23
24
25
26
27
28
29
30

32
33

35

36

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

[Supplementary Materials for] AdapMTL: Adaptive Pruning
Framework for Multitask Learning Model

Anonymous Authors

A THRESHOLDS UPDATING

We detail the process of updating thresholds within the AdapMTL
framework in this section. The thresholds are determined by 6y,
such that oy = sigmoid(0j,i). Consequently, the challenge of up-
dating the thresholds is transformed into the task of updating the 6;
for each specific task. Considering a multitask model with T tasks,
we divide the weight parameters W into W = {Wg, Wy, Wy, ..., Wr},
where Wp represents the weight parameters for the shared back-
bone and W; represents the weight parameters for the t-th task-
specific head. We derive the gradient descent update equation at
the n-th epoch for 0; as follows:

07 =07 - n"%’;;ﬂ)
=07 — g (~sigmoid(61"))’ - %
~ oy~ (stgmoidtof)) - SLLEED) o PULLE
=W/ +n" - (sigmoid(O7)) - % o8
Y]

where 5" is the learning rate at the n-th epoch. We use the par-
S(Wrhay) .

w8
non-differentiable, we can approximate the gradients using the
sub-gradient method. In this case, we introduce Bt", an indicator
function that acts like a binary mask. The value of Bt" should be
0 if the sparse version of the weight S(W}?, a}!) is equal to 0. This
indicator function facilitates the approximation of gradients and
the update of the sparse weights and soft thresholds during the
backpropagation process. Mathematically, the indicator function is:

tial derivative to calculate the gradients. Although

if S(Wa) =0,
otherwise.

@

B TRAINING DETAILS

We adopt the same training configurations as those used in DiS-
parse [4], which is the latest multitask pruning work, for fair com-
parisons. We conduct all our experiments using PyTorch and RTX
8000 GPUs, and we employ the Adam optimizer with a batch size
of 16. For the NYUV2 dataset, we run 20K iterations with an initial
learning rate of le-3, decaying by 0.5 every 4,000 iterations. For
the Tiny-Taskonomy dataset, we train for 100K iterations with an
initial learning rate of 1e-4, decaying by 0.3 every 12K iterations.
The size of the sliding window in our experiments is set to 400 to
smooth loss deviations. We utilized cross-entropy loss for Semantic
Segmentation, negative cosine similarity between the normalized
prediction and ground truth for Surface Normal Prediction, and L1

Table 1: Hyper-parameters for training on NYUv2 and Tiny-
taskonomy datasets

Dataset Ir Ir decay epoch
NYUv2 0.001 0.5/ 4,000 ters 20,000
Tiny-Taskonomy | 0.0001 0.3/ 10,000 iters 50,000

loss for the remaining tasks. To avoid bias and diversity in different
pre-trained models, we trained all models from scratch, ensuring
a fair comparison among various methods. It’s noteworthy that,
unlike many previous works, our method does not require any
pre-training or pre-pruned models.

We use the 0iyj; parameter, set to -20, to regulate the duration of
dense training phases. A lower 6;y;; value extends the period dedi-
cated to dense representation, allowing for more comprehensive
learning before pruning begins.

C ADDITIONAL RESULTS

We provide additional results on the Tiny-Taskonomy dataset using
Resnet34 and MobileNetV2 architecture, separately. On the Tiny-
Taskonomy dataset, which comprises a total of 5 tasks, AdapMTL
demonstrates a more balanced performance across tasks. As shown
in Table 2, 3, our method achieved the highest At score and the
lowest absolute error for most tasks.

C.1 Pruning Sensitivity Analysis

Different task heads may have similar amounts of model weights,
but their sensitivities to pruning can vary. This observation suggests
that a more discriminative pruning approach should be employed
for each task, taking into account their unique sensitivities. To
verify this observation, we fixed a ResNet34 backbone at a sparsity
level of 95% for better visualization and pruned three task heads
independently to examine their sensitivity to pruning.

As shown in Figure 1, the head of the surface normal prediction
task is the least sensitive, as it maintains good accuracy even when
extreme sparsity is enforced. Therefore, AdapMTL learns to keep
this task head at a high level of sparsity during pruning, which is
aligned with the component-wise sparsity allocation in the table of
the manuscript. In contrast, the head of the semantic segmentation
task is relatively more sensitive to pruning, so we strive to keep it
as dense as possible throughout the training process. This tailored
approach to pruning helps AdapMTL achieve better overall perfor-
mance across different tasks by considering the specific pruning
sensitivity of each task head.

C.2 Adaptive weighting factor

The adaptive weighting mechanism is used to decide the head
sparsity allocation among different tasks based on their varying
sensitivity to pruning. By adaptively learning a weighting factor, we

59
60

61

63

64

65

66

67

68

69

70

71

72

73

74

75

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

113

114

115

116

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

174

ACM MM, 2024, Melbourne, Australia

Anonymous Authors

Table 2: Comparison with MTL pruning methods on the Tiny-Taskonomy dataset using the Deeplab-ResNet34 backbone.

Model T; : Semantic Seg.|T; : Normal Pred.|T3 : Depth Estimation|T : Keypoint Det.|T5 : Edge Det. |sparsity art
Abs. | ATlT Abs. T ATZT Abs. | ATZT Abs. | ATZT Abs. | ATZT %
Dense Model 0.5053 0 0.8436 0.00 0.0222 0.00 0.1961 0.00 0.2131 0.00 95 0.00
SNIP [3] 0.5659 -11.99 [0.7301 -13.45 | 0.0246 -10.81 0.1972 -0.56 0.2221 -4.22 95 |-8.21
LTH [1] 0.5345 -5.78 [0.8189 -3.38 0.0234 -5.41 0.2004 -2.19 [0.2187 -2.63 95 |-3.88
IMP [2] 0.5163 -2.18 0.8371 -0.79 0.0221 0.45 0.1962 -0.05 0.2184 -2.49 95 |-1.01
DiSparse [4] 0.5287 -4.63 (0.8423 -0.16 0.0217 2.25 0.1987 -1.33]0.2089 1.97 95 |-0.38
AdapMTL w/o adaptive thresholds|0.5468 -8.21 [0.8059 -4.48 [0.02296 -3.42 0.1937 1.22]0.2153 -1.03 95 |-3.18
AdapMTL 0.5038 0.30 0.8513 0.96 0.0221 0.45 0.1923 1.94 0.2074 2.67 95 1.26

Table 3: Comparison with MTL pruning methods on the Tiny-Taskonomy dataset using the MobileNetV2 backbone.

Model T; : Semantic Seg.|T; : Normal Pred.|Ts : Depth Estimation|Ts : Keypoint Det.|T5 : Edge Det. |sparsity art
Abs. | ATlT Abs. T ATZT Abs. | AT2T Abs. | ATZT Abs. | ATZT Vi
Dense Model 1.0783 0.00 0.7429 0.00 0.0318 0.00 0.203 0.00 0.2242 0.00 95 0.00
SNIP [3] 1.0901 -1.09 0.7243 -2.50]0.0321 -0.94 0.2157 -6.26 0.2364 -5.44 95 [-3.25
LTH [1] 1.0869 -0.80 0.7407 -0.30 |0.0325 -2.20 0.2118 -4.33 0.2328 -3.84 95 -2.29
IMP [2] 1.0795 -0.11 0.7415 -0.19]0.0327 -2.83 0.2012 0.89 0.2351 -4.86 95 |-1.42
DiSparse [4] 1.0781 0.02 0.7423 -0.08]0.0322 -1.26 0.208 -2.46 0.2287 -2.01 95 -1.16
AdapMTL w/o adaptive thresholds|1.0868 -0.79 0.7329 -1.35 [0.0344 -8.18 0.2043 -0.64 0.2233 0.40 95 -2.11
AdapMTL 1.0751 0.30 0.7421 -0.11 0.0305 4.09 0.2021 0.44 0.2225 0.76 95 1.10
1,00 is less likely to converge at higher sparsity levels. It is worth men-

% tioning that the weighting factor is learned adaptively, eliminating

% 0.98 1 the need for manual effort to fine-tune the hyper-parameters.

Q

<

£ 0.961 -

B —+— Depth Estimation 14

?E —— SN Prediction

£0941 Semantic Seg. 12

5 2

“ —==Dense Model

0.92 1

T T T

60 70 80
Task head sparsity (%)

90 93959799

Figure 1: Comparison of task head sensitivities to pruning for
different vision tasks. We use a 95% sparse Resnet34 backbone
for better depiction. The dashed line dense model indicates
the task head is dense.

can assign different importance to each task, subsequently pruning
discriminatively on different task heads.

As shown in Figure 2, we initially set the weighting factor of each
task equal, such as 1, to ensure sufficient training of each task for
5,000 epochs. Over time, the surface normal prediction task tends
to stabilize and converge, leading to small loss fluctuations. This
implies that we can prune more aggressively on that component,
as the task head is robust to pruning. Consequently, the weighting
factor of this task will be larger than the others. This observation is
aligned with the results from Table in the main text, where the sur-
face normal prediction achieves higher sparsity compared to other
task heads. In contrast, the loss of semantic segmentation fluctuates
significantly, indicating that we should consider pruning less on
that component by lowering the weighting factor, as the training

Adaptive weight

0.6

Semantic Seg.
—— SN Prediction
—— Depth Estimation

04

0 2500 5000 7500 10000 12500 15000 17500 20000
Epoch

Figure 2: The evolution of adaptive weighting factors during
training. Equal weights are initially assigned to each task for
the first 5000 epochs to ensure sufficient training.

To validate the effectiveness of our adaptive weighting mech-
anism, we also carry out an experiment where we assign equal
weights (87=1) to each task and then visualize the sparsity allocation
across each component under this configuration. For comparison,
we also visualize the sparsity allocation with adaptive weighting,
where the weighting factor for semantic segmentation, surface nor-
mal prediction, and depth estimation is set to 1.35, 1.15, and 0.5
respectively. This configuration is from the one shown in Figure 2.

As illustrated in Figure 3, the adaptive weighting factor results in
a denser shared backbone compared to the equal weighting factor,
while simultaneously making the task heads sparser. Notably, even
though the task-specific head of semantic segmentation is assigned
a lower value, it achieves higher sparsity than with equal weight.

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

232

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258

260
261
262
263
264
265
266
267

269
270
271
272
273
274
275
276

278
279
280
281
282
283
284
285
286
287
288
289
290

[Supplementary Materials for] AdapMTL: Adaptive Pruning Framework for Multitask Learning Model

110 11
BN cqual_weight W adaptive_weight

1.01

100 98,1993 0.9 10
0 94,9702

92,593. 03 ¢

2 90 3

= =

z 08 8

5 E]
2

& 801 768 5

0.7 7%

70

e
=

0.5
Overall Performance

Backbone Semantic Seg. SN Prediction Depth Estimation

Figure 3: Comparison of sparsity allocation between equal
weight (1) and adaptive weight configurations, where we
assign weighting factors of 1.35, 1.15, and 0.5 to each task-
specific head respectively. The overall sparsity is 90%

This phenomenon arises because the shared backbone is already
dense, prompting a sparser task head than before. The right-most
sub-figure presents the overall performance under this sparsity
allocation. It is evident that our method, with the incorporation of
the adaptive weighting mechanism, outperforms the variant of our
method without it.

Through this experiment, we demonstrate that the adaptive
weighting mechanism plays a crucial role in maintaining high den-
sity for the shared backbone and efficiently allocating sparsity
among the task-specific heads. By taking into account the sensi-
tivity and importance of different components in the MTL model,
the adaptive weighting mechanism allows for better overall perfor-
mance even when high sparsity is enforced.

D DISCUSSION

One of the noticeable aspects of AdapMTL is that the final sparsity
of our model may not exactly match the requested sparsity. This dis-
crepancy arises due to the intrinsic behavior of the soft thresholds.
During pruning, these soft thresholds determine whether a specific
parameter should be set to zero, thereby introducing sparsity into
the model. However, the soft thresholds do not strictly enforce the
exact level of sparsity but rather guide the model to approach the
desired sparsity level. This level of flexibility is a design choice made
to prevent any undue negative impact on model performance due
to overly rigid sparsity constraints. It allows the model to strike a
balance between the targeted sparsity and the necessity to preserve
adequate performance levels. Our current strategy to maximally
approximate the desired sparsity level involves fixing the pruning
mask once the desired sparsity has been reached. Another poten-
tial approach could involve a recovery mechanism that regrows
some crucial parameters that were pruned in earlier epochs. Future
research could explore more precise control mechanisms over the
final sparsity while ensuring that the model’s performance remains
robust.

REFERENCES

[1] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin.
2020. The lottery ticket hypothesis at scale. International Conference on Learning
Representations (2020).

ACM MM, 2024, Melbourne, Australia

[2] Song Han, Huizi Mao, and William J Dally. 2015. Deep compression: Compressing

deep neural networks with pruning, trained quantization and huffman coding.

arXiv preprint arXiv:1510.00149 (2015).

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. 2018. Snip:
Single-shot network pruning based on connection sensitivity. arXiv preprint
arXiv:1810.02340 (2018).

[3

=

2022. DiSparse: Disentangled Sparsification for Multitask Model Compression. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

12382-12392.

Xinglong Sun, Ali Hassani, Zhangyang Wang, Gao Huang, and Humphrey Shi.

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

	A Thresholds updating
	B Training Details
	C Additional Results
	C.1 Pruning Sensitivity Analysis
	C.2 Adaptive weighting factor

	D Discussion
	References

