
Learning Conjoint Attentions for Graph Neural Nets
Supplementary Materials

Tiantian He1,2 Yew-Soon Ong1,2 Lu Bai1,2

1Agency for Science, Technology and Research (A*STAR)
2DSAIR, Nanyang Technological University

{He_Tiantian,Bai_Lu}@ihpc.a-star.edu.sg, Ong_Yew_Soon@hq.a-star.edu.sg

{tiantian.he,bailu,asysong}@ntu.edu.sg

A Proof of Theorem 1

To prove Theorem 1, we need to consider the two directions of the iff conditions. If given c1 = c2,
S1 = S2, and

∑
y=x,y∈X1

fc1y −
∑
y=x,y∈X2

fc2y = q[
∑
y=x,y∈X2

sc2y −
∑
y=x,y∈X1

sc1y], for
q = rs

rf
, for the aggregation function utilizing the weights computed by Eq. (7) in the manuscript, we

have:

h(ci, Xi) =
∑
x∈Xi

αcixg(x),

αcix = rf · fcix + rs · scix,

fcix =
exp (mcix)∑

x∈Xi
exp (mcix)

, scix =
exp (Ccix)∑

x∈Xi
exp (Ccix)

,

(1)

where mcix represents the feature similarity between ci and x. Given Eq. (1), we may directly derive
h(c1, X1) and h(c2, X2):

h(c1, X1) =
∑
x∈X1

αc1xg(x) =
∑
x∈X1

[rf · fc1x + rs · sc1x] · g(x)

h(c2, X2) =
∑
x∈X2

αc2xg(x) =
∑
x∈X2

[rf · fc2x + rs · sc2x] · g(x)
(2)

Considering c1 = c2, S1 = S2, and
∑
y=x,y∈X1

fc1y −
∑
y=x,y∈X2

fc2y = q[
∑
y=x,y∈X2

sc2y −∑
y=x,y∈X1

sc1y], for q = rs
rf

, we directly derive h(c1, X1) = h(c2, X2).

If we are given h(c1, X1) = h(c2, X2), we are able to prove that the conditions mentioned in the
theorem are necessary by showing contradictions occur when they are not satisfied. If h(c1, X1) =
h(c2, X2), we have:

h(c1, X1)− h(c2, X2) =∑
x∈X1

[rf · fc1x + rs · sc1x] · g(x)−
∑
x∈X2

[rf · fc2x + rs · sc2x] · g(x) = 0 (3)

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Firstly, assuming S1 6= S2, for any g(·), we thereby have:

h(c1, X1)− h(c2, X2) =
∑

x∈S1∩S2

[
∑

y=x,y∈X1

[rf · fc1y + rs · sc1y]

−
∑

y=x,y∈X2

[rf · fc2y + rs · sc2y]] · g(x)

+
∑

x∈S1\S2

∑
y=x,y∈X1

[rf · fc1y + rs · sc1y] · g(x)

−
∑

x∈S2\S1

∑
y=x,y∈X2

[rf · fc2y + rs · sc2y] · g(x) = 0

(4)

As Eq. (4) holds for any g(·), we may define another function g′(·) as follows:

g(x) = g′(x), for x ∈ S1 ∩ S2

g(x) = g′(x)− 1, for x ∈ S1 \ S2

g(x) = g′(x) + 1, for x ∈ S2 \ S1

(5)

If Eq. (4) holds, we also have:

h(c1, X1)− h(c2, X2) =
∑

x∈S1∩S2

[
∑

y=x,y∈X1

[rf · fc1y + rs · sc1y]

−
∑

y=x,y∈X2

[rf · fc2y + rs · sc2y]] · g′(x)

+
∑

x∈S1\S2

∑
y=x,y∈X1

[rf · fc1y + rs · sc1y] · g′(x)

−
∑

x∈S2\S1

∑
y=x,y∈X2

[rf · fc2y + rs · sc2y] · g′(x)

=
∑

x∈S1∩S2

[
∑

y=x,y∈X1

[rf · fc1y + rs · sc1y]

−
∑

y=x,y∈X2

[rf · fc2y + rs · sc2y]] · g(x)

+
∑

x∈S1\S2

∑
y=x,y∈X1

[rf · fc1y + rs · sc1y] · [g(x) + 1]

−
∑

x∈S2\S1

∑
y=x,y∈X2

[rf · fc2y + rs · sc2y] · [g(x)− 1] = 0

(6)

As Eq. (4) equals Eq. (6), we have:∑
x∈S1\S2

∑
y=x,y∈X1

[rf · fc1y + rs · sc1y] +
∑

x∈S2\S1

∑
y=x,y∈X2

[rf · fc2y + rs · sc2y] = 0 (7)

Obviously, the above equation does not hold as the terms in the summation operator are positive.
Thus, S1 6= S2 is not true. We may now assume S1 = S2 = S. Eliminating the irrational terms in
Eq. (4), we have:∑

x∈S1∩S2

[
∑

y=x,y∈X1

[rf · fc1y + rs · sc1y]−
∑

y=x,y∈X2

[rf · fc2y + rs · sc2y]] · g(x) = 0 (8)

Thus we know each term in the summation equals zero:∑
y=x,y∈X1

[rf · fc1y + rs · sc1y]−
∑

y=x,y∈X2

[rf · fc2y + rs · sc2y] = 0 (9)

As external factors and node feature similarity are heterogeneous, we may assume
∑
y=x,y∈X1

rs ·
sc1y =

∑
y=x,y∈X2

rs · sc2y . Eq. (9) can be simplified and rewritten as:

µ1(x)

µ2(x)
=

exp (mc2x)
∑
x∈S1

∑
y=x,y∈X1

exp (mc1x)

exp (mc1x)
∑
x∈S2

∑
y=x,y∈X2

exp (mc2x)
(10)

2

It is obvious that LHS of Eq. (10) is a rational number. However, the RHS of Eq. (10) can be an
irrational number. We may consider S = {s, s0} and assume c1 = s0, c2 = s. We may also assume
the feature similarity between central node and others as follows:

mc1x = 1, for x ∈ S
mc2s = 1,mc2s0 = 2

(11)

Consider x = s, we have:
µ1(s)

µ2(s)
=

|X1|
|X2| − n+ ne

, (12)

where n stands for the number of s0 in X2. It is obvious that the above equality does not hold as the
RHS is an irrational number, while LHS is a rational number. Thus c1 6= c2 is false. Given c1 = c2,
Eq. (9) can be rewritten as:∑

y=x,y∈X1

rf · fc1y −
∑

y=x,y∈X2

rf · fc2y +
∑

y=x,y∈X1

rs · sc1y −
∑

y=x,y∈X2

rs · sc2y = 0 (13)

To ensure above equation holds, we have:∑
y=x,y∈X1

fc1y −
∑

y=x,y∈X2

fc2y =
rs
rf

[
∑

y=x,y∈X2

sc2y −
∑

y=x,y∈X1

sc1y] (14)

Further denoting rs
rf

= q, we have
∑
y=x,y∈X1

fc1y −
∑
y=x,y∈X2

fc2y = q[
∑
y=x,y∈X2

sc2y −∑
y=x,y∈X1

sc1y]. �

B Proof of Theorem 2

To prove Theorem 2, we can follow the procedure which is used to prove Theorem 1. If given c1 = c2,
S1 = S2, and q ·

∑
y=x,y∈X1

φ(Cc1y) =
∑
y=x,y∈X1

φ(Cc2y), for q > 0, we may directly replace
φ(·) using exp{·}. For the aggregation function solely using the weights obtained by Eq. (8) in the
manuscript, we have:

h(ci, Xi) =
∑
x∈Xi

αcixg(x),

αcix =
fcix · scix∑

x∈Xi
fcix · scix

,

fcix =
exp (mcix)∑

x∈Xi
exp (mcix)

, scix =
exp (Ccix)∑

x∈Xi
exp (Ccix)

,

(15)

where mcix represents the feature similarity between ci and x. Given Eq. (15), we may directly
derive h(c1, X1) and h(c2, X2):

h(c1, X1) =
∑
x∈X1

αc1xg(x) =
∑
x∈X1

[
fc1x · sc1x∑

x∈X1
fc1x · sc1x

] · g(x)

h(c2, X2) =
∑
x∈X2

αc2xg(x) =
∑
x∈X2

[
fc2x · sc2x∑

x∈X2
fc2x · sc2x

] · g(x)
(16)

Given S1 = S2 and c1 = c2, h(c2, X2) can be rewritten as:

h(c2, X2) =
∑
x∈S2

[
fc2x ·

∑
y=x,y∈X2

sc2y∑
x∈S2

fc2x ·
∑
y=x,y∈X2

sc2y
] · g(x)

=
∑
x∈S2

[

exp (mc2x)∑
y∈X2

exp (mc2y)
·
∑
y=x,y∈X2

exp (Cc2y)∑
y∈X2

exp (Cc2y)∑
x∈S2

exp (mc2x)∑
y∈X2

exp (mc2y)

∑
y=x,y∈X2

exp (Cc2y)∑
y∈X2

exp (Cc2y)

] · g(x)

=
∑
x∈S2

exp (mc2x)
∑
y=x,y∈X2

exp (Cc2y)∑
x∈S2

exp (mc2x)
∑
y=x,y∈X2

exp (Cc2y)
· g(x)

(17)

3

Given q ·
∑
x∈X1

exp{Cc1x} =
∑
y=x exp{Cc2y}, Eq. (17) is equivalent to:

h(c2, X2) =
∑
x∈S1

q · exp (mc2x)
∑
y=x,y∈X1

exp (Cc1y)∑
x∈S1

q · exp (mc2x)
∑
y=x,y∈X1

exp (Cc1y)
· g(x) (18)

Considering c1 = c2, we have h(c1, X1) = h(c2, X2).

If we are given h(c1, X1) = h(c2, X2), we are able to prove the conditions mentioned in the theorem
are necessary by showing contradictions occur when they are not satisfied. If h(c1, X1) = h(c2, X2),
we have:

h(c1, X1)− h(c2, X2) =∑
x∈X1

[
fc1x · sc1x∑

x∈X1
fc1x · sc1x

] · g(x)−
∑
x∈X2

[
fc2x · sc2x∑

x∈X2
fc2x · sc2x

] · g(x) = 0 (19)

Firstly, assuming S1 6= S2, for any g(·), we thereby have:

h(c1, X1)− h(c2, X2) =
∑

x∈S1∩S2

[
exp (mc1x)

∑
y=x,y∈X1

exp (Cc1y)∑
x∈S1

exp (mc1x)
∑
y=x,y∈X1

exp (Cc1y)

−
exp (mc2x)

∑
y=x,y∈X2

exp (Cc2y)∑
x∈S2

exp (mc2x)
∑
y=x,y∈X2

exp (Cc2y)
] · g(x)

+
∑

x∈S1\S2

[
exp (mc1x)

∑
y=x,y∈X1

exp (Cc1y)∑
x∈S1

exp (mc1x)
∑
y=x,y∈X1

exp (Cc1y)
] · g(x)

−
∑

x∈S2\S1

[
exp (mc2x)

∑
y=x,y∈X2

exp (Cc2y)∑
x∈S2

exp (mc2x)
∑
y=x,y∈X2

exp (Cc2y)
] · g(x) = 0

(20)

As Eq. (20) holds for any g(·), we may define another function g′(·) as shown in Eq. (5). If Eq. (20)
holds, we also have:

h(c1, X1)− h(c2, X2) =
∑

x∈S1∩S2

[
exp (mc1x)

∑
y=x,y∈X1

exp (Cc1y)∑
x∈S1

exp (mc1x)
∑
y=x,y∈X1

exp (Cc1y)

−
exp (mc2x)

∑
y=x,y∈X2

exp (Cc2y)∑
x∈S2

exp (mc2x)
∑
y=x,y∈X2

exp (Cc2y)
] · g′(x)

+
∑

x∈S1\S2

[
exp (mc1x)

∑
y=x,y∈X1

exp (Cc1y)∑
x∈S1

exp (mc1x)
∑
y=x,y∈X1

exp (Cc1y)
] · g′(x)

−
∑

x∈S2\S1

[
exp (mc2x)

∑
y=x,y∈X2

exp (Cc2y)∑
x∈S2

exp (mc2x)
∑
y=x,y∈X2

exp (Cc2y)
] · g′(x)

=
∑

x∈S1∩S2

[
exp (mc1x)

∑
y=x,y∈X1

exp (Cc1y)∑
x∈S1

exp (mc1x)
∑
y=x,y∈X1

exp (Cc1y)

−
exp (mc2x)

∑
y=x,y∈X2

exp (Cc2y)∑
x∈S2

exp (mc2x)
∑
y=x,y∈X2

exp (Cc2y)
] · g(x)

+
∑

x∈S1\S2

[
exp (mc1x)

∑
y=x,y∈X1

exp (Cc1y)∑
x∈S1

exp (mc1x)
∑
y=x,y∈X1

exp (Cc1y)
] · [g(x) + 1]

−
∑

x∈S2\S1

[
exp (mc2x)

∑
y=x,y∈X2

exp (Cc2y)∑
x∈S2

exp (mc2x)
∑
y=x,y∈X2

exp (Cc2y)
] · [g(x)− 1] = 0

(21)

4

As Eq. (20) equals Eq. (21), we have:∑
x∈S1\S2

[
exp (mc1x)

∑
y=x,y∈X1

exp (Cc1y)∑
x∈S1

exp (mc1x)
∑
y=x,y∈X1

exp (Cc1y)
]

+
∑

x∈S2\S1

[
exp (mc2x)

∑
y=x,y∈X2

exp (Cc2y)∑
x∈S2

exp (mc2x)
∑
y=x,y∈X2

exp (Cc2y)
] = 0

(22)

Obviously, the above equation does not hold as softmax function is positive. Thus, S1 6= S2 is not
true. We may now assume S1 = S2 = S. Eliminating the irrational terms in Eq. (20), we have:∑

x∈S1∩S2

[
exp (mc1x)

∑
y=x,y∈X1

exp (Cc1y)∑
x∈S1

exp (mc1x)
∑
y=x,y∈X1

exp (Cc1y)

−
exp (mc2x)

∑
y=x,y∈X2

exp (Cc2y)∑
x∈S2

exp (mc2x)
∑
y=x,y∈X2

exp (Cc2y)
] · g(x) = 0

(23)

Thus we know each term in the summation equals zero:

exp (mc1x)
∑
y=x,y∈X1

exp (Cc1y)∑
x∈S1

exp (mc1x)
∑
y=x,y∈X1

exp (Cc1y)

−
exp (mc2x)

∑
y=x,y∈X2

exp (Cc2y)∑
x∈S2

exp (mc2x)
∑
y=x,y∈X2

exp (Cc2y)
= 0

(24)

Eq. (24) is equivalent to:∑
y=x,y∈X1

exp (Cc1y)∑
y=x,y∈X2

exp (Cc2y)
=

exp (mc2x)
∑
x∈S1

exp (mc1x)
∑
y=x,y∈X1

exp (Cc1y)

exp (mc1x)
∑
x∈S2

exp (mc2x)
∑
y=x,y∈X2

exp (Cc2y)
(25)

We may consider S = {s, s0} and assume c1 = s0, c2 = s. We may also assume the feature
similarity between central node and others as follows:

mc1x = 1, for x ∈ S
mc2s = 1,mc2s0 = 2

(26)

Consider x = s, we have:∑
s∈X1

exp (Cc1s)∑
s∈X2

exp (Cc2s)
=

e[e
∑
s∈X1

exp (Cc1s) + e
∑
s0∈X1

exp (Cc1s0)]

e[e
∑
s∈X2

exp (Cc2s) + e2
∑
s0∈X2

exp (Cc2s0)]
(27)

As the learning of C is independent of feature mapping, and the computation of attention coefficients,
exp (Ccx) can be any positive value. By setting the exponential values in the above equation as a,
which is a positive value. We have µ1(s)

µ2(s)
= |X1|
|X2|−n+ne . Similar with Eq. (12), c1 6= c2 is not true.

Since c1 = c2 = c, Eq. (25) can be rewritten as:∑
y=x,y∈X1

exp (Ccy)∑
y=x,y∈X2

exp (Ccy)
=

∑
x∈S1

exp (mcx)
∑
y=x,y∈X1

exp (Ccy)∑
x∈S2

exp (mcx)
∑
y=x,y∈X2

exp (Ccy)
= const > 0. (28)

By setting const as 1
q and exp (Ccy) = φ(Ccy) , we have q

∑
y=x,y∈X1

φ(Ccy) =∑
y=x,y∈X2

φ(Ccy). �

C Proof of Corollary 1

According to Theorem 1, we denote X1 = (S, µ1), X2 = (S, µ2), c ∈ S. We also assume∑
y=x,y∈X1

fc1y −
∑
y=x,y∈X2

fc2y = q[
∑
y=x,y∈X2

sc2y −
∑
y=x,y∈X1

sc1y], for q = rs
rf

. When
T uses the weights obtained solely by Eq. (7) in the manuscript to aggregate node features, it is easy
to verify

∑
x∈X1

αcxf(x) =
∑
x∈X2

αcxf(x), i.e., T cannot distinguish the structures satisfied the
aforementioned conditions. When T uses the Conjoint Attentions shown in Eq. (9) in the manuscript
for feature aggregation and the corresponding attention scores are obtained by the Implicit Strategy

5

Table 1: Characteristics of the testing datasets used in our experiments

Cora Cite Pubmed CoauthorCS OGB-Arxiv
N 2708 3327 19717 18333 169343
|E| 5429 4732 44338 327576 1166243
D 1433 3703 500 6805 128
C 7 6 3 15 40

Training Nodes 140 120 60 300 90941
Validation Nodes 500 500 500 500 29799

Test Nodes 1000\2708 1000\3327 1000\19717 1000\18333 48603\169343

(Eq. (7) in the manuscript), we have
∑
x∈X1

αcxf(x)−
∑
x∈X2

αcxf(x) = ε(1
|X1| −

1
|X2|)αccf(c),

where |X1| = |N1|, and |X2| = |N2|. Since |X1| 6= |X2|,
∑
x∈X1

αcxf(x)−
∑
x∈X2

αcxf(x) 6= 0,
meaning the aggregation function T that is based on Eqs. (7) and (9) in the manuscript, can
successfully distinguish all the structures that cannot be discriminated by T solely based on Eq. (7)
in the manuscript. Similarly, when the proposed Conjoint Attention (Eq. (9) in the manuscript)
utilizing the Explicit Strategy (Eq. (8) in the manuscript), we can prove such aggregation function
also can distinguish those distinct multisets that cannot be discriminated by the one solely based on
the Explicit Strategy. �

D More details on the experiments

In this section, how the experiments used to validate the effectiveness of the proposed Graph conjoint
attention networks (CATs) utilizing different Conjoint Attentions are set up is introduced with more
details.

D.1 Dataset description

Five network datasets, which are Cora, Cite, Pubmed [7, 11], CoauthorCS [12], and OGB-Arxiv
[3], are used in our experiments to validate the effectiveness of different approaches. In Cora, Cite,
Pubmed, and OGB-Arxiv, vertices, edges, and vertex features represent the documents, citations
between pairwise documents, and the bag-of-words representations of the documents, respectively.
While, in CoauthorCS, the authors, author-author collaborations, and the keywords of the collaborated
papers are respectively represented as nodes, edges, and node features. The statistics of these
benchmarking datasets are summarized in Table 1, where N , |E|, D, and C denote the number of
vertices, edges, vertex features, and the number of classes in each dataset, respectively.

D.2 Learning tasks for evaluation

Two learning tasks, that are semi-supervised node classification and semi-supervised node clustering
(community detection), are considered in our experiments to validate the effectiveness of different
approaches. To set up the experiments, we closely follow the paradigms used in previous works
[3, 13, 17]. All the datasets are split into three parts: training, validation, and testing. In both two
learning tasks, we use the same split of training set in each dataset. For node classification tasks,
a fraction of nodes are used for testing in each dataset, but all are considered in node clustering
tasks. Specifically, in Cora, Cite, Pubmed, and CoauthorCS, only 20 labeled nodes per class are
used for training, but all the feature vectors. As for testing, we use 1000 nodes in each dataset to
build the testing split for node classification task. For dataset OGB-Arxiv, we use a practical split
strategy provided in [3], segmenting the nodes which represent the academic papers, according to the
publication years. Papers published up to 2017 are in the training split. While those published in
2018 and 2019 are used for validation and test for semi-supervised node classification, respectively.

The reason that we use the aforementioned two learning tasks in our experiments is they may test the
effectiveness of different approaches in a complementary manner. Semi-supervised node classification
may reflect the predictive accuracy of a learner from a local perspective, as a fraction of nodes in
each dataset are used in the testing phase. In contrast, semi-supervised node clustering may indicate
the overall learning performance of an approach, when a small number of node labels are used in
the training stage. As all nodes are considered, semi-supervised node clustering may involve more

6

Table 2: Key settings of different approaches
Cora Cite Pubmed CoauthorCS OGB-Arxiv

MoNet
dropout=0.5

lr=0.01
hidden=16

dropout=0.5
lr=0.01

hidden=16

dropout=0.5
lr=0.01

hidden=16

dropout=0.75
lr=0.005

hidden=32

dropout=0.75
lr=0.005

hidden=256

GCN
dropout=0.5

lr=0.01
hidden=32

dropout=0.5
lr=0.01

hidden=32

dropout=0.5
lr=0.01

hidden=32

dropout=0.5
lr=0.005

hidden=32

dropout=0.5
lr=0.005

hidden=256

GraphSAGE
dropout=0.5

lr=0.01
hidden=16

dropout=0.5
lr=0.01

hidden=16

dropout=0.5
lr=0.01

hidden=16

dropout=0.5
lr=0.01

hidden=32

dropout=0.5
lr=0.01

hidden=256

JKNet
dropout=0.5

lr=0.005
hidden=32

dropout=0.5
lr=0.005

hidden=32

dropout=0.5
lr=0.005

hidden=32

dropout=0.5
lr=0.005

hidden=32

dropout=0.5
lr=0.005

hidden=256

GAT and variants

dropout=0.6
lr=0.005
hidden=8

#hidden heads=8
#output heads=1

dropout=0.6
lr=0.005
hidden=8

#hidden heads=8
#output heads=1

dropout=0.6
lr=0.005
hidden=8

#hidden heads=8
#output heads=1

dropout=0.6
lr=0.005

hidden=32
#hidden heads=8
#output heads=1

dropout=0.75
lr=0.002

hidden=256
#hidden heads=3
#output heads=3

APPNP
dropout=0.6

lr=0.01
hidden=64

dropout=0.6
lr=0.01

hidden=64

dropout=0.6
lr=0.01

hidden=64

dropout=0.6
lr=0.01

hidden=64

dropout=0.75
lr=0.01

hidden=256
SGC lr=0.05 lr=0.05 lr=0.05 lr=0.05 lr=0.05

ARMA
dropout=0.75

lr=0.01
hidden=64

dropout=0.25
lr=0.01

hidden=64

dropout=0.25
lr=0.01

hidden=64

dropout=0.75
lr=0.01

hidden=64

dropout=0.75
lr=0.01

hidden=256

GIN
dropout=0.6

lr=0.01
hidden=64

dropout=0.6
lr=0.01

hidden=64

dropout=0.6
lr=0.01

hidden=64

dropout=0.6
lr=0.01

hidden=64

dropout=0.75
lr=0.01

hidden=256

CAT

dropout=0.6
lr=0.01

hidden=8
#hidden heads=8
#output heads=1

dropout=0.6
lr=0.01

hidden=8
#hidden heads=8
#output heads=1

dropout=0.6
lr=0.01

hidden=8
#hidden heads=8
#output heads=1

dropout=0.6
lr=0.01

hidden=8
#hidden heads=8
#output heads=1

dropout=0.75
lr=0.002

hidden=256
#hidden heads=3
#output heads=3

potential structures in the graph, so that the testing stage is more challenging and the power of
different graph learning methods can be comprehensively evaluated.

D.3 Detailed settings of the graph neural networks

The proposed CATs utilizing different Conjoint Attentions have been compared with a number of
prevalent baselines, including Arma filter GNN (ARMA) [1], Simplified graph convolutional Net-
works (SGC) [14], Personalized Pagerank GNN (APPNP) [6], Graph attention networks (GAT) [13],
Jumping knowledge networks (JKNet) [16], Graph convolutional networks (GCN) [5], GraphSAGE
[2], Mixture model CNN (MoNet) [8], and Graph isomorphism network (GIN) [15]. Besides, we also
construct several variants of GAT which use the concatenation of original node features and structural
embeddings [9, 10] to learn representations in all the testing datasets. To perform an unbiased
comparison, we use the publicly released source codes to implement all the selected baselines. All
the compared baselines use a two-layer network structure, i.e. the output layer followed by only one
hidden layer, to learn representations for the downstream tasks. As for the tunable parameters of
each baseline, we either use the default settings, or attempt to find the ones that lead the baseline
to learn the best representations in each dataset. Here, we summarize the configurations of pivotal
settings of all the compared baselines in Table 2, where lr and hidden stand for the learning rate and
the dimension of hidden layer, respectively. As for the settings of CATs, we generally configure them
as what we have done with GAT (see Table 2). Specifically, the maximum number of training epochs
is set to 1500. The learning rate in OGB-Arxiv is 0.002, and that in the rest of the datasets is set to
0.01. All graph neural networks are initialized using Glorot initialization and trained to minimize
cross-entropy on the training nodes using the Adam SGD optimizer [4]. And all the neural networks
are trained on a single graphics card, NVIDIA RTX 3090 with 24GB, and are done in the following
software environment: Python 3.8, PyTorch 1.8.1, and CUDA 11.1.

E Supplementary results

E.1 C pertaining to the relevance of input features

As mentioned in the manuscript, C can be any factors representing the node-node relevance that
is not considered by the GNN. To further investigate whether the proposed graph neural network
is effective using different interventions external to the GNN, we compute C based on the cosine

7

similarity (FS) between input features (i.e., X) and then let different variants of CATs use it to perform
semi-supervised node classification and clustering tasks in all the testing datasets. The performance
comparisons between CATs and GATs are summarized in Tables 3 and 4. As the tables show, the
performances on both classification and clustering are improved when CATs using similarity in
terms of input features (CAT-I-FS and CAT-E-FS) are compared with GAT. However, they don’t
perform so well as GAT using concatenation of input feature and structural embeddings in some of
the datasets. As the similarity of input features is similar to the correlation of layer-wise node features
internal to the GNN, the performance improvement of CATs is not so evident as that of GAT using
concatenation of input feature and structural embeddings. The obtained results also indicate that
considering structural properties in attention-based GNNs may improve their learning performance.

Table 3: Performance comparison on semi-supervised node classification between GATs and CATs
using input feature similarity.

Cora Cite Pubmed CoauthorCS OGB-Arxiv
GAT 83.84 ± 0.61 70.36 ± 0.42 81.50 ± 0.47 92.80 ± 0.41 72.39 ± 0.07

GAT-k-Lap 84.10 ± 0.24 71.18 ± 0.52 82.56 ± 0.30 92.70 ± 0.31 72.47 ± 0.06
GAT-NetMF 84.44 ± 0.19 70.94 ± 0.16 81.90 ± 0.33 93.16 ± 0.27 72.42 ± 0.08
GAT-Deep 83.68 ± 0.67 69.70 ± 0.57 80.13 ± 0.26 92.93 ± 0.17 72.79 ± 0.09
CAT-I-FS 84.86 ± 0.30 72.54 ± 0.47 82.79 ± 0.34 93.08 ± 0.24 72.57 ± 0.02
CAT-E-FS 84.15 ± 0.23 71.68 ± 0.45 82.33 ± 0.27 93.33 ± 0.23 72.52 ± 0.03

Table 4: Performance comparison on semi-supervised node clustering between GATs and CATs using
input feature similarity.

Cora Cite Pubmed CoauthorCS OGB-Arxiv
GAT 81.39 ± 0.18 69.20 ± 0.28 80.88 ± 0.33 90.09 ± 0.15 76.04 ± 0.38

GAT-k-Lap 80.66 ± 0.31 69.56 ± 0.34 81.59 ± 0.09 89.83 ± 0.18 76.21 ± 0.06
GAT-NetMF 81.75 ± 0.26 68.96 ± 0.21 81.74 ± 0.18 89.85 ± 0.21 76.06 ± 0.07
GAT-Deep 81.08 ± 0.41 68.27 ± 0.06 80.55 ± 0.11 89.70 ± 0.27 76.91 ± 0.15
CAT-I-FS 81.83 ± 0.23 70.36 ± 0.43 81.89 ± 0.37 90.20 ± 0.17 76.33 ± 0.03
CAT-E-FS 81.50 ± 0.26 70.37 ± 0.43 81.91 ± 0.34 90.01 ± 0.19 76.18 ± 0.33

E.2 Experiment on space complexity

When using the proposed CATs to learn representations from graph data, we allow the learning of
Cij (i.e., Eq. (2) or (3) in the manuscript) to be simultaneously done with the training of the neural
network. To do so, the loss function of CATs can be simply reformulated as L = Lpredict + λLext,
where Lpredict is the task-specific loss, Lext is the loss for learning all Cij , and λ is the balancing
parameter. To further reduce the computational burden in the training stage, we use a low-dimensional
matrix V (with dimension N -by-C in our experiments) to approximate C (see Eq. (2) or (3) in
the manuscript). Aiming at investigating whether the proposed CATs utilizing the aforementioned
training strategy can be used in massive graph datasets, we record the number of model parameters of

Table 5: Model comparison between GAT and CAT using different learning strategies
Cora Cite Pubmed CoauthorCS OGB-Arxiv

GAT # Parameters 92430 237644 32454 1746974 384280
Space consumption 1.1GB 1.2GB 1.2GB 2.3GB 5.6GB

CAT-I-SC # Parameters 111285 257505 91504 2021484 7158006
Space consumption 0.8GB 1.0GB 1.3GB 2.5GB 21.4GB

CAT-I-MF # Parameters 111285 257505 91504 2021484 7158006
Space consumption 1.0GB 1.1GB 1.3GB 2.5GB 6.3GB

CAT-E-SC # Parameters 111267 257487 91486 2021466 7158002
Space consumption 1.1GB 1.3GB 1.4GB 2.5GB 21.4GB

CAT-E-MF # Parameters 111267 257487 91486 2021466 7158002
Space consumption 1.2GB 1.3GB 1.4GB 2.5GB 6.6GB

8

CATs and their memory consumption in all the testing datasets and compare it with the closely related
attention-based GNN, GAT. The corresponding results are summarized in Table 5. Compared with
GAT, CATs use more learnable parameters to complete the task of representation learning in different
datasets. Such growth of parameters in CATs is mainly because CATs have to simultaneously learn
structural interventions (e.g., Cij in Eq. (2) or (3) in the manuscript) for the computation of Conjoint
Attentions. As for the space complexity, how much video memory is used by CATs jointly determined
by the graph neural architecture and the learning of Cij . When a simple but effective paradigm, e.g.,
MF shown in Eq. (2) in the manuscript is used for learning Cij , the memory consumption of CATs is
very close to that of GAT, although they have more parameters involved into the back-propagation
process. For example, in OGB-Arxiv, which is the largest dataset used in our experiments, CATs
take only 1GB more than GAT does to learn representations. Given the competitive results on space
complexity, it is said that the proposed Conjoint Attentions and corresponding CATs can be used in
massive graph data for effective representation learning.

E.3 Sensitivity test on λ

As structural interventions (C) are learnable, we allow the learning of C to be simultaneously done
with the training of CATs. Thus, the loss function of CATs becomes L = Lpredict + λLext, where
Lpredict is the task-specific loss (e.g., cross entropy loss for node classification), Lext can be the sum
of all possible items shown in either Eq. (2) or (3), and λ is a balancing parameter for controlling
the relative significance of learning Cij . To investigate the model sensitivity against λ, we set
λ = [10−4, 10−2, 10−1, 1, 5, 10, 20, 50, 100] and run CATs in all datasets to test their performance
on different settings of λ. The results have been plotted in Fig. 1. As depicted, all the versions of
CATs may perform robustly under a wide range settings of λ.

Obtaining the presented results might be due to the following reasons. In this paper, we mostly use
semi-supervised learning tasks to test the effectiveness of different approaches. This means only
a very low proportion of node labels (e.g., 140 out of 2708 in dataset Cora) are used to compute
Lpredict and consequently only the gradients related to this small number of labeled nodes will be
computed in the back propagation stage of CATs in each training epoch. Besides, a proportion of
the gradients related to the labeled nodes might still be set to zero due to the dropout mechanism in
each layer of the GNN. Given the mentioned property of learning tasks and the dropout mechanism
used by GNN, in each training epoch, the gradients related to Lpredict contribute very limitedly to
the learning of Cij . In contrast, Lext sums all the Cijs and we do not apply dropout on the training
of Lext, i.e., the learning of Cij . As a result, the learning of Cij is dominantly determined by Lext,
i.e., Eqs. (2) or (3) in the manuscript, and the proposed CATs are less sensitive to the changes of λ.
Changing the settings of λ may only affect the convergence of learning Cij . For simplicity, we set
λ = 0.01 for CATs in our experiments.

Figure 1: Sensitivity test on λ

9

F Computational complexity

The computational complexity of the proposed CATs is mainly determined by the computation of
attention layers and structural interventions. For the computation of each attention head in the graph
neural network, its complexity for learning Dl+1 features for each node is same to the classical
GAT, and can be represented as O(NDlDl+1 + (|E|+ e)Dl+1), where e represents average degree
of the nodes. If there are K attention heads used, the complexity becomes O(K(NDlDl+1 +
(|E| + e)Dl+1)). As for the structural interventions for computing Conjoint Attentions, i.e., Cij ,
the complexity depends on its learning method. For example, when either matrix factorization or
subspace learning method (Eq. (2) or (3) in the manuscript) is used, the complexity for learning each
Cij in each epoch is approximately O(2(C + 1)N + C), where we assume the dimension of V that
is used for approximating C is N -by-C.

References
[1] Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. Graph neural

networks with convolutional arma filters. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2021.

[2] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Advances in neural information processing systems, pages 1024–1034, 2017.

[3] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
arXiv preprint arXiv:2005.00687, 2020.

[4] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[5] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017.

[6] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank.

[7] Qing Lu and Lise Getoor. Link-based classification. In Proceedings of the Twentieth In-
ternational Conference on International Conference on Machine Learning, pages 496–503,
2003.

[8] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and
Michael M Bronstein. Geometric deep learning on graphs and manifolds using mixture model
cnns. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 5115–5124, 2017.

[9] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 701–710, 2014.

[10] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. Network embedding
as matrix factorization: Unifying deepwalk, line, pte, and node2vec. In Proceedings of the
eleventh ACM international conference on web search and data mining, pages 459–467, 2018.

[11] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI magazine, 29(3):93–93, 2008.

[12] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann.
Pitfalls of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

[13] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

10

[14] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger.
Simplifying graph convolutional networks. In International conference on machine learning,
pages 6861–6871. PMLR, 2019.

[15] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

[16] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and
Stefanie Jegelka. Representation learning on graphs with jumping knowledge networks. In
International Conference on Machine Learning, pages 5453–5462. PMLR, 2018.

[17] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning
with graph embeddings. In International conference on machine learning, pages 40–48. PMLR,
2016.

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes]

• Did you include the license to the code and datasets? [No] The code and the data are
proprietary.

• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

11

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

12

	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Corollary 1
	More details on the experiments
	Dataset description
	Learning tasks for evaluation
	Detailed settings of the graph neural networks

	Supplementary results
	C pertaining to the relevance of input features
	Experiment on space complexity
	Sensitivity test on

	Computational complexity

