
Under review as a conference paper at ICLR 2024

TEMPORAL PARALLELIZATION FOR GPU ACCELERA-
TION OF SPIKING NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Inspired by neurobiological structures, Spiking Neural Networks (SNNs) are her-
alded as a significant advancement in deep learning, given their potential for su-
perior computational efficiency. However, this potential often remains untapped
on contemporary hardware platforms. Specifically, when deployed on standard
GPUs, SNNs tend to require extended computation times, placing them at a dis-
advantage compared to traditional Artificial Neural Networks (ANNs). Such inef-
ficiencies have somehow diminished enthusiasm for SNN research and presented
the tangible challenge to achieving scalability. To address such a challenge, this
study introduces a temporal parallelization method specifically tailored for accel-
erating the propagation dynamics of SNNs on GPUs. Furthermore, we furnish two
distinct implementations1 based on the CUDA and JAX frameworks respectively,
ensuring adaptability across both single and multi-GPU setups. When bench-
marked against several established SNN implementations, the empirical analysis
confirmed the efficacy of our proposed method. Notably, with the Leaky Integrate-
and-Fire model as a test case, the CUDA-based implementation achieved 5× to
40× acceleration on the A100 GPU.

1 INTRODUCTION

Deep learning has firmly entrenched itself as a transformative field in computer science and artificial
intelligence. Python, as a preferred programming language, has propelled this transformation. No-
tably, PyTorch (Paszke et al., 2019) stands out in the Python ecosystem, offering a robust platform
for researchers working on traditional artificial neural network structures. Building on this momen-
tum, the deep learning framework Flax (Heek et al., 2023), which leverages the capabilities of JAX
(Bradbury et al., 2018), was introduced, encapsulating the high-performance programming features
of JAX and further elevating the efficiency of deep learning development.

As the deep learning landscape evolves, the integration of biological neural dynamics, manifested
in the form of Spiking Neural Networks (SNNs), has emerged as a promising research direction.
Presently, the spiking attribute is primarily viewed as a module or characteristic that can be inte-
grated into existing artificial neural networks (ANNs). This perspective is largely influenced by
studies focused on converting ANNs into SNNs (Bu et al., 2021; Li et al., 2021; Ding et al., 2021;
Rueckauer et al., 2017; Diehl et al., 2015). Consequently, ANNs serve as foundational pillars for
contemporary SNNs. Reflecting this trend, numerous SNN libraries have been developed atop the
PyTorch framework, each distinguished by its unique focus (Hazan et al., 2018; Fang et al., 2020;
Pehle & Pedersen, 2021; Eshraghian et al., 2021).

While SNNs exhibit promise, a significant challenge arises with the incorporation of the temporal
dimension. This addition often leads to slower training speeds. Many researchers have sought to
mitigate this by truncating the network’s temporal length (Chowdhury et al., 2021; Suetake et al.,
2023; Xu et al., 2023), inadvertently suppressing its temporal characteristics and making SNNs
closely resemble ANNs (Han et al., 2020; Bu et al., 2023), which potentially forfeits richer research
opportunities. Nonetheless, the relatively sluggish execution speeds of SNNs on prevalent GPU
platforms impede consistent research progress. While specialized hardware designs can potentially
address this, the prevailing lack of enthusiasm in algorithmic research diminishes motivations for

1The source code will be made publicly available.

1

Under review as a conference paper at ICLR 2024

such pursuits. In this work, we seek to address this challenge by proposing a theoretically-grounded
solution that parallelizes the temporal information of SNNs during propagation. The proposed ap-
proach not only mitigates the slowdown induced by the temporal dimension but also paves the way
for the scalable expansion of SNNs in distributed GPU environments. In summary, our primary
contributions include:

• We have proposed a temporal parallelization method tailored for universal SNN units. From
the theoretical point of view, we propose to decouple the propagation pattern of the generic
SNN model in the temporal dimension, streamlining the information transfer while pre-
serving arithmetic accuracy. The method eschews the need for approximation substitutions,
ensuring both simplicity and fidelity in the model’s outcomes.

• We have extended the proposed parallelization method across multiple GPUs. Our multi-
GPU solution diverges from conventional batch-based distribution, aligning instead with a
Multiple Instruction, Multiple Data (MIMD) distributed architecture. This unique design,
inherently suited to SNNs, distributes the model across GPUs temporally. Theoretically,
with sufficiently large timesteps, this architecture facilitates progressive speedup benefits
commensurate with timestep expansions.

• We have designed and implemented specialized acceleration infrastructures based on both
CUDA and JAX frameworks. Leveraging our refined propagation pattern with reduced
temporal dependencies, we have crafted implementations that amalgamate parallelism with
operator fusion. The implementations optimize performance across varied timesteps by
minimizing memory access overhead. Empirical evaluations substantiate the notable per-
formance gains achieved in both CUDA and JAX environments.

2 BACKGROUND

As the fundamental units of the brain, neurons exhibit unique information transfer properties. To
emulate these intricate behaviors in computational models, various spiking neuron models have
been proposed. Notably, the Spike Response Model (SRM) Gerstner et al. (2014) offers an accu-
rate representation for a broad category, encompassing parameters like membrane potential decay,
spike threshold, refractory period, etc. Essentially, the membrane potential of a neuron undergoes
continuous decay unless it receives an external stimulus. Upon receiving information, the potential
increases until it hits a threshold, resulting in the generation of a spike, followed by an immediate
potential drop.

However, as the deep learning domain advances, the need for simplicity becomes paramount. Com-
plex models, while accurate, often introduce implementation challenges. Notably, from a statistical
perspective, SRM can be viewed as a Generalized Linear Model (GLM) (Truccolo et al., 2005),
thus enabling its simplification. The Leaky Integrate-and-Fire (LIF) model emerges as a streamlined
version of SRM, preserving its core information transfer mechanisms while reducing the intrica-
cies of neuronal information transmission. Recognizing the potential of this simplification, recent
research has further refined the LIF model, yielding an iterable form (Wu et al., 2019). This adap-
tation ensures that spiking neurons seamlessly integrate into the deep learning paradigm without
compromising the salient features of SRM.

Consider a deep spiking neural network (SNN) with multiple layers. For the n-th layer, let v(t,n)i

denote the membrane potential of the i-th neuron at time t, and let x(t,n)
i represent its corresponding

output. We assume that, at the initial time step, the membrane potential for each neuron in layer
n is given by v

(0,n)
i = V

(n)
rest , where V

(n)
rest characterizes the resting potential of a neuron in that

layer. Additionally, let kτ be a decay factor governing the potential’s evolution over time. Under
these assumptions, the iterative dynamics of the LIF model for each neuron can be mathematically
formulated as:

v
(t,n)
i = kτ · v(t−1,n)

i ·
(
1− x

(t−1,n)
i

)
+ x

(t−1,n)
i · V (n)

rest + x
(t,n−1)
i , (1)

with the spike generation mechanism as:

x
(t,n)
i = Θ

(
v
(t,n)
i − V

(n)
th

)
=

{
1, if v(t,n)i − V

(n)
th ≥ 0

0, otherwise
. (2)

2

Under review as a conference paper at ICLR 2024

Here, Θ signifies the spike activation function intrinsic to SNNs, with x
(t,n−1)
i being the output

from the neuron in the preceding layer. Since these formulations provide a rigorous representation
of the spiking mechanism and preserve the inherent characteristics of spiking neurons, without loss
of generality, the ensuing discussions and methodologies in this paper are grounded on them.

3 PARALLELIZATION METHOD

We first delve into the foundational aspects of the the tailored parallelization method and its theoret-
ical implications when executed on a single GPU. Then, it is further followed by an exploration of
the method’s scalability across multiple GPUs.

3.1 TEMPORAL PARALLELIZATION ON SINGLE GPU

(a) Serial propagation

(b) Temporally parallel propagation

Figure 1: Comparative illustration of the conventional serial propagation model versus the tem-
porally parallel propagation approach for SNNs. The temporal dimension is unfolded, and each
individual box symbolizes the collection of neuronal data for a specific SNN layer at a given time
instance.

As given by Eq. (1), the dynamics of the membrane potential in SNNs are intricately tied to both
temporal and spatial factors. This entails that the activity of any given neuron at time t is predicated
on its preceding state, as well as the input it receives from neighboring neurons within the same
layer. Fig. 1a graphically demonstrates this spatial-temporal interplay by unfolding the temporal di-
mension. In this representation, each encapsulated set of neuronal information in a box is contingent
on its antecedent data in both the time and spatial dimensions.

A noteworthy observation is that the computations within the same network layer across various
time moments are fundamentally equivalent. This inherent characteristic offers an avenue for par-
allelization across the temporal dimension, provided that the initial states for all time steps are
pre-established. To actualize this parallelism, a synthesis of Eq. (1) and Eq. (2) yields the following
formulation:

v
(t,n)
i = kτ · v(t−1,n)

i +
(
V

(n)
rest − kτ · v(t−1,n)

i

)
·Θ

(
v
(t−1,n)
i − V

(n)
th

)
︸ ︷︷ ︸

f(n)
(
v
(t−1,n)
i

)
+ x

(t,n)
i . (3)

As visualized in Fig. 2, this derived equation decouples the dependency of v
(t,n)
i at time t from

x
(t−1,n)
i at the preceding moment t−1. Such a transformation is instrumental in facilitating parallel

computation.

From Eq. (3), in any layer n at time t, the membrane potential v(t,n)i is effectively described by

f
(
v
(t−1,n)
i

)
and the associated output x(t,n−1)

i . If all inputs across various time points are im-

mediately available, then x
(t,n−1)
i can be computed in a parallel manner, thereby optimizing the

computational effort.

3

Under review as a conference paper at ICLR 2024

(a) Data flow of serial propagation (b) Data flow of temporally parallel propagation

Figure 2: Transformation from the conventional serial propagation methodology to a temporally
parallelized approach in SNNs. The left panel showcases the data flow based on the original SNNs
propagation model as per Eq. (1), while the right panel depicts the enhanced flow after the transfor-
mation as detailed in Eq. (3). This transformation retains the integrity of the final computation.

It is essential to note that each v
(t,n)
i arises from a nonlinear evaluation of f(·) based on its prior

time value v
(t−1,n)
i , making it non-trivial to decouple the data flow of vi. This challenge, however,

can be addressed using operator fusion techniques. T his approach is visualized in Fig. 1b and the
right segment of Fig. 2, where the rounded boxes consolidate computations for a layer over time,
thus reducing repetitive memory operations.

Theoretically, for a specific layer in the SNNs having a timestep of T and given that the average
duration for accessing memory of a single timestep’s data is tmem1, conventional SNN propagation
would necessitate the GPU to undertake reading and writing operations for T data sets. In contrast,
with the benefits of parallel optimization and operator fusion, the GPU can simultaneously read
and write T data sets, thus resulting in only two memory operations. If the average time taken to
simultaneously access T data sets is tmem2, the total durations for serial and parallel access, denoted
by ts and tp respectively, become:

ts = 2 · T · tmem1, (4a)

tp = 2 · tmem2. (4b)

In an idealistic scenario where other overheads are negligible, the maximum potential speedup ratio,
denoted as σ, can be expressed as:

σ =
ts
tp

=
T · tmem1

tmem2
. (5)

3.2 PARALLELIZATION ACROSS MULTIPLE GPUS

The method introduced in the previous subsection facilitates temporal parallelism in SNNs. By
reducing memory access and utilizing operator fusion, this method achieves efficient computation,
even with small timesteps. However, when the timestep becomes significantly large, computation on
a single GPU can become a bottleneck. As the proposed approach expands the temporal dimension,
it may lead to storage limitations for large timesteps. Consequently, if only one GPU is at hand,
the system may revert to a more conventional serial propagation pattern. To mitigate this limitation,
this section explores the feasibility of extending the temporal parallelization method across multiple
GPUs.

Let us assume there are k (k ≥ 2) GPUs available. If the computational workload of the SNNs
for one layer is extensive enough to be split into k non-parallelizable segments in terms of the time
dimension, then the time required to complete k sub-tasks on these GPUs is t(k). If the inter-GPU
communication time is Tc, then we have:

Ts = k · t(k), (6a)

T (k)
m = (k − 1) · Tc + t(k), (6b)

4

Under review as a conference paper at ICLR 2024

(a) Temporal parallelization on a single GPU

(b) Temporal parallelization across multiple GPUs

Figure 3: Schematics showcasing temporal parallelization on both single and multiple GPUs. The
horizontal axis represents time, while the vertical axis represents the hierarchical propagation of the
networks. The capitalized forms V(t,n) and X(t,n) represent the membrane potential and neuronal
output in the tensor form of SNNs, corresponding to the element-wise variables v(t,n)i and x

(t,n)
i in

Eq. (1).

where Ts and T
(k)
m denote the total task time on a single GPU and k GPUs respectively. Correspond-

ingly, the multi-GPU speedup rate µ can be defined as:

µ =
Ts

T
(k)
m

=
k

(k − 1) · Tc / t(k) + 1
. (7)

As Eq. (7) indicates, the speedup ratio µ will exceed 1 whenever t(k) surpasses T . This suggests
that leveraging multi-GPUs will yield a performance boost, especially when tasks that are non-
parallelizable on a single GPU are time-intensive.

For SNNs consisting of a single layer of spiking-activated neurons, there is only one communication
instance between two GPUs. This communication can be approximated as a constant Tc as shown
in Eq. (6b). However, in more complex scenarios with multiple spiking neuron layers (as depicted
in Fig. 3b), the data transmission time between layers might vary due to different layer data sizes.
This variability introduces opportunities for further optimization in inter-GPU transfers. For multi-
layered spiking neurons, asynchronous multi-GPU communication can be employed to ensure Tc ∈
(Tlb, Tub], with:

Tlb = Tcmax, (8a)

Tub = N · Tavg, (8b)
where N denotes the number of layers of spiking neurons, Tcmax and Tavg denote the maximum
value of inter-GPU transmission elapsed time and the transmission elapsed time expectation in neu-
rons of N layers, respectively.

4 PROGRAMMING MODELS AND IMPLEMENTATIONS

This section introduces the infrastructures developed around the temporal parallelization method.
Specifically, the implementations leverage the foundational architectures of JAX(Bradbury et al.,
2018) and CUDA (NVIDIA et al., 2023). While JAX implementation supports single GPU paral-
lelization, the CUDA implementation accommodates both single and multi-GPU configurations. We
begin by discussing the programming models tailored for both JAX and CUDA implementations,
followed by details about the implementation schemes and an exploration of the design considera-
tions for the associated functional modules.

5

Under review as a conference paper at ICLR 2024

4.1 PROGRAMMING MODELS

This subsection presents the programming models for both JAX (single-GPU) and CUDA (single
and multi-GPU). Examples will be used to illustrate the interfaces provided by our infrastructures,
named snn jax and SnnCuda for JAX and CUDA, respectively.

1 from jax import random
2 from flax.linen import Conv
3 from snn_jax import LIF, snn_wrapper
4

5 seed = ... # User-defined random number seed
6 input_shape = ... # User-defined input data size
7 datasets = ... # User-defined datasets
8 conv_info = ... # User-defined convolutional layer information
9 lif_info = ... # User-defined LIF layer information

10 rng, subkey = random.PRNGKey(seed)
11

12 # User-defined spiking neural network
13 network = snn_wrapper((
14 fnn.Conv(conv_info),
15 LIF(lif_info)
16), subkey, input_shape)
17

18 # Use of user-defined spiking neural network
19 for data in datasets:
20 logits = network(data)

Listing 1: Python example of the single-GPU programming model using JAX with Flax. snn jax
is the custom infrastructure package.

Listing 1 provides an example based on the JAX programming model. Rooted in Python, the exam-
ple demonstrates how a convolutional layer combined with a LIF neuron can be used to design SNNs
optimized for single GPU temporal parallelization. The snn wrapper encapsulates the network
layers, making the neural network usable as a straightforward function call.

Listing 2 presents the CUDA-based programming model, grounded in C#. This object-oriented ap-
proach offers encapsulated interfaces. Much like the JAX model, the user defines specific network
parameters before running it. The example showcases a convolutional layer paired with a LIF neu-
ron, with both single and multi-GPU temporal parallelization abstracted from the user through the
SnnCuda namespace.

4.2 IMPLEMENTATIONS

In the proposed infrastructure, the primary focus is on optimizing spiking neurons at the design and
implementation levels. However, modern SNNs usually consist of both ANN operators (e.g. convo-
lution) and spiking neurons. Hence, to construct complete SNNs, we integrated existing frameworks.
For the JAX implementation, we employed the ANN operators from Flax (Heek et al., 2023). For the
CUDA implementation, we incorporated the ANN operators directly from the cuDNN framework
(Chetlur et al., 2014).

For operator fusion in the JAX implementation, we utilized the just-in-time (JIT) module. Specifi-
cally, we incorporated the computational-graph-level compiler, XLA, which offers substantial oper-
ator fusion capabilities. On the other hand, for the CUDA implementation (both single and multi-
GPU configurations), we employed basic native functions provided by both C# and CUDA. This
pre-compilation approach enhances the speedup, thus yielding further performance gains.

6

Under review as a conference paper at ICLR 2024

1 using SnnCuda;
2

3 class Program {
4 static void Main(string[] args) {
5 long seed = ...; // User-defined random number seed
6

7 /* User-defined datasets and input data size */
8 GPUOffsetPointer<T> datasets = ...;
9 readonly var inputShape => ...;

10

11 /* User-defined layer information */
12 readonly var convInfo => ...;
13 readonly var lifInfo => ...;
14

15 /* User-defined spiking neural network */
16 var network = new List<ILayer> {
17 ConvLayer(convInfo),
18 LIFLayer(lifInfo)
19 };
20

21 /* Single-GPU computing */
22 int device = ...;
23 var info = new NetInfo(network, inputShape, seed, device);
24 foreach (var data in datasets) {
25 GPUScheduler.TParallelSingle<T>(info, data, out logits);
26 }
27

28 /* Multi-GPU computing */
29 List<int> devices = ...;
30 var info = new NetInfo(network, inputShape, seed, devices);
31 foreach (var data in datasets) {
32 GPUScheduler.TParallelMultiple<T>(info, data, out logits);
33 }
34 }
35 }

Listing 2: C# example of the single and multi-GPU programming model using CUDA. SnnCuda
is the custom infrastructure package.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

The experiments in this section involve runtime comparisons across multiple platforms and imple-
mentations. To ensure fair comparisons, we standardized the hyperparameters as per Eq. (1), setting
Vrest = 0, kτ = 0.2, and Vth = 0.3. For libraries which do not provide hyperparameters that include
kτ , we use τ = 1.25 with kτ = 1−1/τ . All experiments were conducted on unoccupied A100 GPUs
to ensure consistent performance metrics.

5.2 SINGLE-GPU ACCELERATION

In this part, we conduct experiment on single-GPU acceleration. Specifically, the experiment is
conducted on a single-layer LIF neuron with each layer containing 1,000,000 neurons. The the final
results are averaged over 1,000 independent executions.

As evidenced in Table 1, our approach yields promising acceleration performance on both JAX
and CUDA implementations. Notably, the CUDA implementation demonstrate a more significant
speedup, achieving approximately 40x speedup than other SNN implementations.

7

Under review as a conference paper at ICLR 2024

Implementation Timesteps

8 16 32 64 128

PyTorch 0.6460 1.6525 3.0774 4.4984 9.6468
SpikingJelly-PyTorch 0.4987 0.8368 1.4091 2.5561 4.8794

SpikingJelly-CuPy 0.4923 0.8123 1.4094 2.5398 4.8246
snnTorch 2.0784 4.0026 7.6813 15.1730 30.5006

JAX (ours) 0.1130 0.1749 0.3174 0.6043 1.1839
CUDA (ours) 0.0542 0.1005 0.1934 0.3813 0.7631

Table 1: Single-GPU performance of our approach against other SNN implementations. Here, Py-
Torch represents a baseline serial approach. All time measurements are in seconds.

5.3 MULTI-GPU ACCELERATION

Figure 4: Performance of multi-GPU acceleration using the CUDA implementation of our approach.

In this part, we conduct experiment on multi-GPU acceleration. Specifically, the experiment is
conducted with the number of GPUs ranging from 1 to 4. The the final results are averaged over
1,000 independent executions. As shown in Fig. 4, the computational costs reduce significantly as
the number of GPUs increase, indicating the promising performance of our approach across multiple
GPUs.

6 RELATED WORK

6.1 SNN LIBRARIES

In light of the integration of spiking neuron properties into deep learning, a plethora of libraries tai-
lored for SNNs have emerged, each accentuating different facets of the domain. BindsNET (Hazan
et al., 2018), built upon the PyTorch platform, emphasizes applications in machine and reinforce-
ment learning. SpikingJelly (Fang et al., 2020), on the other hand, accentuates algorithmic advance-
ments in SNNs, offering two backends and two SNN propagation mechanisms, thereby fostering
both algorithmic enhancements and performance optimizations. Norse (Pehle & Pedersen, 2021)
and snnTorch (Eshraghian et al., 2021) expand on SNNs within the PyTorch ecosystem, prioritiz-
ing comprehensive functional support alongside an extensive documentation suite, lauded for its
user-centric design. In contrast, SPAIC (Hong et al., 2022) and ENLARGE (Qu et al., 2023) take
a distinctive approach, leaning towards a more detailed portrayal of neural properties and offering
an alternative programming paradigm. Furthermore, libraries like GeNN (Yavuz et al., 2016) and
cuSNN (Paredes-Valles et al., 2020), developed directly atop CUDA, minimize runtime overhead by
leveraging substrate-based designs.

6.2 GPU-ACCELERATION FRAMEWORKS

In the GPU acceleration landscape, NVIDIA’s CUDA (NVIDIA et al., 2023) stands out by offering a
high-level interface for direct GPU interactions. As a foundational software layer, CUDA facilitates
direct engagement with the GPU’s virtual instruction set and its parallel computing components,
thereby streamlining kernel computations. This closeness to the hardware layer augments devel-
opment flexibility. To further simplify the developer experience, optimized standard routines are
provided. For instance, cuDNN (Chetlur et al., 2014) delivers deep neural network operator imple-
mentations within the CUDA framework. Many high-level deep learning frameworks are built on
this foundation.

By harnessing the power of Autograd and XLA, Google’s JAX (Bradbury et al., 2018) furnishes
an interface tailored for high-performance numerical computations and deep learning. Its just-in-
time (JIT) compilation mechanism translates profiled computational graphs into optimized machine
code, enhancing both execution efficiency and performance. In the realm of deep neural network

8

Under review as a conference paper at ICLR 2024

training, JAX offers notable performance uplifts. The Flax deep learning framework, inheriting
JAX’s capabilities, leverages its Autograd and JIT features to enhance the performance of deep
learning models.

7 CONCLUSION

In this work, we introduced a versatile GPU-accelerated technique for the temporal parallelization
of SNNs, demonstrating its efficacy on both single and multi-GPU architectures. Rooted in the core
principles of neuroscience, we specifically targeted spiking neurons compatible with deep learn-
ing paradigms, ensuring the preservation of intrinsic properties in line with existing methodologies.
This foundational understanding enabled the design of parallelization and operator fusion optimiza-
tion schemes tailored to the unique propagation characteristics of SNNs. Our approach was then
naturally extended to encompass multi-GPU architectures, underpinned by a thorough theoretical
analysis. We subsequently implemented single-GPU infrastructures built on both JAX and CUDA
platforms, as well as a multi-GPU solution leveraging the CUDA framework, each accompanied by
intuitive programming models. Benchmarked against some prominent implementations of SNNs,
the comprehensive experiments underscored the versatility and efficiency gains of our proposed
infrastructures.

REFERENCES

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jax.

Tong Bu, Wei Fang, Jianhao Ding, PengLin Dai, Zhaofei Yu, and Tiejun Huang. Optimal ann-
snn conversion for high-accuracy and ultra-low-latency spiking neural networks. In International
Conference on Learning Representations (ICLR), 2021.

Tong Bu, Wei Fang, Jianhao Ding, PengLin Dai, Zhaofei Yu, and Tiejun Huang. Optimal ann-snn
conversion for high-accuracy and ultra-low-latency spiking neural networks, 2023.

Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan Catan-
zaro, and Evan Shelhamer. cudnn: Efficient primitives for deep learning. CoRR, abs/1410.0759,
2014. URL http://arxiv.org/abs/1410.0759.

Sayeed Shafayet Chowdhury, Nitin Rathi, and Kaushik Roy. One timestep is all you need: Training
spiking neural networks with ultra low latency. CoRR, abs/2110.05929, 2021. URL https:
//arxiv.org/abs/2110.05929.

Peter U Diehl, Daniel Neil, Jonathan Binas, Matthew Cook, Shih-Chii Liu, and Michael Pfeiffer.
Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing.
In 2015 International joint conference on neural networks (IJCNN), pp. 1–8. IEEE, 2015.

Jianhao Ding, Zhaofei Yu, Yonghong Tian, and Tiejun Huang. Optimal ann-snn conversion for fast
and accurate inference in deep spiking neural networks, 2021.

Jason K Eshraghian, Max Ward, Emre Neftci, Xinxin Wang, Gregor Lenz, Girish Dwivedi, Mo-
hammed Bennamoun, Doo Seok Jeong, and Wei D Lu. Training spiking neural networks using
lessons from deep learning. arXiv preprint arXiv:2109.12894, 2021.

Wei Fang, Yanqi Chen, Jianhao Ding, Zhaofei Yu, Timothée Masquelier, Ding Chen, Liwei Huang,
Huihui Zhou, Guoqi Li, Yonghong Tian, et al. Spikingjelly. https://github.com/
fangwei123456/spikingjelly, 2020. Accessed: 2023-03-18.

Wulfram Gerstner, Werner M. Kistler, Richard Naud, and Liam Paninski. Neuronal Dynamics:
From Single Neurons to Networks and Models of Cognition. Cambridge University Press, 2014.
doi: 10.1017/CBO9781107447615.

9

http://github.com/google/jax
http://github.com/google/jax
http://arxiv.org/abs/1410.0759
https://arxiv.org/abs/2110.05929
https://arxiv.org/abs/2110.05929
https://github.com/fangwei123456/spikingjelly
https://github.com/fangwei123456/spikingjelly

Under review as a conference paper at ICLR 2024

Bing Han, Gopalakrishnan Srinivasan, and Kaushik Roy. Rmp-snn: Residual membrane potential
neuron for enabling deeper high-accuracy and low-latency spiking neural network. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.

Hananel Hazan, Daniel J. Saunders, Hassaan Khan, Devdhar Patel, Darpan T. Sanghavi, Hava T.
Siegelmann, and Robert Kozma. Bindsnet: A machine learning-oriented spiking neural net-
works library in python. Frontiers in Neuroinformatics, 12:89, 2018. ISSN 1662-5196.
doi: 10.3389/fninf.2018.00089. URL https://www.frontiersin.org/article/10.
3389/fninf.2018.00089.

Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, Andreas
Steiner, and Marc van Zee. Flax: A neural network library and ecosystem for JAX, 2023. URL
http://github.com/google/flax.

Chaofei Hong, Mengwen Yuan, Mengxiao Zhang, Xiao Wang, Chegnjun Zhang, Jiaxin Wang, Gang
Pan, Zhaohui Wu, and Huajin Tang. Spaic: A spike-based artificial intelligence computing frame-
work, 2022.

Yuhang Li, Shikuang Deng, Xin Dong, Ruihao Gong, and Shi Gu. A free lunch from ann: Towards
efficient, accurate spiking neural networks calibration. In International Conference on Machine
Learning (ICML), pp. 6316–6325. PMLR, 2021.

NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek. Cuda, release: 12.2, 2023. URL https:
//developer.nvidia.com/cuda-toolkit.

Federico Paredes-Valles, Kirk Yannick Willehm Scheper, and Guido Cornelis Henricus Eugene
De Croon. Unsupervised learning of a hierarchical spiking neural network for optical flow es-
timation: From events to global motion perception. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 42(8):2051–2064, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp. 8024–8035.
Curran Associates, Inc., 2019.

Christian Pehle and Jens Egholm Pedersen. Norse - A deep learning library for spiking neural
networks, January 2021. URL https://doi.org/10.5281/zenodo.4422025. Docu-
mentation: https://norse.ai/docs/.

Peng Qu, Hui Lin, Meng Pang, Xiaofei Liu, Weimin Zheng, and Youhui Zhang. Enlarge: An effi-
cient snn simulation framework on gpu clusters. IEEE Transactions on Parallel and Distributed
Systems, 34(9):2529–2540, 2023. doi: 10.1109/TPDS.2023.3291825.

Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu. Conver-
sion of Continuous-Valued Deep Networks to Efficient Event-Driven Networks for Image Classi-
fication. Frontiers in Neuroscience, 11:682, 2017.

Kazuma Suetake, Shin ichi Ikegawa, Ryuji Saiin, and Yoshihide Sawada. S3nn: Time step reduc-
tion of spiking surrogate gradients for training energy efficient single-step spiking neural net-
works. Neural Networks, 159:208–219, 2023. ISSN 0893-6080. doi: https://doi.org/10.1016/j.
neunet.2022.12.008. URL https://www.sciencedirect.com/science/article/
pii/S0893608022005007.

Wilson Truccolo, Uri T. Eden, Matthew R. Fellows, John P. Donoghue, and Emery N. Brown. A
point process framework for relating neural spiking activity to spiking history, neural ensem-
ble, and extrinsic covariate effects. Journal of Neurophysiology, 93(2):1074–1089, 2005. doi:
10.1152/jn.00697.2004. URL https://doi.org/10.1152/jn.00697.2004. PMID:
15356183.

10

https://www.frontiersin.org/article/10.3389/fninf.2018.00089
https://www.frontiersin.org/article/10.3389/fninf.2018.00089
http://github.com/google/flax
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://doi.org/10.5281/zenodo.4422025
https://www.sciencedirect.com/science/article/pii/S0893608022005007
https://www.sciencedirect.com/science/article/pii/S0893608022005007
https://doi.org/10.1152/jn.00697.2004

Under review as a conference paper at ICLR 2024

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie, and Luping Shi. Direct training for spiking neural
networks: Faster, larger, better. Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), 33(01):1311–1318, Jul. 2019. doi: 10.1609/aaai.v33i01.33011311. URL https://
ojs.aaai.org/index.php/AAAI/article/view/3929.

Changqing Xu, Yi Liu, and Yintang Yang. Ultra-low latency spiking neural networks with spatio-
temporal compression and synaptic convolutional block. Neurocomputing, 550:126485, 2023.
ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom.2023.126485. URL https://www.
sciencedirect.com/science/article/pii/S0925231223006082.

Esin Yavuz, James Turner, and Thomas Nowotny. Genn: a code generation framework for acceler-
ated brain simulations. Scientific reports, 6:18854, 2016.

11

https://ojs.aaai.org/index.php/AAAI/article/view/3929
https://ojs.aaai.org/index.php/AAAI/article/view/3929
https://www.sciencedirect.com/science/article/pii/S0925231223006082
https://www.sciencedirect.com/science/article/pii/S0925231223006082

	Introduction
	Background
	Parallelization Method
	Temporal Parallelization on Single GPU
	Parallelization across Multiple GPUs

	Programming Models and Implementations
	Programming Models
	Implementations

	Experiments
	Experimental Settings
	Single-GPU Acceleration
	Multi-GPU Acceleration

	Related Work
	SNN Libraries
	GPU-acceleration Frameworks

	Conclusion

