperparameters for the RBF kernel are the following:757

length scale (ℓ = 0.1), output scale (a = 1) and likelihood noise (σ2 = 0.1). Moreover, we758

used CG as the iterative solver with a tolerance of 10−8 and 100 as the maximum number759

of iterations (the convergence took much less iterations than the max). For SVRG we used760

the same tolerance but set the maximum number of iterations to 10K, a batch size of 100761

and learning rate of 0.004. We note that a single CG iteration roughly contains 10/2 = 5762

times more MVMs than a single iteration of SVRG. In this particular case, the length of the763

sum is given by the number of RFFs and therefore SVRG uses 1000/100 = 10 times less764

elements per iteration, where 100 comes from the batch size.765

(c) In this experiment we implemented the Neural-IVP method from Finzi et al. [15]. We766

consider the time evolution of a wave equation in two spatial dimensions. At each integrator767

step, a linear system M(θ)θ̇ = F (θ) must be solved to find θ̇, for a d = 12K × 12K768

dimensional matrix. While Finzi et al. [15] use conjugate gradients to solve the linear769

system, we demonstrate the advantages of using SVRG, as M(θ) = 1
m

∑m
i=1Mi(θ) is a770

21

sum over the evaluation at m = 50K distinct sample locations within the domain. In this771

experiment we use a batch size of 500 for SVRG, and employ rank 250 randomized Nyström772

preconditioning for both SVRG and the iterative CG baseline.773

D.4 Applications774

This section pertains to the experiments of Section 4 displayed in Figure 3. We now elaborate on775

each of Figure 3’s panels.776

(a) In this experiment we compute 5, 10 and 20 PCA components for the Buzz dataset. We777

compared against sklearn which uses the Lanczos algorithm through the fast Fortran-based778

ARPACK numerical library. In this case, CoLA uses randomized SVD [31] with a rank 3000779

approximation.780

(b) In this experiment we fit a Ridge regression on the Song dataset with a regularization781

coefficient set to 0.1. We compared against sklearn using their fastest least-square solver782

lsqr with a tolerance of 10−4. In this case, CoLA uses CG with the same tolerance and783

with a maximum number of iterations set to 1K. Additionally, we ran CoLA using CPU and784

GPU whereas we used only CPU for sklearn as it has no GPU support. We observe how785

in the arguably most popular ML method, CoLA is able to beat a leading package such as786

sklearn.787

(c) In this experiment we fit a GP with a RBF kernel on two datasets: Elevators and Kin40K.788

We only used up to 20K observations from Kin40K as that was the maximum number of789

observations that would fit the GPU memory without needing to partition the MVMs. We790

compare against GPyTorch which uses CG and stochastic Lanczos quadrature (SLQ) to791

compute and optimize the negative log-marginal likelihood (loss function). Both experiments792

were run on a GPU for 100 iterations using Adam as an optimizer with learning rate of793

0.1 with the default values of β1 = 0.9 and β2 = 0.999. Additionally, for both GPyTorch794

and CoLA, the CG tolerance was set to 10−4 with a maximum number of CG iterations of795

250 and 20 probes were used for SLQ. Note that both CoLA and GPyTorch have similar796

throughputs, for example GPyTorch runs a 100 iterations on Elevators on 43 seconds797

whereas CoLA runs a 100 iterations on 49 seconds. When training a GP, we solve a block of798

11 linear systems (1 based on y and 10 based on random probes) where one key difference799

is that the CG solver for GPyTorch has a stopping criteria based on the convergence of800

the mean solves whereas CoLA has a stopping criteria based on the convergence of all the801

solves.802

(d) In this experiment we run spectral clustering on the cit-HepPh dataset using an embedding803

size of 8 and also 8 clusters for k-means (with only 1 run of k-means after estimating the804

embeddings). We compare against sklearn using two different solvers, one based on805

Lanczos iterations using ARPACK and another using an Algebraic Multi-Graph solver AMG. In806

this case, CoLA also uses Lanczos iterations with a default tolerance of 10−6. We see how807

sklearn’s AMG solver runs faster than CoLA’s but this is mostly the algorithmic constants808

as they have similar asymptotical behavior (similar slopes).809

(e) In this experiment we solve the Schrödinger equation to find the energy levels of the810

hydrogen atom on a 3-dimensional finite difference grid with up to N = 5K points. In811

order to handle the infinite spatial extent, we compactify the domain by applying the arctan812

function. Under this change of coordinates, the Laplacian has a different form, and hence813

the matrix forming the discretized Hamiltonian is no longer symmetric. We compare against814

SciPy’s Arnoldi implementation with 20 iterations where CoLA also uses Arnoldi with the815

same number of iterations. Surprisingly, CoLA’s JAX jitted code has a competitive runtime816

when compare to SciPy’s runtime using ARPACK.817

(f) In this experiment we solve a minimal surface problem on a grid of maximum size of818

N = 1002 points. To solve this problem we have to run Netwon-Rhapson where each819

inner step involves a linear solve of an asymmetric operator. We compare against SciPy’s820

GMRES implementation as well as JAX’s integrated version of SciPy. The main difference821

between the two is that SciPy calls the fast and highly-optimized ARPACK library whereas822

SciPy (JAX) has its only Python implementation of GMRES which only uses JAX’s823

primitives (equally as it is done in CoLA). The tolerance for this experiment was 5e-3.824

22

We see how CoLA’s GMRES implementation is competitive with SciPy (JAX) but it still825

does not beat ARPACK mostly due to the faster runtime of using a lower level GMRES826

implementation.827

E Code examples828

We now show how our dispatch rules are implemented in CoLA. Specifically we show the implemen-829

tation of our inverse rule.830

831
1 from plum import dispatch832

2833

3 @dispatch834

4 def inverse(A: LinearOperator , ** kwargs):835

5 kws = dict(tol=1e-6, P=None , x0=None , pbar=False , info=False ,836

max_iters =5000)837

6 kws.update(kwargs)838

7 method = kws.pop(’method ’, ’auto’)839

8 if method == ’dense ’ or (method == ’auto’ and np.prod(A.shape) <=840

1e6):841

9 return A.ops.inv(A.to_dense ())842

10 if issubclass(type(A), SelfAdjoint[Sum]) and (method == ’svrg’ or843

(method == ’auto’ and len(A.A.Ms) > 1e4)):844

11 return SymmetricSVRGInverse(A.A, **kws)845

12 if issubclass(type(A), Sum) and (method == ’svrg’ or (method == ’846

auto’ and len(A.Ms) > 1e4)):847

13 return GenericSVRGInverse(A, **kws)848

14 if issubclass(type(A), SelfAdjoint) and (method == ’cg’ or (method849

== ’auto’ and np.prod(A.shape) > 1e6)):850

15 return CGInverse(A, **kws)851

16 if method == ’gmres ’ or (method == ’auto’ and np.prod(A.shape) > 1852

e6):853

17 return GMResInverse(A, **kws)854

18 else:855

19 raise ValueError(f"Unknown method {method} or CoLA didn’t fit856

any selection criteria")857

20858

21 @dispatch859

22 def inverse(A: Identity , ** kwargs):860

23 return A861

24862

25863

26 @dispatch864

27 def inverse(A: ScalarMul , ** kwargs) -> ScalarMul:865

28 return ScalarMul (1 / A.c, shape=A.shape , dtype=A.dtype)866

29867

30868

31 @dispatch869

32 def inverse(A: Product , ** kwargs) -> Product:870

33 output = [inverse(M, ** kwargs) for M in A.Ms]. reverse ()871

34 return Product (* output)872

35873

36874

37 @dispatch875

38 def inverse(A: BlockDiag , ** kwargs) -> BlockDiag:876

39 return BlockDiag (*[inverse(M, ** kwargs) for M in A.Ms],877

multiplicities=A.multiplicities)878

40879

41880

42 @dispatch881

43 def inverse(A: Kronecker , ** kwargs) -> Kronecker:882

44 return Kronecker (*[inverse(M, ** kwargs) for M in A.Ms])883

45884

46885

47 @dispatch886

23

48 def inverse(A: Diagonal , ** kwargs) -> Diagonal:887

49 return Diagonal (1. / A.diag)888

50889

51890

52 @dispatch891

53 def inverse(A: Unitary , ** kwargs) -> Unitary:892

54 return Unitary(A.H)893894

24

