
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

[Supplementary Materials for] AdapMTL: Adaptive Pruning
Framework for Multitask Learning Model

Anonymous Authors

A THRESHOLDS UPDATING
We detail the process of updating thresholds within the AdapMTL
framework in this section. The thresholds are determined by 𝜃init,
such that 𝛼𝑡 = sigmoid(𝜃init). Consequently, the challenge of up-
dating the thresholds is transformed into the task of updating the 𝜃𝑡
for each specific task. Considering a multitask model with T tasks,
we divide the weight parameters𝑊 into𝑊 = {𝑊𝐵,𝑊1,𝑊2, ...,𝑊𝑇 },
where𝑊𝐵 represents the weight parameters for the shared back-
bone and𝑊𝑡 represents the weight parameters for the 𝑡-th task-
specific head. We derive the gradient descent update equation at
the 𝑛-th epoch for 𝜃𝑡 as follows:

𝜃𝑛+1𝑡 = 𝜃𝑛𝑡 − 𝜂𝑛
𝜕L(𝑊,𝛼 ;D)

𝜕𝜃𝑛𝑡

= 𝜃𝑛𝑡 − 𝜂𝑛
𝜕L(𝜃, 𝛼 ;D)

𝜕𝑊 𝑛
𝑡

⊙
𝜕𝑊 𝑛

𝑡

𝜕𝜃𝑛𝑡

= 𝜃𝑛𝑡 − 𝜂𝑛 · (−𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝜃𝑛𝑡)) ′ ·
𝜕L(𝜃, 𝛼 ;D)

𝜕𝑊 𝑛
𝑡

= 𝜃𝑛𝑡 − 𝜂𝑛 · (−𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝜃𝑛𝑡)) ′ ·
𝜕L(𝑊,𝛼 ;D)
𝜕𝑆 (𝑊 𝑛

𝑡 , 𝛼𝑛
𝑡)

⊙
𝜕𝑆 (𝑊 𝑛

𝑡 , 𝛼𝑛
𝑡)

𝜕𝑊 𝑛
𝑡

=𝑊 𝑛
𝑡 + 𝜂𝑛 · (𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝜃𝑛𝑡)) ′ ·

𝜕L(𝑊,𝛼 ;D)
𝜕𝑆 (𝑊 𝑛

𝑡 , 𝛼𝑛
𝑡)

⊙ B𝑛
𝑡 ,

(1)
where 𝜂𝑛 is the learning rate at the 𝑛-th epoch. We use the par-
tial derivative to calculate the gradients. Although 𝜕𝑆 (𝑊 𝑛

𝑡 ,𝛼𝑛
𝑡)

𝜕𝑊 𝑛
𝑡

is
non-differentiable, we can approximate the gradients using the
sub-gradient method. In this case, we introduce B𝑡𝑛 , an indicator
function that acts like a binary mask. The value of B𝑡𝑛 should be
0 if the sparse version of the weight 𝑆 (𝑊 𝑛

𝑡 , 𝛼
𝑛
𝑡) is equal to 0. This

indicator function facilitates the approximation of gradients and
the update of the sparse weights and soft thresholds during the
backpropagation process. Mathematically, the indicator function is:

B𝑛
𝑡 =

{
0, if 𝑆 (𝑊 𝑛

𝑡 , 𝛼
𝑛
𝑡) = 0 ,

1, otherwise.
(2)

B TRAINING DETAILS
We adopt the same training configurations as those used in DiS-
parse [4], which is the latest multitask pruning work, for fair com-
parisons. We conduct all our experiments using PyTorch and RTX
8000 GPUs, and we employ the Adam optimizer with a batch size
of 16. For the NYUV2 dataset, we run 20K iterations with an initial
learning rate of 1e-3, decaying by 0.5 every 4,000 iterations. For
the Tiny-Taskonomy dataset, we train for 100K iterations with an
initial learning rate of 1e-4, decaying by 0.3 every 12K iterations.
The size of the sliding window in our experiments is set to 400 to
smooth loss deviations. We utilized cross-entropy loss for Semantic
Segmentation, negative cosine similarity between the normalized
prediction and ground truth for Surface Normal Prediction, and L1

Table 1: Hyper-parameters for training on NYUv2 and Tiny-
taskonomy datasets

Dataset lr lr decay epoch
NYUv2 0.001 0.5/ 4,000 ters 20,000

Tiny-Taskonomy 0.0001 0.3/ 10,000 iters 50,000

loss for the remaining tasks. To avoid bias and diversity in different
pre-trained models, we trained all models from scratch, ensuring
a fair comparison among various methods. It’s noteworthy that,
unlike many previous works, our method does not require any
pre-training or pre-pruned models.

We use the 𝜃init parameter, set to -20, to regulate the duration of
dense training phases. A lower 𝜃init value extends the period dedi-
cated to dense representation, allowing for more comprehensive
learning before pruning begins.

C ADDITIONAL RESULTS
We provide additional results on the Tiny-Taskonomy dataset using
Resnet34 and MobileNetV2 architecture, separately. On the Tiny-
Taskonomy dataset, which comprises a total of 5 tasks, AdapMTL
demonstrates a more balanced performance across tasks. As shown
in Table 2, 3, our method achieved the highest △𝑇 score and the
lowest absolute error for most tasks.

C.1 Pruning Sensitivity Analysis
Different task heads may have similar amounts of model weights,
but their sensitivities to pruning can vary. This observation suggests
that a more discriminative pruning approach should be employed
for each task, taking into account their unique sensitivities. To
verify this observation, we fixed a ResNet34 backbone at a sparsity
level of 95% for better visualization and pruned three task heads
independently to examine their sensitivity to pruning.

As shown in Figure 1, the head of the surface normal prediction
task is the least sensitive, as it maintains good accuracy even when
extreme sparsity is enforced. Therefore, AdapMTL learns to keep
this task head at a high level of sparsity during pruning, which is
aligned with the component-wise sparsity allocation in the table of
the manuscript. In contrast, the head of the semantic segmentation
task is relatively more sensitive to pruning, so we strive to keep it
as dense as possible throughout the training process. This tailored
approach to pruning helps AdapMTL achieve better overall perfor-
mance across different tasks by considering the specific pruning
sensitivity of each task head.

C.2 Adaptive weighting factor
The adaptive weighting mechanism is used to decide the head
sparsity allocation among different tasks based on their varying
sensitivity to pruning. By adaptively learning a weighting factor, we

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Table 2: Comparison with MTL pruning methods on the Tiny-Taskonomy dataset using the Deeplab-ResNet34 backbone.

Model 𝑇1 : Semantic Seg. 𝑇2 : Normal Pred. 𝑇3 : Depth Estimation 𝑇4 : Keypoint Det. 𝑇5 : Edge Det. sparsity
% △𝑇 ↑Abs. ↓ △𝑇1↑ Abs. ↑ △𝑇2↑ Abs. ↓ △𝑇2↑ Abs. ↓ △𝑇2↑ Abs. ↓ △𝑇2↑

Dense Model 0.5053 0 0.8436 0.00 0.0222 0.00 0.1961 0.00 0.2131 0.00 95 0.00
SNIP [3] 0.5659 -11.99 0.7301 -13.45 0.0246 -10.81 0.1972 -0.56 0.2221 -4.22 95 -8.21
LTH [1] 0.5345 -5.78 0.8189 -3.38 0.0234 -5.41 0.2004 -2.19 0.2187 -2.63 95 -3.88
IMP [2] 0.5163 -2.18 0.8371 -0.79 0.0221 0.45 0.1962 -0.05 0.2184 -2.49 95 -1.01
DiSparse [4] 0.5287 -4.63 0.8423 -0.16 0.0217 2.25 0.1987 -1.33 0.2089 1.97 95 -0.38
AdapMTL w/o adaptive thresholds 0.5468 -8.21 0.8059 -4.48 0.02296 -3.42 0.1937 1.22 0.2153 -1.03 95 -3.18
AdapMTL 0.5038 0.30 0.8513 0.96 0.0221 0.45 0.1923 1.94 0.2074 2.67 95 1.26

Table 3: Comparison with MTL pruning methods on the Tiny-Taskonomy dataset using the MobileNetV2 backbone.

Model 𝑇1 : Semantic Seg. 𝑇2 : Normal Pred. 𝑇3 : Depth Estimation 𝑇4 : Keypoint Det. 𝑇5 : Edge Det. sparsity
% △𝑇 ↑Abs. ↓ △𝑇1↑ Abs. ↑ △𝑇2↑ Abs. ↓ △𝑇2↑ Abs. ↓ △𝑇2↑ Abs. ↓ △𝑇2↑

Dense Model 1.0783 0.00 0.7429 0.00 0.0318 0.00 0.203 0.00 0.2242 0.00 95 0.00
SNIP [3] 1.0901 -1.09 0.7243 -2.50 0.0321 -0.94 0.2157 -6.26 0.2364 -5.44 95 -3.25
LTH [1] 1.0869 -0.80 0.7407 -0.30 0.0325 -2.20 0.2118 -4.33 0.2328 -3.84 95 -2.29
IMP [2] 1.0795 -0.11 0.7415 -0.19 0.0327 -2.83 0.2012 0.89 0.2351 -4.86 95 -1.42
DiSparse [4] 1.0781 0.02 0.7423 -0.08 0.0322 -1.26 0.208 -2.46 0.2287 -2.01 95 -1.16
AdapMTL w/o adaptive thresholds 1.0868 -0.79 0.7329 -1.35 0.0344 -8.18 0.2043 -0.64 0.2233 0.40 95 -2.11
AdapMTL 1.0751 0.30 0.7421 -0.11 0.0305 4.09 0.2021 0.44 0.2225 0.76 95 1.10

60 70 80 90 93 95 97 99
Task head sparsity (%)

0.92

0.94

0.96

0.98

1.00

N
or

m
ili

ze
d

te
st

 a
cc

ur
ac

y

Depth Estimation
SN Prediction
Semantic Seg.
Dense Model

Figure 1: Comparison of task head sensitivities to pruning for
different vision tasks.Weuse a 95% sparse Resnet34 backbone
for better depiction. The dashed line dense model indicates
the task head is dense.

can assign different importance to each task, subsequently pruning
discriminatively on different task heads.

As shown in Figure 2, we initially set the weighting factor of each
task equal, such as 1, to ensure sufficient training of each task for
5,000 epochs. Over time, the surface normal prediction task tends
to stabilize and converge, leading to small loss fluctuations. This
implies that we can prune more aggressively on that component,
as the task head is robust to pruning. Consequently, the weighting
factor of this task will be larger than the others. This observation is
aligned with the results from Table in the main text, where the sur-
face normal prediction achieves higher sparsity compared to other
task heads. In contrast, the loss of semantic segmentation fluctuates
significantly, indicating that we should consider pruning less on
that component by lowering the weighting factor, as the training

is less likely to converge at higher sparsity levels. It is worth men-
tioning that the weighting factor is learned adaptively, eliminating
the need for manual effort to fine-tune the hyper-parameters.

0 2500 5000 7500 10000 12500 15000 17500 20000
Epoch

0.4

0.6

0.8

1.0

1.2

1.4

A
da

pt
iv

e
w

ei
gh

t

Semantic Seg.
SN Prediction
Depth Estimation

Figure 2: The evolution of adaptive weighting factors during
training. Equal weights are initially assigned to each task for
the first 5000 epochs to ensure sufficient training.

To validate the effectiveness of our adaptive weighting mech-
anism, we also carry out an experiment where we assign equal
weights (𝛽𝑡=1) to each task and then visualize the sparsity allocation
across each component under this configuration. For comparison,
we also visualize the sparsity allocation with adaptive weighting,
where the weighting factor for semantic segmentation, surface nor-
mal prediction, and depth estimation is set to 1.35, 1.15, and 0.5
respectively. This configuration is from the one shown in Figure 2.

As illustrated in Figure 3, the adaptive weighting factor results in
a denser shared backbone compared to the equal weighting factor,
while simultaneously making the task heads sparser. Notably, even
though the task-specific head of semantic segmentation is assigned
a lower value, it achieves higher sparsity than with equal weight.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

[Supplementary Materials for] AdapMTL: Adaptive Pruning Framework for Multitask Learning Model ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 3: Comparison of sparsity allocation between equal
weight (1) and adaptive weight configurations, where we
assign weighting factors of 1.35, 1.15, and 0.5 to each task-
specific head respectively. The overall sparsity is 90%

This phenomenon arises because the shared backbone is already
dense, prompting a sparser task head than before. The right-most
sub-figure presents the overall performance under this sparsity
allocation. It is evident that our method, with the incorporation of
the adaptive weighting mechanism, outperforms the variant of our
method without it.

Through this experiment, we demonstrate that the adaptive
weighting mechanism plays a crucial role in maintaining high den-
sity for the shared backbone and efficiently allocating sparsity
among the task-specific heads. By taking into account the sensi-
tivity and importance of different components in the MTL model,
the adaptive weighting mechanism allows for better overall perfor-
mance even when high sparsity is enforced.

D DISCUSSION
One of the noticeable aspects of AdapMTL is that the final sparsity
of our model may not exactly match the requested sparsity. This dis-
crepancy arises due to the intrinsic behavior of the soft thresholds.
During pruning, these soft thresholds determine whether a specific
parameter should be set to zero, thereby introducing sparsity into
the model. However, the soft thresholds do not strictly enforce the
exact level of sparsity but rather guide the model to approach the
desired sparsity level. This level of flexibility is a design choice made
to prevent any undue negative impact on model performance due
to overly rigid sparsity constraints. It allows the model to strike a
balance between the targeted sparsity and the necessity to preserve
adequate performance levels. Our current strategy to maximally
approximate the desired sparsity level involves fixing the pruning
mask once the desired sparsity has been reached. Another poten-
tial approach could involve a recovery mechanism that regrows
some crucial parameters that were pruned in earlier epochs. Future
research could explore more precise control mechanisms over the
final sparsity while ensuring that the model’s performance remains
robust.

REFERENCES
[1] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin.

2020. The lottery ticket hypothesis at scale. International Conference on Learning
Representations (2020).

[2] Song Han, Huizi Mao, and William J Dally. 2015. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149 (2015).

[3] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. 2018. Snip:
Single-shot network pruning based on connection sensitivity. arXiv preprint
arXiv:1810.02340 (2018).

[4] Xinglong Sun, Ali Hassani, Zhangyang Wang, Gao Huang, and Humphrey Shi.
2022. DiSparse: Disentangled Sparsification for Multitask Model Compression. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
12382–12392.

	A Thresholds updating
	B Training Details
	C Additional Results
	C.1 Pruning Sensitivity Analysis
	C.2 Adaptive weighting factor

	D Discussion
	References

